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Abstract 

This paper describes an execution environment for reactive systems specified in 
ELECTRE. ELECTRE allows the specification of a real-time application's tempo- 
ral behaviour in terms of sequential entities called modules, of events, of relations 
between modules like parallelism, and of relations between modules and events 
like preemption. EI~ECTttE is based on a design and implementation approach 
enforcing the separation of the sequential part of the application (i.e. module speci- 
fication), the event part of the application (i.e. event specification), and the control 
part of the application (i.e. reaction to events). This separation is also reflected 
at the execution level which includes a control unit, a module unit and an event 
unit. The execution environment is supplemented by a display system, which can 
be used for simulation, debugging or monitoring purposes. The display system is 
a multiwindow facility based on two main types of representations : a structural 
representation and a temporal representation. 

Keywords: Reactive systems, real-time parallel systems, visualisation and 
monitoring, execution system. 

1 Introduction 

This paper describes a specification, programming and execution environment based on 
ELECTRE [Elloy 85], acronym for Ex6cutif et LangagE de Contr61e Temps-r6el REparti 
(Language and Executive for Distributed Real-Time Control), a language allowing the 
description of the temporal behaviour of real-time control processes. 

ELECTRE is one among several approaches intended to model a real-time system 
during its specification stage in order to be able to perform tasks such as analysis and 
formal checking of timing and event properties. Other approaches are specific "Real-Time 
Logics" [Jahanian 86, Ostroff 90], the use of event histories [Dixon 86, Faulk 88], the use 
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of data-flow diagrams [Ward 86] or petri net analysis [Valette 88], and specific languages 
[Harel 90, Aeuernheimer 86]. The approaches of CCS [Milner 80] and Lotos [Brinksma 85] 
have influenced our work. ELECTRE is a specific language allowing the specification of 
behaviours concerning such notions as process preemption and process blocking. It does 
not support the description of the sequential process itself. ELECTRE can be classified 
as an asynchronous language, adapted for the programming of reactive systems, real-time 
systems in particular. 

Among other functions, ELECTRE can be used in the following three ways : 

Validation of temporal behaviour specification. A simulator [Creusot 88] is currently 
available. It accepts external stimuli representing events, and shows to the user the 
modification of the state of the ELECTRE specification. 

Monitoring the dynamic behaviour of an application. ELECTRE expressions are 
used as redundant specifications, either to support debugging as in [Bruegge 83], 
or in order to provide a fanlt-tolerant mechanism for limiting detection latency of 
faults due to synchronization errors. 

Programming specification of the application's concurrency aspects. ELECTRE is 
used as a programming language. This is the approach which we have chosen and 
that we describe in this paper. 

The rest of the paper is structured as follows. We first briefly describe ELECTRE. The 
kind of specification and programming environment in which ELECTRE can be included 
is then sketched, and the resulting execution environment, with a particular emphasis on 
display facilities, is presented in detail. Finally a conclusion with a description of current 
research is provided. 

This project is partially funded by the French Ministry of Industry under the STRIN 
programme. The initial development of a simulator [Creusot 88] within the Electre project 
has been funded by Renault-Automobiles. It was used as a specification tool in the field 
of embedded systems. 

2 Brief description of the ELECTRE language 

Like some other languages [Benveniste 91], the ELECTRE language emerged from re- 
search concerning effective ways to express process behaviour and synchronization in 
reactive systems. [Pnueli 86, Harel 85, Benveniste 91] characterize those systems (e.g. 
real-time systems) by their reactions to external stimuli (e.g. sensors signals) in order to 
produce outputs (e.g. actuator commands). Moreover, those systems have to react to 
and act on an environment that constraints the reaction rate. 

ELECTRE is based on path expression theory [Campbell 74]. Path expressions were 
mainly developed for the synchronization of concurrent processes sharing a resource. They 
allow the description of how concurrent processes are coordinated in the sharing of a 
resource. They are a convenient way of expressing constraints that processes must meet 
in order to guarantee that actions concerning a given shared object are executed in an 
orderly manner. 
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Path expressions have also been used as a debugging mechanism to monitor the dy- 
namic behaviour of a computation [Bruegge 83]. In this case, path expressions are used 
as redundant specifications of the expected behaviour of the program being debugged 
in order to detect potential deviations. ELECTRE uses path expressions to specify the 
temporal behaviour of reactive systems. 

