
HAL Id: hal-00453462
https://hal.science/hal-00453462

Submitted on 18 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Execution Environment for ELECTRE Applications
Denis Creusot, Philippe Lemoine, Olivier Roux, Yvon Trinquet, Antonio

Kung, Olivier Marbach, Carlos Serrano-Morales

To cite this version:
Denis Creusot, Philippe Lemoine, Olivier Roux, Yvon Trinquet, Antonio Kung, et al.. Execution
Environment for ELECTRE Applications. 3rd European Software Engineering Conference, ESEC
’91, Oct 1991, Milan, Italy. pp.147-165, �10.1007/3540547428_47�. �hal-00453462�

https://hal.science/hal-00453462
https://hal.archives-ouvertes.fr

147

Execut ion environment for
applications

ELECTRE

Denis Creusot , Phi l ippe Lemoine, Olivier Roux, Yvon Trinquet

LAN-ENSM, Ecole Nationale Sup~rieure de M~canique, Eqnipe Temps Rdel

1, rue de la No~, F-44072 Nantes Cedex 03, France

Antonio Kung, Olivier Marbach, Carlos Serrano- iora les

TKIALO G Informatique

9, rue du Ch~tean d'Eau, F-75010 Paris, France

Abstract

This paper describes an execution environment for reactive systems specified in
ELECTRE. ELECTRE allows the specification of a real-time application's tempo-
ral behaviour in terms of sequential entities called modules, of events, of relations
between modules like parallelism, and of relations between modules and events
like preemption. EI~ECTttE is based on a design and implementation approach
enforcing the separation of the sequential part of the application (i.e. module speci-
fication), the event part of the application (i.e. event specification), and the control
part of the application (i.e. reaction to events). This separation is also reflected
at the execution level which includes a control unit, a module unit and an event
unit. The execution environment is supplemented by a display system, which can
be used for simulation, debugging or monitoring purposes. The display system is
a multiwindow facility based on two main types of representations : a structural
representation and a temporal representation.

Keywords: Reactive systems, real-time parallel systems, visualisation and
monitoring, execution system.

1 Introduction

This paper describes a specification, programming and execution environment based on
ELECTRE [Elloy 85], acronym for Ex6cutif et LangagE de Contr61e Temps-r6el REparti
(Language and Executive for Distributed Real-Time Control), a language allowing the
description of the temporal behaviour of real-time control processes.

ELECTRE is one among several approaches intended to model a real-time system
during its specification stage in order to be able to perform tasks such as analysis and
formal checking of timing and event properties. Other approaches are specific "Real-Time
Logics" [Jahanian 86, Ostroff 90], the use of event histories [Dixon 86, Faulk 88], the use

148

of data-flow diagrams [Ward 86] or petri net analysis [Valette 88], and specific languages
[Harel 90, Aeuernheimer 86]. The approaches of CCS [Milner 80] and Lotos [Brinksma 85]
have influenced our work. ELECTRE is a specific language allowing the specification of
behaviours concerning such notions as process preemption and process blocking. It does
not support the description of the sequential process itself. ELECTRE can be classified
as an asynchronous language, adapted for the programming of reactive systems, real-time
systems in particular.

Among other functions, ELECTRE can be used in the following three ways :

Validation of temporal behaviour specification. A simulator [Creusot 88] is currently
available. It accepts external stimuli representing events, and shows to the user the
modification of the state of the ELECTRE specification.

Monitoring the dynamic behaviour of an application. ELECTRE expressions are
used as redundant specifications, either to support debugging as in [Bruegge 83],
or in order to provide a fanlt-tolerant mechanism for limiting detection latency of
faults due to synchronization errors.

Programming specification of the application's concurrency aspects. ELECTRE is
used as a programming language. This is the approach which we have chosen and
that we describe in this paper.

The rest of the paper is structured as follows. We first briefly describe ELECTRE. The
kind of specification and programming environment in which ELECTRE can be included
is then sketched, and the resulting execution environment, with a particular emphasis on
display facilities, is presented in detail. Finally a conclusion with a description of current
research is provided.

This project is partially funded by the French Ministry of Industry under the STRIN
programme. The initial development of a simulator [Creusot 88] within the Electre project
has been funded by Renault-Automobiles. It was used as a specification tool in the field
of embedded systems.

