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Explicit localization estimates for spline-type spaces

We give some explicit decay estimates for the dual system of a basis of functions that are polynomially localized in space.

Introduction

A spline-type space S is a closed subspace of L 2 (R d ) possessing a Riesz basis of functions well localized is space. That is, there exists a family of functions {f k } k ⊆ S and constants 0 < A ≤ B < +∞ such that

A c ℓ 2 ≤ k c k f k L 2 ≤ B c ℓ 2 , (1) 
holds for every c ∈ ℓ 2 , and the functions {f k } k satisfy an spatial localization condition. In a spline-type space any function in f ∈ S has a unique expansion f = k c k f k . Moreover the coefficients are given by c k = f, g k , where {g k } k ⊆ S is the dual basis, a set of functions characterized by the relation g k , f j = δ k,j . These spaces provide a very natural framework for the sampling problem. The general theory of localized frames (see [START_REF] Gröchenig | Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator[END_REF], [START_REF] Fornasier | Intrinsic localization of frames[END_REF] and [START_REF] Radu | Density, overcompleteness, and localization of frames I: Theory[END_REF]) asserts that the functions forming the dual basis satisfy a similar spatial localization. This can be used to extend the expansion in (1) to other spaces, so that the family {f k } k becomes a Banach frame for an associated family of Banach spaces (see [START_REF] Hans | Banach spaces related to integrable group representations and their atomic decompositions[END_REF] and [START_REF] Gröchenig | Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator[END_REF]). In the case of a splinetype space S, this means that the decay of a function in S can be characterized by the decay of its coefficients and, in particular, that the functions {f k } k form a so called p-Riesz basis for its L p -closed linear span, for the whole range 1 ≤ p ≤ ∞. We derive, in some concrete case, explicit bounds for the localization of the dual basis. We will work with a set of functions satisfying a polynomial decay condition around a set of nodes forming a lattice. By a change of variables, we can assume that the lattice is Z d . So, we will consider a set of functions

{f k } k ⊆ L 2 (R d ) satisfying the condition, |f k (x)| ≤ C (1 + |x -k|) -s , x ∈ R d and k ∈ Z d ,
for some constant C. This type of spatial localization is specifically covered by the results in [START_REF] Fornasier | Intrinsic localization of frames[END_REF], but the constants given there are not explicit. We will derive a polynomial decay condition for the dual basis {g k } k , giving explicit information on the resulting constants. This yields some qualitative information, like the dependence of theses constants on A, C and s and the corresponding p-Riesz basis bounds for the original basis. 

Main result

|f k (x)| ≤ C (1 + |x -k|) -s , (x ∈ R d ).
Suppose that {f k } k is a Riesz basis for its L 2 closed linear span S, with bounds 0 < A ≤ B < ∞. Let {g k } k ⊆ S be its dual basis. Then, the dual functions satisfy,

|g k (x)| ≤ D (1 + |x -k|) -t , (x ∈ R d ).
where D is given by,

D = E st C 2t+1 (s -t -d) t 1 + A t-1 A t+1 ,
for some constant E > 0 that only depends on the dimension d.

Remark 1

The constant E can be explicitly determined from the proof.

The results in [START_REF] Gröchenig | Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator[END_REF] prescribe polynomial decay estimates for the dual basis similar to those possessed by the original basis. As a trade-off for the explicit constants we will not obtain the full preservation of these decay conditions. Nevertheless, any degree of polynomial decay on the dual system can be granted, provided that the original basis has sufficiently good decay. Finally observe that, although the basis {f k } k is assumed to be concentrated around a lattice of nodes, the functions f k are not assumed to be shifts of a single function. In particular, Theorem 1 below allows for a basis of functions whose 'optimal' concentration nodes do not form a lattice but are comparable to one. The 'eccentricity' of the configuration of concentration nodes is, however, penalized by the constants modelling the decay.