The basic idea in the design of the ELECTRE language is to separate process syn- 
chronization constraints from algorithmic descriptions which are encapsulated in entities 
called modules. Four different behaviours concerning how modules may run with regard to 
other modules are available : modules may execute sequentially, in parallel, or exclusively, 
or a module may be repeated. These are denoted in the language by syntactic symbols 
space  , ]1 , I , and * respectively. 

ELECTRE can express whether the execution of a module has to start upon a certain 
event occurrence, and whether it can be interrupted by another event occurrence. ELEC- 
TRE actually deals with two entities, modules and events. These entities are designated 
by identifiers appearing in ELECTRE programs together with operators. The operators 
]" and / correspond to two different types of preemption operators, and : corresponds to 
a module activation operator : 

The T operator associates a module with an event (e.g. M 1" e). It indicates that  
the occurrence of e while M is active has the effect of preempting M. 

The / operator associates a module with an event (6.g. M/e). It also indicates 
that  the occurrence of e while M is active has the effect of preempting M,  but 
preemption is mandatory. If e has not occurred while M is active, M must wait for 
the occurrence of e upon completion. 

The : operator associates an event with a module (e.g. e : M). It indicates that  
upon occurrence of event e, the module M must be activated. 

Thus modules can be considered as task sections which include no synchronization or 
blocking point. Their execution code may be expressed in any sequential language (e.g. 
C). A module may be in one of the following states : 

�9 not existing. It has not been activated, or it has completed, 

�9 active. It has been activated, 

�9 interrupted. An event occurrence preempted its execution, and the module may be 
either resumed or restarted. 

Since an event is linked to the ordered history of the occurrences of a specific signal, 
an event may be in one of the following states : 

�9 not existing. No occurrence was memorized, 

�9 memorized. There were one or several occurrences which have been noted but not 
yet acted upon, 
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�9 a~tive. An occurrence was taken into account and it gave way to the activation of 
a module which has not yet completed. 

In order accurately to express the temporal control in a synchronous or asynchronous 
application, some further properties may be associated with events and with modules. 

Properties concerning events express how an event occurrence is memorized�9 After an 
event is used, it is erased from memory, i.e. consumed in ELECTRE terms. 

There are four properties qualifying the memory of events : the default property, the 
@ property, the # property and the $ property. Events are qualified by preceding their 
identifiers by one of the three symbols (e.g. $e) or no symbol in the case of the default 
property. In the default property, an event occurrence is consumed upon the completion 
of the module it activated�9 The ~ symbol qualifies "fleeting" events. Their occurrence 
cannot be memorized. Therefore, such events are either taken into account and consumed 
when they occur, or their occurrence is lost. The # symbol qualifies an event for which 
all occurrences are memorized. Finally, the $ symbol qualifies events which activate a 
module and whose occurrence is deleted from the memory upon the activation. 

Properties concerning modules express preemption properties. There are three proper- 
ties qualifying modules : the default property, the > property and the I property. Modules 
are qualified by preceding their identifiers by one of the two symbols (e.g. > M) or no 
symbol in the case of the default property. In the default property, a module may be 
preempted at any time, and if it has to be activated again,-it is resumed at the point 
where it was preempted. The > symbol qualifies modules which are restarted rather than 
resumed when they are reactivated. The ! symbol qualifies modules which cannot be 
preempted when they are active. 

The above description describes the basic semantics of the language. The reader may 
refer to [Perraud 92] for an exhaustive and formal description of the operational semantics 
of the language. Figures 1 and 2 provide two temporal diagrams illustrating the execution 
of an ELECTRE program : 
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Figure 1. Execution of an ELECTRE program. 
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This first example shows the preemption of module A by the occurrences of events el 
and e2, which have the effect of activating modules B and C respectively�9 This sequence 
is itself preempted by the occurrence of event e3, which provokes the repetitive execution 
of the sequence (and leads either to the resumption or to the reactivation of A). Note 
that the second occurrence of e3 preempts modules B and C transiently. Since e2 and el 
are not consumed yet, they must be taken into account again, leading to the immediate 
resumption of modules B and C. The thick grey lines correspond to waiting states. For 
instance, C is waiting the occurrence of event c3. 