2 Brief description of the ELECTRE language

Like some other languages [Benveniste 91], the ELECTRE language emerged from re-
search concerning effective ways to express process behaviour and synchronization in
reactive systems. [Pnueli 86, Harel 85, Benveniste 91] characterize those systems (e.g.
real-time systems) by their reactions to external stimuli (e.g. sensors signals) in order to
produce outputs (e.g. actuator commands). Moreover, those systems have to react to
and act on an environment that constraints the reaction rate.

ELECTRE is based on path expression theory [Campbell 74]. Path expressions were
mainly developed for the synchronization of concurrent processes sharing a resource. They
allow the description of how concurrent processes are coordinated in the sharing of a
resource. They are a convenient way of expressing constraints that processes must meet
in order to guarantee that actions concerning a given shared object are executed in an
orderly manner.

149

Path expressions have also been used as a debugging mechanism to monitor the dy-
namic behaviour of a computation [Bruegge 83]. In this case, path expressions are used
as redundant specifications of the expected behaviour of the program being debugged
in order to detect potential deviations. ELECTRE uses path expressions to specify the
temporal behaviour of reactive systems.

The basic idea in the design of the ELECTRE language is to separate process syn-
chronization constraints from algorithmic descriptions which are encapsulated in entities
called modules. Four different behaviours concerning how modules may run with regard to
other modules are available : modules may execute sequentially, in parallel, or exclusively,
or a module may be repeated. These are denoted in the language by syntactic symbols
space ,]1 , I , and * respectively.

ELECTRE can express whether the execution of a module has to start upon a certain
event occurrence, and whether it can be interrupted by another event occurrence. ELEC-
TRE actually deals with two entities, modules and events. These entities are designated
by identifiers appearing in ELECTRE programs together with operators. The operators
]" and / correspond to two different types of preemption operators, and : corresponds to
a module activation operator :

The T operator associates a module with an event (e.g. M 1" e). It indicates that
the occurrence of e while M is active has the effect of preempting M.

The / operator associates a module with an event (6.g. M/e). It also indicates
that the occurrence of e while M is active has the effect of preempting M, but
preemption is mandatory. If e has not occurred while M is active, M must wait for
the occurrence of e upon completion.

The : operator associates an event with a module (e.g. e : M). It indicates that
upon occurrence of event e, the module M must be activated.

Thus modules can be considered as task sections which include no synchronization or
blocking point. Their execution code may be expressed in any sequential language (e.g.
C). A module may be in one of the following states :

�9 not existing. It has not been activated, or it has completed,

�9 active. It has been activated,

�9 interrupted. An event occurrence preempted its execution, and the module may be
either resumed or restarted.

Since an event is linked to the ordered history of the occurrences of a specific signal,
an event may be in one of the following states :

�9 not existing. No occurrence was memorized,

�9 memorized. There were one or several occurrences which have been noted but not
yet acted upon,

150

�9 a~tive. An occurrence was taken into account and it gave way to the activation of
a module which has not yet completed.

In order accurately to express the temporal control in a synchronous or asynchronous
application, some further properties may be associated with events and with modules.

Properties concerning events express how an event occurrence is memorized�9 After an
event is used, it is erased from memory, i.e. consumed in ELECTRE terms.

There are four properties qualifying the memory of events : the default property, the
@ property, the # property and the $ property. Events are qualified by preceding their
identifiers by one of the three symbols (e.g. $e) or no symbol in the case of the default
property. In the default property, an event occurrence is consumed upon the completion
of the module it activated�9 The ~ symbol qualifies "fleeting" events. Their occurrence
cannot be memorized. Therefore, such events are either taken into account and consumed
when they occur, or their occurrence is lost. The # symbol qualifies an event for which
all occurrences are memorized. Finally, the $ symbol qualifies events which activate a
module and whose occurrence is deleted from the memory upon the activation.

Properties concerning modules express preemption properties. There are three proper-
ties qualifying modules : the default property, the > property and the I property. Modules
are qualified by preceding their identifiers by one of the two symbols (e.g. > M) or no
symbol in the case of the default property. In the default property, a module may be
preempted at any time, and if it has to be activated again,-it is resumed at the point
where it was preempted. The > symbol qualifies modules which are restarted rather than
resumed when they are reactivated. The ! symbol qualifies modules which cannot be
preempted when they are active.