Sketch of a proof and comments

Now we sketch the proof of the main result, for a complete proof see [START_REF] Luis | Explicit localization estimates for spline-type spaces[END_REF].

Consider the gram matrix of the basis {f k } k given by,

M ≡ (m k,j ) k,j∈Z d , m k,j := f k , f j .
Since {f k } k is a Riesz sequence, M , as an operator on ℓ 2 , has an inverse N ≡ (n k,j ) k,j∈Z d . Moreover, N ℓ 2 →ℓ 2 ≤ A -1 and n k,j = g k , g j , where

{g k } k ⊆ S is the dual basis of {f k } k .
The localization assumptions on the basis {f k } k yield a polynomial decay estimate on the entries of M,

|m k,j | (1 + |k -j|) -s .
If we can establish a similar estimate for the entries of N ,

|n k,j | (1 + |k -j|) -t .
with all the constants given explicitly, then, using calculations similar to those in [START_REF] Fornasier | Intrinsic localization of frames[END_REF], we obtain the desired polynomial concentration conditions for the dual functions.

Let us first consider the case where the basis {f k } k consists of integer shifts of a single generator f (that is,

f k = f (• -k), k ∈ Z d ).
In this case, the matrix M is constant on its diagonals. That is,

m k,j = a k-j ,
for some sequence a. Similarly, N is given by

n k,j = b k-j ,
where the sequence b satisfies a * b = δ. Therefore, in this special case, M and N are convolution operators. The off-diagonal decay of their entries is equivalent to the decay of their kernels a and b. Since the decay of a sequence x can be characterized by the smoothness of its Fourier transform x, the problem can be reformulated as the preservation of the smoothness of the function â under pointwise inversion. This reasoning is present, for example, in [START_REF] Aldroubi | Nonuniform sampling and reconstruction in shift-invariant spaces[END_REF]. We can measure the smoothness of â by considering weakderivatives and use repeatedly a chain-rule argument for Sobolev spaces to obtain similar smoothness conditions for b.

In the general case, where M and N need not be convolution operators, we try to imitate this reasoning, but we avoid using the Fourier transform. Given a matrix L ≡ (l k,j ) k,j∈Z d and 1 ≤ h ≤ d, we consider the new matrix,

D h (L) k,j := (k h -j h )l k,j .
Observe that, up to some multiplicative constant, the map D h acts on a convolution operator by taking a partial derivative of its symbol (that is, the Fourier transform of its kernel.) The domain of D h consists of those matrices L such that D h (L) defines a bounded operator on ℓ 2 . We call D h (L) the derivative of L (with respect to x h .) D h is a derivation in the sense that it satisfies the equation

D h (AB) = D h (A)B + AD h (B), provided that D h (A)
and D h (B) are both defined. Derivations are a wellknown tool in operator-algebras theory (see [START_REF] Bratteli | Unbounded derivations of c*-algebras[END_REF], [START_REF] Kissin | Dense qsubalgebras of banach and c*-algebras and unbounded derivations of banach and c*-algebras[END_REF] and [START_REF] Kissin | Differential properties of some dense subalgebras of c*-algebras[END_REF].) Since M N = I and D h (I) = 0, we can formally express the high-order derivatives of N in terms of its lower-order ones and all the derivatives of M ,

D u h (N ) = - u-1 l=0 u l D l h (N )D u-l h (M )N. (2) 
Using the polynomial off-diagonal decay bounds on M and the bound N ℓ 2 →ℓ 2 ≤ A -1 we can obtain bounds for the ℓ 2 → ℓ 2 norms of some derivatives of N . These imply polynomial off-diagonal decay estimates for N , and hence yield the desired spatial localization bounds for the dual basis.