(A / { el:  B I {e2: C [[ e3: D} }: E )*. 
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Figure 2. Execution of an ELECTRE program. 

In this example, A starts to run and may be preempted by either el to activate B 
exclusively, or e2 or e3 to activate respectively modules C or D in parallel. Moreover, 
the completion of B, or of C or D, activates module E, and this whole sequence is then 
repeated. 

An example of an ELECTRE program specifying the behaviour of processes is the 
weU-known Readers-Writers problem [Elloy 85]. Assume that a given resource can be 
read simultaneously by three reader processes R1, R2, R3 or written by one of the two 
writer processes W1 and W2, but W1 and W2 cannot write at the same time. Events 
r l ,  r2, r3 and ml, w2 refer to read and write requests made from the modules R1, R2, 
R3, W1, W2 respectively. 

If no priority is given, the control structure is given by : 

(1/{{rl:  R1 II r2 :R2 II r3: R3} [ wl:  W1 [ w2: W2)) *. 

The interrupt structure enclosed in the brackets following the ' / ' symbol indicates 
that all the events are at the same level and may preempt the background task, designated 
by 1. Writing by W1 and writing by W2 must take place exclusively, and reading must 
take place exclusively from writing. The inner brackets indicate that when reading occurs, 
concurrent reading is allowed. With such a control structure, it is possible that writers 
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never take control. Any time there is a reader, starvation of writers can occur. In order to 
avoid this, the control structure below gives priority to writers. Each writer can preempt 
any running task in the following control structure : 

((1/{rl :  R1 l i t2:R2 lit3: R3})/{wl: W1 I w2: W2}) *. 

As a result, any writing request will preempt on-going readings. However, this struc- 
ture is not totally correct, since events initiating the writers are mandatory : that is 
when reading is completed it is mandatory to await a write request, although it should 
be possible to have subsequent reading requests. Furthermore, when writing is performed 
and completed, control should be given back to the preempted reading tasks. Finally, 
since the shared resource is modified by writers, the reading task should be restarted at 
the beginning (>). The correct program of the control structure is : 

( (1 /{r1:>R1 lit2:>R211~3: >R3}) T {wl: Wl I w2: W2}) . .  

3 Spec i f i ca t ion  and p r o g r a m m i n g  e n v i r o n m e n t  

3.1 Environment framework 
An environment based on ELECTRE includes tools allows : 

�9 the specification of the asynchronous part of the application in terms of concurrency 
and preemption by events. This is achieved through E L E C T I ~  programs which 
permit the specification of concurrency, sequencing of modules, and preemption of 
modules by events. 

�9 the specification of the sequential part of the applications, i.e. modules created with 
standard tools and languages such as editors and compilers. 

�9 the specification of events. Many entities can be represented as events (e.g. in- 
terrupts related to physical external events, software or hardware internal events). 
Those events can be combined into higher-level events (e.g. every four clock ticks). 
Ideally tools for expressing relations between events and tools allowing the speci- 
fication of ELECTRE events are necessary. This area is beyond the scope of the 
project and will be part of future research. 

3 .2  D e s i g n  a n d  g e n e r a t i o n  

The methodology follows the following steps : 

�9 Isolate events which affect execution. 

�9 Refine parallel entities into smaller entities, i.e. modules which contain no synchro- 
nisation point. They may contain request for signalling events. 

�9 Derive an ELECTRE specification to describe the behaviour of the application. 

Once the specification is available, tools for application compilation and generation can 
be used. 
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4 Execut ion  environment  

4 . 1  E x e c u t i o n  s u b s y s t e m  

This section presents the ELECTRE execution system. It first explains its basic archi- 
tecture and the dependencies between its main units. It then describes the control unit 
and the module unit. 

4 . 1 . 1  Arch i t ec tu re  

The execution system is based on the architecture shown in the figure below. 

control 
unit 

applications 

unit management unit 

I P~176176 I ~r,,er~ unit 

SCEPTRE 
kernel 

Figure 3. Execution architecture. 