The above description describes the basic semantics of the language. The reader may
refer to [Perraud 92] for an exhaustive and formal description of the operational semantics
of the language. Figures 1 and 2 provide two temporal diagrams illustrating the execution
of an ELECTRE program :

((A 1{ e l : B

state of
not

el

state of
e2

state o f
e3

O C C U l T ~ I C e

of el, e2,

I l e 2 : C }) / e 3)
A ~ B=._

active

existing

i

not
existing.

active

. A
n

C "

not
existing

B B

~ " C ~. C i

derive :

not:
exi.~ang : :

I n ~ I
exmti~. :

I !

memorizeA

i l

active

I

r :

act~o

e3

!

y

P

Time

Figure 1. Execution of an ELECTRE program.

151

This first example shows the preemption of module A by the occurrences of events el
and e2, which have the effect of activating modules B and C respectively�9 This sequence
is itself preempted by the occurrence of event e3, which provokes the repetitive execution
of the sequence (and leads either to the resumption or to the reactivation of A). Note
that the second occurrence of e3 preempts modules B and C transiently. Since e2 and el
are not consumed yet, they must be taken into account again, leading to the immediate
resumption of modules B and C. The thick grey lines correspond to waiting states. For
instance, C is waiting the occurrence of event c3.

(A / { el: B I {e2: C [[e3: D} }: E)*.

s ~ e o f
e l

s tate of
e2

state of
e3

o ~ u r f e ~ l e . . e

of e l , e2, e3

D

A _ ~ E ~ : i .,Era. - A,._
.

act ive

: not not
exis t ing : : ex i s t ing

not
exis t ing

memorized:

I

not
exis t ing

C

j m~~
�9 r

active : : : ac t ive

:] : no t [:
-' : ex l s t lng : :

ac t ive

1 I .-~
: ex i s t ing : :

r
Figure 2. Execution of an ELECTRE program.

In this example, A starts to run and may be preempted by either el to activate B
exclusively, or e2 or e3 to activate respectively modules C or D in parallel. Moreover,
the completion of B, or of C or D, activates module E, and this whole sequence is then
repeated.

An example of an ELECTRE program specifying the behaviour of processes is the
weU-known Readers-Writers problem [Elloy 85]. Assume that a given resource can be
read simultaneously by three reader processes R1, R2, R3 or written by one of the two
writer processes W1 and W2, but W1 and W2 cannot write at the same time. Events
r l , r2, r3 and ml, w2 refer to read and write requests made from the modules R1, R2,
R3, W1, W2 respectively.

If no priority is given, the control structure is given by :

(1/{{rl: R1 II r2 :R2 II r3: R3} [wl: W1 [w2: W2)) *.

The interrupt structure enclosed in the brackets following the ' / ' symbol indicates
that all the events are at the same level and may preempt the background task, designated
by 1. Writing by W1 and writing by W2 must take place exclusively, and reading must
take place exclusively from writing. The inner brackets indicate that when reading occurs,
concurrent reading is allowed. With such a control structure, it is possible that writers

152

never take control. Any time there is a reader, starvation of writers can occur. In order to
avoid this, the control structure below gives priority to writers. Each writer can preempt
any running task in the following control structure :

((1/{rl : R1 l i t2:R2 lit3: R3})/{wl: W1 I w2: W2}) *.

As a result, any writing request will preempt on-going readings. However, this struc-
ture is not totally correct, since events initiating the writers are mandatory : that is
when reading is completed it is mandatory to await a write request, although it should
be possible to have subsequent reading requests. Furthermore, when writing is performed
and completed, control should be given back to the preempted reading tasks. Finally,
since the shared resource is modified by writers, the reading task should be restarted at
the beginning (>). The correct program of the control structure is :

((1 /{r1:>R1 lit2:>R211~3: >R3}) T {wl: Wl I w2: W2}) . .

3 Spec i f i ca t ion and p r o g r a m m i n g e n v i r o n m e n t

3.1 Environment framework
An environment based on ELECTRE includes tools allows :

�9 the specification of the asynchronous part of the application in terms of concurrency
and preemption by events. This is achieved through E L E C T I ~ programs which
permit the specification of concurrency, sequencing of modules, and preemption of
modules by events.

�9 the specification of the sequential part of the applications, i.e. modules created with
standard tools and languages such as editors and compilers.

�9 the specification of events. Many entities can be represented as events (e.g. in-
terrupts related to physical external events, software or hardware internal events).
Those events can be combined into higher-level events (e.g. every four clock ticks).
Ideally tools for expressing relations between events and tools allowing the speci-
fication of ELECTRE events are necessary. This area is beyond the scope of the
project and will be part of future research.