In the argument above we related the off-diagonal decay of a matrix with the ℓ 2 → ℓ 2 norm of its derivatives. The ℓ 2 → ℓ 2 norm of a matrix is not determined by the size of its entries. However, there are some necessary and (other) sufficient conditions on the size of the entries of a matrix for it to be bounded on ℓ 2 . This "gap" in the conditions accounts for the loss of some decay information in Theorem 1, when passing from the original basis to its dual system. Finally we point out that the formal computations in the above argument are not sufficient to prove the theorem. Consider again the simple case of a basis of integer shifts.

With the notation of the discussion above, we have the relation

a * b = δ, (3) 
we have some decay estimate on a (that can be reformulated as a smoothness condition on â) and we want to prove a similar decay condition for b. There may be various sequences x satisfying the relation a * x = δ; b can be singled out as the only one of them having a bounded Fourier transform. For example, when a is finitely supported, equation 3 is a linear difference equation which has other solutions besides b (that grow exponentially). The decay of the sequence b can be rigorously proved by resorting to some Sobolev-space smoothing argument. In the general case, to derive equation [START_REF] Radu | Density, overcompleteness, and localization of frames I: Theory[END_REF], one needs to use the associativity of the product of matrices. This is justified only if all the matrices involved represent bounded operators. In other words, we need to know a priori that the derivatives of N that are involved in equation ( 2) define bounded operators. This can be proved using the general results on derivations on Banach algebras (see [START_REF] Bratteli | Unbounded derivations of c*-algebras[END_REF], [START_REF] Kissin | Dense qsubalgebras of banach and c*-algebras and unbounded derivations of banach and c*-algebras[END_REF]) or Jaffard's Theorem [START_REF] Jaffard | Propriétés des matrices "bien localisées" près de leur diagonale et quelques applications[END_REF]. The use of derivations is somehow implicit in Jaffard's paper [START_REF] Jaffard | Propriétés des matrices "bien localisées" près de leur diagonale et quelques applications[END_REF]. Recently, Gröchenig and Klotz [START_REF] Gröchenig | Noncommutative approximation: Inverse-closed subalgebras and off-diagonal decay of matrices[END_REF] have systematically studied the use of derivations in connection to various problems including the preservation under inversion of various kinds of off-diagonal decay conditions.

Application

From Theorem 1 we can derive the following qualitative statement.

Theorem 2 Let F i i∈I be a family of Riesz sequences,

F i ≡ f i k k∈Z d ⊆ L 2 (R d ), (i ∈ I).
sharing a uniform lower basis bound. Suppose that the family F i i satisfies a uniform concentration condition,

f i k (x) ≤ C (1 + |x -k|) -s , (x ∈ R d , k ∈ Z d , i ∈ I),
for some constants C ≥ 1, s > d + t and t > d, with t an integer.

Then the following holds.

(a) The respective family of dual systems G i i -where G i ≡ g i k k∈Z d -satisfies a uniform concentration condition,

g i k (x) ≤ D (1 + |x -k|) -t , (x ∈ R d , k ∈ Z d , i ∈ I),
for some constant D ≥ 1.

(b) A uniform p-Riesz basis condition holds, for all 1 ≤ p ≤ ∞. More precisely, there exist constants q, Q > 0 such that for any p ∈ [1, ∞] and any i ∈ I, the relation

q c ℓ p ≤ k c k f i k L p ≤ Q c ℓ p
holds for all finitely supported sequences (c k ) k∈Z d .

Statement (a) follows directly from Theorem 1. Examining the proofs in [START_REF] Fornasier | Intrinsic localization of frames[END_REF] we see that the uniformity of the constants given in (a) yields statement (b). This qualitative conclusion on Theorem 2 was the original motivation for Theorem 1. Finally, observe that the arguments given above are applicable to a generel intrinsically localized basis in the sense of [START_REF] Fornasier | Intrinsic localization of frames[END_REF].

  Let C ≥ 1, and let t > d be integers. Let s > d + t be a real number. For k ∈ Z d let f k : R d → C be a measurable function such that

Theorem 1
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