This architecture is based on the SCEPTRE standard [SCEPTRE 84], a real-time 
kernel on top of which higher level services can be provided. Most services are provided 
by the VDX executive services [Kung 89] to which specific services have been added to 
support ELECTRE. 

The specific ELECTRE services are the following : 

E L E C T R E  control  uni t  : this unit "interprets" ELECTRE control expressions 
and controls activation of modules. In order to do so, the event unit notifies each 
ELECTRE event occurrence to the control unit. The control unit then decides upon 
actions to be performed concerning modules. This entails requests to the module 
unit. The module unit notifies the control unit of module terminations. Basically, 
the control unit checks the occurrence of the notified event against a specification 
represented as a tree. 

modu le  uni t  : this unit handles services allowing the control unit to request activa- 
tion, termination, preemption, and resumption of a module. For efficiency reasons, 
modules are not implemented as processes of the underlying re,  l-time executive. Ex- 
ecution of ELECTRE modules is ensured by a pool of server processes. Activation 
requests are enqueued on a first come / first serve basis. 
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�9 e v e n t  u n i t  : this unit receives notification of lower level events, and then decides 
whether an ELECTRE event has occurred. For instance the ELECTRE event time 
out of 60 ms might be handled by the 50th occurrence of the lower level event tick 
1ms .  Upon detection of occurrence, the event unit calls the event manager unit. 

�9 e v e n t  m a n a g e r  u n i t  : this unit allows the specification of dependencies between 
E L E C T R E  events. Those dependencies concern logical and temporal  combination 
of events which cannot be expressed in an E LECTRE specification (e.g. el  and e2 
occurred, el or e2 occurred, el and then e2 occurred). 

4.1.2 Dependencies between s u b s y s t e m s  

The picture below summarizes dependencies between units. 
interactions between units. 

The  arrows indicate the 

conu'ol unit ~ ]  

3 1 

E L E ~  event 
management unit 

I4  

ELECTRE 
event unit 

ELECTRE 
module unit 

Pool of sc~ers 

Figure 4. ELECTRE subsystem interfaces. 

4 interfaces are identified : 

�9 interface 1 : the module unit notifies the control unit of module termination. 

�9 interface 2 : the control unit "interprets" the ELECTRE specification upon receiving 
event stimuli and requests the module unit for activation, preemption, resumption, 
or termination of modules. 

�9 interface 3 : the event manager unit handles dependencies between E L E C T R E  
events and interacts with the control unit. 

�9 interface 4 : the event unit notifies the event manager unit of an ELECTRE event 
occurrence. 
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4.1.3 Contro l  uni t  

The control unit uses ELECTR.E expressions to determine which actions to perform in 
response to the notification of event occurrences. According to the kind of event and 
the current state of the expression, the control unit can activate or preempt modules or 
simply memorize the occurrence. 

The control unit does not directly interpret the ELECTRE expressions but instead 
interprets data structures which contain : 

�9 static parameters associated with modules (e.g. identifiers, initialization parame- 
ters), 

* characterization of the events (e.g. identifiers, type), 

�9 specification of the application represented by an "interpretation tree" which is 
computed from the ELECTR.E sentence before the execution. This tree contains the 
semantics of the ELECTRE sentence, i.e. all the causal relations between modules 
or between modules and events. 

Two interpretation trees are created. One is directly based on the syntactic and se- 
mantic structure of the control expression (structural interpretation tree), and the second 
one is an optimized version of the first. Figure 5 shows two examples of non-optimized 
structural interpretation trees. / 

(AB/el:C)D. 

() D 

!.. 

A B el C 

(A/{el:(BIIC)IIe2:DE}:FIIG). 

I 
(11) 

i 
A {11} F G 

root of the structure el  ( II ) 
... sequence of items ] 
( )  simple compound module 
(11) parallel compound module i" i" 
{ II } parallel events SWdCtUm B C 

~ o  

e2 D E 

Figure 5. ELECTRE non-optimized structural interpretation trees. 

While the building of structural interpretation trees at compile time is fairly simple, 
interpretation algorithms are often complicated because it is necessary to perform a sys- 
tematically recursive analysis of the tree. Algorithms for on-line interpretation and off- 
line compilation can be found in [Creusot 88]. 