3 .2 D e s i g n a n d g e n e r a t i o n

The methodology follows the following steps :

�9 Isolate events which affect execution.

�9 Refine parallel entities into smaller entities, i.e. modules which contain no synchro-
nisation point. They may contain request for signalling events.

�9 Derive an ELECTRE specification to describe the behaviour of the application.

Once the specification is available, tools for application compilation and generation can
be used.

153

4 Execut ion environment

4 . 1 E x e c u t i o n s u b s y s t e m

This section presents the ELECTRE execution system. It first explains its basic archi-
tecture and the dependencies between its main units. It then describes the control unit
and the module unit.

4 . 1 . 1 Arch i t ec tu re

The execution system is based on the architecture shown in the figure below.

control
unit

applications

unit management unit

I P~176176 I ~r,,er~ unit

SCEPTRE
kernel

Figure 3. Execution architecture.

This architecture is based on the SCEPTRE standard [SCEPTRE 84], a real-time
kernel on top of which higher level services can be provided. Most services are provided
by the VDX executive services [Kung 89] to which specific services have been added to
support ELECTRE.

The specific ELECTRE services are the following :

E L E C T R E control uni t : this unit "interprets" ELECTRE control expressions
and controls activation of modules. In order to do so, the event unit notifies each
ELECTRE event occurrence to the control unit. The control unit then decides upon
actions to be performed concerning modules. This entails requests to the module
unit. The module unit notifies the control unit of module terminations. Basically,
the control unit checks the occurrence of the notified event against a specification
represented as a tree.

modu le uni t : this unit handles services allowing the control unit to request activa-
tion, termination, preemption, and resumption of a module. For efficiency reasons,
modules are not implemented as processes of the underlying re, l-time executive. Ex-
ecution of ELECTRE modules is ensured by a pool of server processes. Activation
requests are enqueued on a first come / first serve basis.

154

�9 e v e n t u n i t : this unit receives notification of lower level events, and then decides
whether an ELECTRE event has occurred. For instance the ELECTRE event time
out of 60 ms might be handled by the 50th occurrence of the lower level event tick
1ms . Upon detection of occurrence, the event unit calls the event manager unit.

�9 e v e n t m a n a g e r u n i t : this unit allows the specification of dependencies between
E L E C T R E events. Those dependencies concern logical and temporal combination
of events which cannot be expressed in an E LECTRE specification (e.g. el and e2
occurred, el or e2 occurred, el and then e2 occurred).

4.1.2 Dependencies between s u b s y s t e m s

The picture below summarizes dependencies between units.
interactions between units.

The arrows indicate the

conu'ol unit ~]

3 1

E L E ~ event
management unit

I4

ELECTRE
event unit

ELECTRE
module unit

Pool of sc~ers

Figure 4. ELECTRE subsystem interfaces.

4 interfaces are identified :

�9 interface 1 : the module unit notifies the control unit of module termination.

�9 interface 2 : the control unit "interprets" the ELECTRE specification upon receiving
event stimuli and requests the module unit for activation, preemption, resumption,
or termination of modules.

�9 interface 3 : the event manager unit handles dependencies between E L E C T R E
events and interacts with the control unit.

�9 interface 4 : the event unit notifies the event manager unit of an ELECTRE event
occurrence.

155

4.1.3 Contro l uni t

The control unit uses ELECTR.E expressions to determine which actions to perform in
response to the notification of event occurrences. According to the kind of event and
the current state of the expression, the control unit can activate or preempt modules or
simply memorize the occurrence.

The control unit does not directly interpret the ELECTRE expressions but instead
interprets data structures which contain :

�9 static parameters associated with modules (e.g. identifiers, initialization parame-
ters),

* characterization of the events (e.g. identifiers, type),

�9 specification of the application represented by an "interpretation tree" which is
computed from the ELECTR.E sentence before the execution. This tree contains the
semantics of the ELECTRE sentence, i.e. all the causal relations between modules
or between modules and events.

Two interpretation trees are created. One is directly based on the syntactic and se-
mantic structure of the control expression (structural interpretation tree), and the second
one is an optimized version of the first. Figure 5 shows two examples of non-optimized
structural interpretation trees. /

(AB/el:C)D.

() D

!..

A B el C

(A/{el:(BIIC)IIe2:DE}:FIIG).

