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Abstract:

We give some explicit decay estimates for the dual system

of a basis of functions that are polynomially localized in

space.

1. Introduction

A spline-type space S is a closed subspace of L2(Rd) pos-

sessing a Riesz basis of functions well localized is space.

That is, there exists a family of functions {fk}k ⊆ S and

constants 0 < A ≤ B < +∞ such that

A‖c‖ℓ2 ≤ ‖
∑

k

ckfk‖L2 ≤ B‖c‖ℓ2 , (1)

holds for every c ∈ ℓ2, and the functions {fk}k satisfy an

spatial localization condition.

In a spline-type space any function in f ∈ S has a unique

expansion f =
∑

k ckfk. Moreover the coefficients are

given by ck = 〈f, gk〉, where {gk}k ⊆ S is the dual basis,

a set of functions characterized by the relation 〈gk, fj〉 =
δk,j . These spaces provide a very natural framework for

the sampling problem.

The general theory of localized frames (see [6], [5] and

[2]) asserts that the functions forming the dual basis satisfy

a similar spatial localization. This can be used to extend

the expansion in (1) to other spaces, so that the family

{fk}k becomes a Banach frame for an associated family

of Banach spaces (see [4] and [6]). In the case of a spline-

type space S, this means that the decay of a function in S

can be characterized by the decay of its coefficients and,

in particular, that the functions {fk}k form a so called p-

Riesz basis for its Lp-closed linear span, for the whole

range 1 ≤ p ≤ ∞.

We derive, in some concrete case, explicit bounds for the

localization of the dual basis. We will work with a set of

functions satisfying a polynomial decay condition around

a set of nodes forming a lattice. By a change of variables,

we can assume that the lattice is Z
d. So, we will consider a

set of functions {fk}k ⊆ L2(Rd) satisfying the condition,

|fk(x)| ≤ C (1 + |x − k|)
−s

, x ∈ R
d and k ∈ Z

d,

for some constant C. This type of spatial localization is

specifically covered by the results in [5], but the constants

given there are not explicit. We will derive a polynomial

decay condition for the dual basis {gk}k, giving explicit

information on the resulting constants. This yields some

qualitative information, like the dependence of theses con-

stants on A, C and s and the corresponding p-Riesz basis

bounds for the original basis.

2. Main result

Theorem 1 Let C ≥ 1, and let t > d be integers. Let

s > d + t be a real number. For k ∈ Z
d let fk : R

d → C

be a measurable function such that

|fk(x)| ≤ C (1 + |x − k|)
−s

, (x ∈ R
d).

Suppose that {fk}k is a Riesz basis for its L2 closed linear

span S, with bounds 0 < A ≤ B < ∞. Let {gk}k ⊆ S be

its dual basis.

Then, the dual functions satisfy,

|gk(x)| ≤ D (1 + |x − k|)
−t

, (x ∈ R
d).

where D is given by,

D =
EstC2t+1

(s − t − d)t

1 + At−1

At+1
,

for some constant E > 0 that only depends on the dimen-

sion d.

Remark 1 The constant E can be explicitly determined

from the proof.

The results in [6] prescribe polynomial decay estimates

for the dual basis similar to those possessed by the origi-

nal basis. As a trade-off for the explicit constants we will

not obtain the full preservation of these decay conditions.

Nevertheless, any degree of polynomial decay on the dual

system can be granted, provided that the original basis has

sufficiently good decay.

Finally observe that, although the basis {fk}k is assumed

to be concentrated around a lattice of nodes, the functions

fk are not assumed to be shifts of a single function. In

particular, Theorem 1 below allows for a basis of func-

tions whose ‘optimal’ concentration nodes do not form a

lattice but are comparable to one. The ‘eccentricity’ of the

configuration of concentration nodes is, however, penal-

ized by the constants modelling the decay.



3. Sketch of a proof and comments

Now we sketch the proof of the main result, for a complete

proof see [11].

Consider the gram matrix of the basis {fk}k given by,

M ≡ (mk,j)k,j∈Zd , mk,j := 〈fk, fj〉 .

Since {fk}k is a Riesz sequence, M , as an operator on ℓ2,

has an inverse N ≡ (nk,j)k,j∈Zd . Moreover, ‖N‖ℓ2→ℓ2 ≤
A−1 and nk,j = 〈gk, gj〉, where {gk}k ⊆ S is the dual

basis of {fk}k.

The localization assumptions on the basis {fk}k yield a

polynomial decay estimate on the entries of M,

|mk,j | . (1 + |k − j|)−s.

If we can establish a similar estimate for the entries of N ,

|nk,j | . (1 + |k − j|)−t.

with all the constants given explicitly, then, using calcula-

tions similar to those in [5], we obtain the desired polyno-

mial concentration conditions for the dual functions.

Let us first consider the case where the basis {fk}k con-

sists of integer shifts of a single generator f (that is,

fk = f(· − k), k ∈ Z
d). In this case, the matrix M is

constant on its diagonals. That is,

mk,j = ak−j ,

for some sequence a. Similarly, N is given by

nk,j = bk−j ,

where the sequence b satisfies a ∗ b = δ.

Therefore, in this special case, M and N are convolution

operators. The off-diagonal decay of their entries is equiv-

alent to the decay of their kernels a and b. Since the decay

of a sequence x can be characterized by the smoothness

of its Fourier transform x̂, the problem can be reformu-

lated as the preservation of the smoothness of the function

â under pointwise inversion. This reasoning is present, for

example, in [1].