The control unit accesses the tree data structure after receipt of : 

�9 the notification of an ELECTRE event issued from the event manager unit, or 
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�9 the notification of the completion of a module issued from the module unit. 

As a consequence of the notification, the control unit uses the current state of the tree to 
activate or preempt modules with the services of the module unit, or it simply memorizes 
the occurrence according to the type of the event. In the latter case, active modules are 
not preempted and the occurrence will be taken into account later. 

In a real-time context, interpretation algorithms must be efficient which is not the 
case when using the non-optimized tree. Since the interpretation tree is a structural copy 
of the initial ELECTRE expression , it "sinks" the entities which direct evolution of the 
application, i.e. the events. Consequently, a search must be performed for each event 
occurrence. 

(AB/el :  C)D. (A/{e l :  (B II C)II e2: DE}: F II G),  

I" 
() D (11) 

. . . .  r 

el  (II)" e2 D E 

i~ i'* 
B C 

Figure 6. ELECTRE optimized structural interpretation trees. 

Another approach based on an optimized interpretation tree has been proposed [Lemoine 
90]. All events (those in the sentence and module completion events) are direct entry 
points of a new structure. The major interest of this approach is to "wire" the causal 
relations between events, modules and underlying structures (e.g. parallel, compound) in 
the tree. On-line analysis of such a structure is more efficient even though there are still 
cases when a recursive search is necessary. Figure 6 shows the result of optimization. 

I 

4.1.4 M o d u l e  uni t  
J 

The module unit interacts with the control unit. It provides servmes for activation, 
preemption, abortion, and resumption. It also calls a termination service of the control 
unit. 

Activation is a service of the module unit requested by the control unit upon event 
occurrence (e.g. e:  M), or in a sequence of modules (e.g. M1M2) or in a repetition (e.g. 
(M1/e2: M3)* ). 

Preemption is requested upon event occurrence (e.g. M/e) . It is assumed that the 
! preemption property qualifying modules is directly handled by the control unit which 
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therefore does not request the preemption service. To implement preemption, the module 
unit uses the preemption services made available by the underlying SCEPTRE kernel. 

Abortion is requested for event occurrences implying termination (e.g. > M/e). In 
this case subsequent references to the module correspond to activation (e.g. (>M/e)*). 

Service resumption is requested in order to resume a module after preemption. For 
instance, if (M/e) is executed in a loop, the second reference to M corresponds to its 
resuming. 

Termination is reported to the control unit by the module unit in order to allow it to 
proceed in the interpretation of the ELECTRE control expression. 

The implementation of modules is based on a client-server model. A pool of task 
servers is preallocated when the system starts. This implementation is more efficient 
because tasks need not be created upon module activation. The number of tasks in the 
pool is decided by the application. While a known upper bound is the number of modules 
in an ELECTRE expression, it is not known how to compute statically the exact degree 
of concurrency of a given ELECTRE expression. If the actual degree of concurrency is 
greater that the number of tasks in the pool, requests for module activation are enqueued 
on a FIFO request queue. 

4 . 2  D i s p l a y  s u b s y s t e m  

This section presents the ELECTRE display subsystem. Its purpose is to display in real- 
time or in pseudo real-time (i.e. possibly with some latency) information on ELECTRE 
execution states. Two types of representation display are used. One focuses on structural 
aspects, and the other on temporal aspects. 

The display subsystem is a key element of an ELECTRE execution system. It is 
mainly intended for debugging and monitoring needs and to some extent for simulation 
and validation purposes. Most aspects of the display system are generic and could be 
generalized to other language approaches. 

Figure 7 shows the display environment. The display system is entirely dependent on 
the ELECTRE control unit, in the sense that it interacts with it. In order to limit display 
overhead at the main processor level and to allow future extensions for a distributed 
version of the ELECTRE control unit, the display system runs on another processor 
connected to the main processor though a local area network. Communication is based 
on facilities provided by VDX. The display system is based on the Microsoft Windows 
environment. 