I
(11)

i
A {11} F G

root of the structure el (II)
... sequence of items]
() simple compound module
(11) parallel compound module i" i"
{ II } parallel events SWdCtUm B C

~ o

e2 D E

Figure 5. ELECTRE non-optimized structural interpretation trees.

While the building of structural interpretation trees at compile time is fairly simple,
interpretation algorithms are often complicated because it is necessary to perform a sys-
tematically recursive analysis of the tree. Algorithms for on-line interpretation and off-
line compilation can be found in [Creusot 88].

The control unit accesses the tree data structure after receipt of :

�9 the notification of an ELECTRE event issued from the event manager unit, or

156

�9 the notification of the completion of a module issued from the module unit.

As a consequence of the notification, the control unit uses the current state of the tree to
activate or preempt modules with the services of the module unit, or it simply memorizes
the occurrence according to the type of the event. In the latter case, active modules are
not preempted and the occurrence will be taken into account later.

In a real-time context, interpretation algorithms must be efficient which is not the
case when using the non-optimized tree. Since the interpretation tree is a structural copy
of the initial ELECTRE expression , it "sinks" the entities which direct evolution of the
application, i.e. the events. Consequently, a search must be performed for each event
occurrence.

(AB/el : C)D. (A/{e l : (B II C)II e2: DE}: F II G),

I"
() D (11)

. . . . r

el (II)" e2 D E

i~ i'*
B C

Figure 6. ELECTRE optimized structural interpretation trees.

Another approach based on an optimized interpretation tree has been proposed [Lemoine
90]. All events (those in the sentence and module completion events) are direct entry
points of a new structure. The major interest of this approach is to "wire" the causal
relations between events, modules and underlying structures (e.g. parallel, compound) in
the tree. On-line analysis of such a structure is more efficient even though there are still
cases when a recursive search is necessary. Figure 6 shows the result of optimization.

I

4.1.4 M o d u l e uni t
J

The module unit interacts with the control unit. It provides servmes for activation,
preemption, abortion, and resumption. It also calls a termination service of the control
unit.

Activation is a service of the module unit requested by the control unit upon event
occurrence (e.g. e: M), or in a sequence of modules (e.g. M1M2) or in a repetition (e.g.
(M1/e2: M3)*).

Preemption is requested upon event occurrence (e.g. M/e) . It is assumed that the
! preemption property qualifying modules is directly handled by the control unit which

157

therefore does not request the preemption service. To implement preemption, the module
unit uses the preemption services made available by the underlying SCEPTRE kernel.

Abortion is requested for event occurrences implying termination (e.g. > M/e). In
this case subsequent references to the module correspond to activation (e.g. (>M/e)*).

Service resumption is requested in order to resume a module after preemption. For
instance, if (M/e) is executed in a loop, the second reference to M corresponds to its
resuming.

Termination is reported to the control unit by the module unit in order to allow it to
proceed in the interpretation of the ELECTRE control expression.

The implementation of modules is based on a client-server model. A pool of task
servers is preallocated when the system starts. This implementation is more efficient
because tasks need not be created upon module activation. The number of tasks in the
pool is decided by the application. While a known upper bound is the number of modules
in an ELECTRE expression, it is not known how to compute statically the exact degree
of concurrency of a given ELECTRE expression. If the actual degree of concurrency is
greater that the number of tasks in the pool, requests for module activation are enqueued
on a FIFO request queue.

4 . 2 D i s p l a y s u b s y s t e m

This section presents the ELECTRE display subsystem. Its purpose is to display in real-
time or in pseudo real-time (i.e. possibly with some latency) information on ELECTRE
execution states. Two types of representation display are used. One focuses on structural
aspects, and the other on temporal aspects.

The display subsystem is a key element of an ELECTRE execution system. It is
mainly intended for debugging and monitoring needs and to some extent for simulation
and validation purposes. Most aspects of the display system are generic and could be
generalized to other language approaches.

Figure 7 shows the display environment. The display system is entirely dependent on
the ELECTRE control unit, in the sense that it interacts with it. In order to limit display
overhead at the main processor level and to allow future extensions for a distributed
version of the ELECTRE control unit, the display system runs on another processor
connected to the main processor though a local area network. Communication is based
on facilities provided by VDX. The display system is based on the Microsoft Windows
environment.

Other units

ELECTRE interpreter

VDX

Visualization system
on Microsoft

Windows

Network

VDX compatible
network interface

Figure 7. Display system environment.