We can measure the smoothness of â by considering weak-

derivatives and use repeatedly a chain-rule argument for

Sobolev spaces to obtain similar smoothness conditions

for b̂.

In the general case, where M and N need not be convo-

lution operators, we try to imitate this reasoning, but we

avoid using the Fourier transform.

Given a matrix L ≡ (lk,j)k,j∈Zd and 1 ≤ h ≤ d, we

consider the new matrix,

Dh(L)k,j := (kh − jh)lk,j .

Observe that, up to some multiplicative constant, the map

Dh acts on a convolution operator by taking a partial

derivative of its symbol (that is, the Fourier transform of

its kernel.) The domain of Dh consists of those matrices

L such that Dh(L) defines a bounded operator on ℓ2. We

call Dh(L) the derivative of L (with respect to xh.)

Dh is a derivation in the sense that it satisfies the equation

Dh(AB) = Dh(A)B + ADh(B), provided that Dh(A)

and Dh(B) are both defined. Derivations are a well-

known tool in operator-algebras theory (see [3], [9] and

[10].)

Since MN = I and Dh(I) = 0, we can formally express

the high-order derivatives of N in terms of its lower-order

ones and all the derivatives of M ,

Du
h(N) = −

u−1
∑

l=0

(

u

l

)

Dl
h(N)Du−l

h (M)N. (2)

Using the polynomial off-diagonal decay bounds on M

and the bound ‖N‖ℓ2→ℓ2 ≤ A−1 we can obtain bounds

for the ℓ2 → ℓ2 norms of some derivatives of N . These

imply polynomial off-diagonal decay estimates for N , and

hence yield the desired spatial localization bounds for the

dual basis.

In the argument above we related the off-diagonal decay

of a matrix with the ℓ2 → ℓ2 norm of its derivatives. The

ℓ2 → ℓ2 norm of a matrix is not determined by the size of

its entries. However, there are some necessary and (other)

sufficient conditions on the size of the entries of a matrix

for it to be bounded on ℓ2. This “gap” in the conditions ac-

counts for the loss of some decay information in Theorem

1, when passing from the original basis to its dual system.

Finally we point out that the formal computations in the

above argument are not sufficient to prove the theorem.

Consider again the simple case of a basis of integer shifts.

With the notation of the discussion above, we have the

relation

a ∗ b = δ, (3)

we have some decay estimate on a (that can be reformu-

lated as a smoothness condition on â) and we want to

prove a similar decay condition for b. There may be var-

ious sequences x satisfying the relation a ∗ x = δ; b can

be singled out as the only one of them having a bounded

Fourier transform. For example, when a is finitely sup-

ported, equation 3 is a linear difference equation which

has other solutions besides b (that grow exponentially).

The decay of the sequence b can be rigorously proved by

resorting to some Sobolev-space smoothing argument.

In the general case, to derive equation (2), one needs to use

the associativity of the product of matrices. This is justi-

fied only if all the matrices involved represent bounded op-

erators. In other words, we need to know a priori that the

derivatives of N that are involved in equation (2) define

bounded operators. This can be proved using the general

results on derivations on Banach algebras (see [3], [9]) or

Jaffard’s Theorem [8].

The use of derivations is somehow implicit in Jaffard’s pa-

per [8]. Recently, Gröchenig and Klotz [7] have systemat-

ically studied the use of derivations in connection to var-

ious problems including the preservation under inversion

of various kinds of off-diagonal decay conditions.

4. Application

From Theorem 1 we can derive the following qualitative

statement.

Theorem 2 Let
{

F i
}

i∈I
be a family of Riesz sequences,

F i ≡
{

f i
k

}

k∈Zd ⊆ L
2(Rd), (i ∈ I).



sharing a uniform lower basis bound. Suppose that the

family
{

F i
}

i
satisfies a uniform concentration condition,

∣

∣f i
k(x)

∣

∣ ≤ C (1 + |x − k|)
−s

, (x ∈ R
d, k ∈ Z

d, i ∈ I),

for some constants C ≥ 1, s > d + t and t > d, with t an

integer.

Then the following holds.

(a) The respective family of dual systems
{

Gi
}

i
- where

Gi ≡
{

gi
k

}

k∈Zd - satisfies a uniform concentration

condition,

∣

∣gi
k(x)

∣

∣ ≤ D (1 + |x − k|)
−t

, (x ∈ R
d, k ∈ Z

d, i ∈ I),

for some constant D ≥ 1.

(b) A uniform p-Riesz basis condition holds, for all 1 ≤
p ≤ ∞. More precisely, there exist constants q, Q >

0 such that for any p ∈ [1,∞] and any i ∈ I , the

relation

q‖c‖ℓp ≤ ‖
∑

k

ckf i
k‖Lp ≤ Q‖c‖ℓp

holds for all finitely supported sequences (ck)k∈Zd .

Statement (a) follows directly from Theorem 1. Exam-

ining the proofs in [5] we see that the uniformity of the

constants given in (a) yields statement (b).

This qualitative conclusion on Theorem 2 was the original

motivation for Theorem 1.

Finally, observe that the arguments given above are appli-

cable to a generel intrinsically localized basis in the sense

of [5].
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