Other units 

ELECTRE interpreter 

VDX 

Visualization system 
on Microsoft 

Windows 

Network 

VDX compatible 
network interface 

Figure 7. Display system environment. 
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4.2.1 Display sys t em organisat ion 

Sta t ic  and dynamic  da ta  s t ruc tures .  The display system manipulates data struc- 
tures describing static and dynamic aspects of an ELECTRE control expression. Static 
aspects relate to information which is independent of execution. This concerns the text 
of the ELECTRE expression, the interpretation tree structure, and preemption relations 
between events and modules. Static information is provided at compile time and loaded 
on the display system before execution starts. Dynamic aspects relate to information 
concerning a given execution. It mainly concerns modifications of the state of the inter- 
pretation tree, i.e. the beginning or the end of an ELECTRE sentence, an event, or the 
end of a module. These modifications are called occurrences in the rest of the document. 

Static data are used to implement the various types of display representations ex- 
plained below. Dynamic data can be saved in an execution history file in order to be 
reused later. The user of the display system can switch the input of data at any time 
from the stream provided by the ELECTRE control unit to a history file. To achieve this, 
the display system is divided in two units : the interface unit and the visualization unit. 
The interface unit either receives information from the control unit and dispatches it to 
a history file and to the visualization unit, or it reads information from a history file and 
dispatches it to the visualization unit. The visualization unit reads dynamic data from 
the interface unit and displays them. 

Display modes .  When the overall system is started, static'information must be made 
available to the display system through loading directives. At this point, the default 
display mode is the disconnected, or off-line, mode, that is, the display system is not 
connected to the ELECTRE control unit, i.e. to the application itself. In this mode, the 
visualization unit obtains information directly from history files. In the connected, or 
on-line, mode, the display system is connected to the application. Data come directly 
from the control unit and can subsequently be saved in a history file. 

Two further submodes are defined in the connected mode, the decoupled and the 
coupled submode. The coupled submode is the default submode. In this submode, data 
transmitted from the control unit is directly displayed. A user wishing to replay a sequence 
during the execution can set the decoupled submode. In this submode, data coming from 
the interpreter are redirected to a temporary file while a history file (typically the current 
one) can be replayed as in the unconnected mode. Upon returning to the coupled mode, 
the temporary file is first used to update the display with all changes that occurred during 
the decoupled phase. 

Simulat ion,  debugging  and moni tor ing  facilities. When the display system is in 
the disconnected mode or in the decoupled submode of the connected mode, the resulting 
system can be used for simulation. The display of modifications can be performed either 
on a step by step basis or by an adjustable timer. When the display system is in the 
coupled submode of the connected mode, the resulting system can be used for debugging 
and monitoring. In order to help in detecting specific occurrences, the display system 
can be stopped and resumed at specific points. The user can define breakpoints and 
decoupling points on a given occurrence. Breakpoints have the effect of stopping the 
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application itself. Decoupling points have the effect of forcing the display system to be in 
the decoupled submode. 

4.2.2 Display representat ions .  

Two main types of representation are discussed here : structural representation and tem- 
poral representation. The examples below use the following ELECTRE sentence. 

((A lIB) * / { e l ) :  (C/e2llD/{e3: E [e4: FG[ {e5: H lie6}} : I l[ J)) T e7. 

S t ruc tura l  representa t ion.  This kind of representation is mainly based on a tree 
structure derived from the syntactic and semantic structure of an ELECTRE expression. 
Figure 8 shows the representation icons used to display basic entities (modules, events), 
basic relations (sequentiality of modules, necessary preemption, optional preemption), 
and syntactic non-terminal entities (simple compound module, parallel compound mod- 
ule, repetitive module, simple compound event, exclusive compound event and parallel 
compound event). Non-terminal entities have two representations : a simplified represen- 
tation and an extended representation. 

Basic representations 

A module 

event | 
" ( ~  .... 

started module 

sequentiality of modules 

necessary preemption 

^ optional preeanption 

Simplified and extended representations 

0 ~ " simple compound 
module 

~ A  I parallel compound 
B-4-  el module (11) 

O* 

{} 

IA 

{11} ~ . e l  -'~ 
, e2 ~ A j  

repetitive module 

simple compound 
event 

exclusive compound 
event 

parallel compound 
event 

Figure 8. Structural display icons. 