158

4.2.1 Display sys t em organisat ion

Sta t ic and dynamic da ta s t ruc tures . The display system manipulates data struc-
tures describing static and dynamic aspects of an ELECTRE control expression. Static
aspects relate to information which is independent of execution. This concerns the text
of the ELECTRE expression, the interpretation tree structure, and preemption relations
between events and modules. Static information is provided at compile time and loaded
on the display system before execution starts. Dynamic aspects relate to information
concerning a given execution. It mainly concerns modifications of the state of the inter-
pretation tree, i.e. the beginning or the end of an ELECTRE sentence, an event, or the
end of a module. These modifications are called occurrences in the rest of the document.

Static data are used to implement the various types of display representations ex-
plained below. Dynamic data can be saved in an execution history file in order to be
reused later. The user of the display system can switch the input of data at any time
from the stream provided by the ELECTRE control unit to a history file. To achieve this,
the display system is divided in two units : the interface unit and the visualization unit.
The interface unit either receives information from the control unit and dispatches it to
a history file and to the visualization unit, or it reads information from a history file and
dispatches it to the visualization unit. The visualization unit reads dynamic data from
the interface unit and displays them.

Display modes . When the overall system is started, static'information must be made
available to the display system through loading directives. At this point, the default
display mode is the disconnected, or off-line, mode, that is, the display system is not
connected to the ELECTRE control unit, i.e. to the application itself. In this mode, the
visualization unit obtains information directly from history files. In the connected, or
on-line, mode, the display system is connected to the application. Data come directly
from the control unit and can subsequently be saved in a history file.

Two further submodes are defined in the connected mode, the decoupled and the
coupled submode. The coupled submode is the default submode. In this submode, data
transmitted from the control unit is directly displayed. A user wishing to replay a sequence
during the execution can set the decoupled submode. In this submode, data coming from
the interpreter are redirected to a temporary file while a history file (typically the current
one) can be replayed as in the unconnected mode. Upon returning to the coupled mode,
the temporary file is first used to update the display with all changes that occurred during
the decoupled phase.

Simulat ion, debugging and moni tor ing facilities. When the display system is in
the disconnected mode or in the decoupled submode of the connected mode, the resulting
system can be used for simulation. The display of modifications can be performed either
on a step by step basis or by an adjustable timer. When the display system is in the
coupled submode of the connected mode, the resulting system can be used for debugging
and monitoring. In order to help in detecting specific occurrences, the display system
can be stopped and resumed at specific points. The user can define breakpoints and
decoupling points on a given occurrence. Breakpoints have the effect of stopping the

159

application itself. Decoupling points have the effect of forcing the display system to be in
the decoupled submode.

4.2.2 Display representat ions .

Two main types of representation are discussed here : structural representation and tem-
poral representation. The examples below use the following ELECTRE sentence.

((A lIB) * / { e l) : (C/e2llD/{e3: E [e4: FG[{e5: H lie6}} : I l[J)) T e7.

S t ruc tura l representa t ion. This kind of representation is mainly based on a tree
structure derived from the syntactic and semantic structure of an ELECTRE expression.
Figure 8 shows the representation icons used to display basic entities (modules, events),
basic relations (sequentiality of modules, necessary preemption, optional preemption),
and syntactic non-terminal entities (simple compound module, parallel compound mod-
ule, repetitive module, simple compound event, exclusive compound event and parallel
compound event). Non-terminal entities have two representations : a simplified represen-
tation and an extended representation.

Basic representations

A module

event |
" (~

started module

sequentiality of modules

necessary preemption

^ optional preeanption

Simplified and extended representations

0 ~ " simple compound
module

~ A I parallel compound
B-4- el module (11)

O*

{}

IA

{11} ~ . e l -'~
, e2 ~ A j

repetitive module

simple compound
event

exclusive compound
event

parallel compound
event

Figure 8. Structural display icons.

The user can select between the simplified and the extended representation by click-
ing on the representation. Figure 9 shows an example of a display with all extended
representations. When the simplified representation is used, all details concerning the
corresponding non-terminal entities axe hidden.

160

The purpose of the simplified representation is twofold. It helps in encapsulating some
parts of the ELECTR, E sentence and it also reduces the size of the overall display. Vertical
and horizontal scrolling are also supported, but it was felt that they did not preclude for
the need of a simplified representation.

Figure 9. Structural display.

The effect of event occurrences on the structural display is to change the color of the
affected element in the representation. For instance the occurrence of event e5 will change
the color of the entity representing the event in the tree.

Our experiments on the use of structural displays showed that they bring a good
overall view of the ELECTRE expression. On the other hand, they are not very clear for
parallel structures or events and give no information on the sequentiality of occurrences.

Tempora l representa t ion . Temporal display representations are based on chrono-
grams. They focus on the state of events (memorized, not existing, active), on the se-
quencing and states of modules, and on the concurrency of modules. Figure 10 shows the
representation icons used to display basic entities.

161

A - - module slart

---- A ~ module end

- - - A - - no change

.-- -- -- parallel sequence ended

0 e v e n t awaited

{A
n

m

A } module preempted

A I module stoppod

module re.stmod

parall~s~cturo

Figure 10. Temporal display icons.

The display representation uses the horizontal axis to represent time. To avoid scaling
problems, the temporal axis is not defined by dates, but by occurrences. Horizontal lines
show the behaviour of a given module. Figure 11 shows a temporal representation display.

Begin e

I I I

A A A]

B

end B end A

I

,,el- c i
I
I

, I I - D :
!
|

,q l - j I I ~ - -
,!

end d

e4

! I

C I C --IDH,-- () - ,
I I
I I

I D } ~ I - F - - I I ~ (3 ; G]
I I I

I ' =
! ! !

end F end C end

Figure 11. Temporal representation display.

The effect of occurrences on the temporal display i8 to scroll the window from right
to left. Our experiments on the use of temporal displays showed that they bring a good
overall sense of concurrency aspects of ELECTRE expressions.

O t h e r representa t ions .

e

Other display facilities that have been made available are

the textual display of the ELECTRE expression.

the display of preemption relations between events and modules.

a map corresponding to a simplified display of the structural representation. It is
used to locate points and navigate in the structure. Clicking in a location of the
map will cause the structural display window to show the corresponding part of the
tree structure.

the display of information concerning occurrences. This is obtained by clicking
directly in the corresponding representation of the structural display. Temporary
windows are used to provide information like the state of an occurrence, the date of
an event, the location in the structure, and so forth.

162

Figure 12 is an example of an overall display.

Figure 12. Overall display.

5 Conc lus ion

The project began in mid-1989 and was completed early in 1991, on a 250Kbit/s CSMA/CD
network supplied by Compex at Annecy, France, using the VDX distributed executive
provided by Renault. It runs on PCs. Experimentation on the resulting system is con-
tinuing. The project has shown the feasibility of directly using ELECTRE expressions
for execution and constitutes only one step toward the identification and provision of
a comprehensive range of tools for the specification and programming of safety-critical,
distributed, real-time applications.

To this end, four main research directions are currently being investigated : the di-
rect generation of an ELECTRE compiler from its formal semantic specification, fault-
tolerance support, expression of timing constraints and distributed systems.

Compiler generation is based on the building of a rewriting system based on an at-
tribute grammar describing ELECTRE. This system leads to the generation of a transition

163

system which can be used as a compiler.
Concerning fault-tolerance, the ability to specify fault-tolerant behaviours of real-

time applications in ELECTRE is being investigated. In particular, extensions have
already been studied to allow the programmer to express either active or passive software
redundancy techniques applied to modules.

Research is being carried out on the specification of critical timing constraints. Those
specifications are associated with modules. The objective is to use the specifications in
order to help select the appropriate scheduling policy.

The distribution of modules in a Local Area Network environment is also investigated.
The goal is to have ELECTRE programs describe the behaviour of a global distributed
system. Thus, the main issue is to make sure that each local action is compatible with the
global ELECTRE program. The approach involves replicating the ELECTRE program
at each site of the network and adding distributed synchronization techniques to ensure
that the control sequence progress is the same everywhere.

6 Acknowledgements
We would like to thank Jean-Pierre Elloy, the head of the ENSM (Ecole Nationale
Sup~rieure de M~canique) real-time research team for the support he provided for our
project. We are also grateful to J~rome Billion, Adam Mirowsky and Nabil Zakhama for
their participation in the implementation of the ELECTRE execution environment.

Bibliography
[Aeuernheimer 86] B. Aeuernheimer, R.A. Kermmerer. RT-ASLAN : A Specification Lan-

guage for Real-Time Systems. IEEE Transactions on Software Engineering, Vol.
SE-12, n. 9, pp. 879-889, September 1986.