The user can select between the simplified and the extended representation by click- 
ing on the representation. Figure 9 shows an example of a display with all extended 
representations. When the simplified representation is used, all details concerning the 
corresponding non-terminal entities axe hidden. 
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The purpose of the simplified representation is twofold. It helps in encapsulating some 
parts of the ELECTR, E sentence and it also reduces the size of the overall display. Vertical 
and horizontal scrolling are also supported, but it was felt that they did not preclude for 
the need of a simplified representation. 

Figure 9. Structural display. 

The effect of event occurrences on the structural display is to change the color of the 
affected element in the representation. For instance the occurrence of event e5 will change 
the color of the entity representing the event in the tree. 

Our experiments on the use of structural displays showed that they bring a good 
overall view of the ELECTRE expression. On the other hand, they are not very clear for 
parallel structures or events and give no information on the sequentiality of occurrences. 

Tempora l  representa t ion .  Temporal display representations are based on chrono- 
grams. They focus on the state of events (memorized, not existing, active), on the se- 
quencing and states of modules, and on the concurrency of modules. Figure 10 shows the 
representation icons used to display basic entities. 
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A - -  module slart 

---- A ~ module end 

- - -  A - -  no change 

.-- -- -- parallel sequence ended 

0 e v e n t  awaited 

{A 
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m 

A } module preempted 

A I module stoppod 

module re.stmod 

parall~s~cturo 

Figure 10. Temporal display icons. 

The display representation uses the horizontal axis to represent time. To avoid scaling 
problems, the temporal axis is not defined by dates, but by occurrences. Horizontal lines 
show the behaviour of a given module. Figure 11 shows a temporal representation display. 
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I I I 
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! ! ! 

end F end C end 

Figure 11. Temporal representation display. 

The effect of occurrences on the temporal display i8 to scroll the window from right 
to left. Our experiments on the use of temporal displays showed that they bring a good 
overall sense of concurrency aspects of ELECTRE expressions. 

O t h e r  representa t ions .  

e 

Other display facilities that have been made available are 

the textual display of the ELECTRE expression. 

the display of preemption relations between events and modules. 

a map corresponding to a simplified display of the structural representation. It is 
used to locate points and navigate in the structure. Clicking in a location of the 
map will cause the structural display window to show the corresponding part of the 
tree structure. 

the display of information concerning occurrences. This is obtained by clicking 
directly in the corresponding representation of the structural display. Temporary 
windows are used to provide information like the state of an occurrence, the date of 
an event, the location in the structure, and so forth. 
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Figure 12 is an example of an overall display. 

Figure 12. Overall display. 

5 Conc lus ion  

The project began in mid-1989 and was completed early in 1991, on a 250Kbit/s CSMA/CD 
network supplied by Compex at Annecy, France, using the VDX distributed executive 
provided by Renault. It runs on PCs. Experimentation on the resulting system is con- 
tinuing. The project has shown the feasibility of directly using ELECTRE expressions 
for execution and constitutes only one step toward the identification and provision of 
a comprehensive range of tools for the specification and programming of safety-critical, 
distributed, real-time applications. 

To this end, four main research directions are currently being investigated : the di- 
rect generation of an ELECTRE compiler from its formal semantic specification, fault- 
tolerance support, expression of timing constraints and distributed systems. 

Compiler generation is based on the building of a rewriting system based on an at- 
tribute grammar describing ELECTRE. This system leads to the generation of a transition 
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system which can be used as a compiler. 
Concerning fault-tolerance, the ability to specify fault-tolerant behaviours of real- 

time applications in ELECTRE is being investigated. In particular, extensions have 
already been studied to allow the programmer to express either active or passive software 
redundancy techniques applied to modules. 

Research is being carried out on the specification of critical timing constraints. Those 
specifications are associated with modules. The objective is to use the specifications in 
order to help select the appropriate scheduling policy. 

The distribution of modules in a Local Area Network environment is also investigated. 
The goal is to have ELECTRE programs describe the behaviour of a global distributed 
system. Thus, the main issue is to make sure that each local action is compatible with the 
global ELECTRE program. The approach involves replicating the ELECTRE program 
at each site of the network and adding distributed synchronization techniques to ensure 
that the control sequence progress is the same everywhere. 
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