[Benveniste 91] A. Benveniste, G. Berry. Real-Time Systems Design and Programming.
Special section of the Proceedings of the IEEE on real-time programming. To appear
in autumn 1991.

[Bruegge 83] B. Bruegge, P. Hibbard. Generalized Path Expressions : A High Level De-
bugging Mechanism. ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on High-Level Debugging, pp. 34-44, March 1983.

[Brinksma 85] E. Brinksma. A tutorial on Lotos. IFIP Workshop on Protocol Specifica-
tions, Testing and Implementation, Moissac, 1985.

[Campbell 74] R.H. Campbell, A.N.Habermann. The Specification of Process Synchro-
nization by Path Expressions. Lecture Notes in Computer Science, Vol. 16, Springer-
Verlag, pp. 89-102, December 1974.

[Creusot 88] D. Creusot. Guide d'utilisation du systkme ELECTRE Version PC. Rapport
de contrat Renault, VEH-ELE-D1, October 1988.

164

[Deplanche 88] A.-M. Deplanche, J.-P. Elloy, O. Roux. Redundancy in Fault Tolerant
Real-time Process Control Systems. Congrks mondial IMACS, Paris, July 1988.

[Dixon 86] R.D. Dixon, D. Hemmendinger. Analyzing Synchronization Problems by Using
Event Histories as Languages. pp. 183-188, 1986.

[Elloy 85] J.P. Elloy, O. Roux. ELECTRE : A Language for Control Structuring in Real-
Time. The Computer Journal, Vol. 28, n. 5, 1985.

[Faulk 88] S.R.. Faulk, D.L. Parnas. On Synchronization in Hard-Real-Time Systems.
ACM, Vol. 31, n. 3, March 1988.

[Harel 85] D. Harel, A. Pnueli. On the Development of Reactive System : Logic and Models
of Concurrent Systems. NATO ASI Series, Vol. 13 (K.R.Apt, ed.), Springer-Verlag,
New-York, pp. 477-498, 1985.

[Harel 90] D. Hard, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A.
Stull-Trauring, M. Trakhtenbrot. STATEMATE : A Working Environment for the
Development of Complex Reactive Systems. IEEE Transactions on Software Engi-
neering, Vol. 16, n. 4, (K.R.Apt, ed.), pp. 403-414, April 1990.

[Jahanian 86] F. Jahanian, A. Mok. Safety Analysis of Timing Properties in Real-Time
Systems. IEEE Transactions on Software Engineering, .Vol. SE-12, n. 9, pp. 890-
904, September 1986.

[Kung 89] A. Kung, I. Lacrouts-Cazenave, C. Serrano-Morales. Interconnection of Ve-
hicle Software Components. Working conference on decentralized systems. IFIP
W.G.10.3, Lyon, December 1989.

[Lemoine 90] P. Lemoine, Y. Trinquet, J. Perraud. Une proposition de modification de la
structure d'arbre ELECTRE. Internal report LAN, 1990.

[Milner 80] R. Milner. A Calculus of Communicating Systems. Lecture Notes in Computer
Science, Springer-Verlag, n. 92, 1980.

[Ostroff 90] J.S. Ostroff. A Logic for Real-Time Discrete Event Processes. IEEE Control
System Magazine, pp. 95-102, June 1990.

[Perrand 92] J. Perraud, O. Roux, M. Huou. Operational Semantics of a Kernel of the
Electre Language. To appear in Theoretical Computer Science, n. 100, November
1992.

[Pnueli 86] A. Pnueli. Applications of Temporal Logic to the Specification and Verification
of Reactive Systems: a Survey of Current Trends. Current Trends in Concurrency
(Bakker & A1. eds.). Lecture Notes in Computer Science, Vol. 224, Springer-Verlag,
Berlin, pp. 510-584, 1986.

[SCEPTRE 84] SCEPTRE. TSI, Vol. 3, n.1, January-February 1984.

165

[Valette 88] R. Valette, M. Paludetto, B. Porcher-Labreuille, P. Farail. Approche Ori-
ent~e Objet HOOD et R~seauz de Petri pour la Conception de Logiciel Temps-RJel.
Journ~es Internationales sur le G6nie Logiciel et ses Applications, Toulouse (France),
December, 1988.

[Ward 86] P.T. Ward. The Transformation Schema: an gztension of the Data Flow Dia-
gram to Represent Control and Timin 9. IEEE Transaction on Software Engineering,
Vol. SE-12, n. 2, pp. 198-210, February 1986.

