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Abstract:
The classical Paley–Wiener space possesses two repro-
ducing formulae; a ‘concrete’ reproducing equation and
a ‘discrete’ analogue, or sampling series, and there is a
striking comparison between them. It is shown that such
analogies persist in the setting of Paley–Wiener spaces that
are more general than the classical case. In fact, there
are ‘operator’ versions of the reproducing equation and
of the sampling series that are also comparable, not ‘ex-
actly’ but nearly so. Reproducing kernel theory and ab-
stract harmonic analysis are brought together to achieve
this, then the special case of multiplier operators with re-
spect to the Fourier transform is considered. The Riesz
transforms provide a two-dimensional example, with pos-
sibilities of extension to higher dimensions and to further
classes of operators.

1. Introduction

It has often been remarked that the classical Paley–Wiener
space possesses two reproducing formulae; a ‘concrete’
reproducing equation

f(s) =
∫

R
f(t) sinc(s− t)dt, (s ∈ R), (1)

and a ‘discrete’ reproducing equation, or sampling series,

f(s) =
∑
n∈Z

f(n) sinc(s− n), (s ∈ R), (2)

and that there is a striking analogy between the two (see,
e.g., [3, p. 58]). Here, sinc denotes the standard function
sincx := (sinπx)/πx.
The purpose of the present lecture is to point out that con-
crete and discrete reproducing formulae and analogies be-
tween them persist in the setting of Paley–Wiener spaces
that are more general than the classical case. It will be
shown that for suitably chosen operators there are ‘opera-
tor’ versions of the reproducing equation and of the sam-
pling series that are also comparable, in the same way as
in the classical case described above.

2. The setting

Abstract theories that lead to reproducing formulae are
outlined in §2.1 and §2.2, and are brought together in §2.3.

2.1 The reproducing kernel theory
The basic setting of this paper is that of the reproducing
kernel theory of Saitoh [8, Ch. 2, §1]. Very briefly the
background is as follows. Let E be an abstract set. For
each t belonging to E let Kt belong to H (a separable
Hilbert space with inner product denoted by 〈, 〉H ). Then
k(s, t) := 〈Kt,Ks〉H is defined onE×E and is called the
kernel function of the map Kt. This kernel function is a
positive matrix [8, Ch. 2, §2] and as such it determines one
and only one Hilbert space for which it is the reproducing
kernel. This Hilbert space is denoted by R(K) since it
turns out to be the set of images of H under the transfor-
mation (Kg)(t) := 〈g,Kt〉H , (g ∈ H).

Theorem 1 (Saitoh) With the notations established
above, R(K) (which is now abbreviated to just R) is a
Hilbert space which has the reproducing kernel k(·, ·),
and is uniquely determined by this kernel k. For f ∈ R
there exists α ∈ H such that

‖f‖R = ‖Kα‖R ≤ ‖α‖H , (3)

and there exists a unique member, g say, of the class of all
α’s satisfying (3) such that

f(t) = 〈g,Kt〉H , (t ∈ E),

and
‖f‖R = ‖g‖H .

The reproducing equation for f ∈ R is

f(t) = 〈f, k(·, t)〉R (4)

The following theorem is simple but very useful.

Theorem 2 The convergence of a sequence in the norm
of R implies that it converges pointwise over E, and the
convergence is uniform over any subset of E on which
k(t, t) = ‖k(·, t)‖2 is bounded.

The following Theorem is to be found in [8].

Theorem 3 With notations as above, let {sn}, (n ∈ X),
be points of E such that {Ksn

} is an orthonormal basis
for H . Then the sampling series representation

f(t) =
∑
n∈X

f(sn)k(sn, t), (5)



holds, convergence being in the norm of R; and then of
course Theorem 2 applies.

2.2 Abstract harmonic analysis
A very brief introduction (mostly just notations) to the ab-
stract harmonic analysis that will be needed is now given.
All necessary background, and much more, is to be found
in [1], [2].
Let G be a locally compact abelian (LCA) group (written
additively). Let (t, γ) be a character of G, that is, a con-
tinuous homomorphism of G into the circle group. Let
G∧ = Γ denote the group of continuous characters on G,
usually called the dual group of G. We assume that Γ has
a countable discrete subgroup Λ.
Haar measures on the various groups are normalised in the
standard way [1], and this means in particular that there is
a measurable transversal (i.e., a complete set of coset rep-
resentatives) Ω ⊂ Γ of Γ/Λ, and it has finite Haar mea-
sure.
Now

H = Λ⊥ := {t ∈ G : (t, λ) = 1, (λ ∈ Λ)}.

is a subgroup of G and is called the ‘annihilator’ of Λ. We
assume that H is discrete; it follows that the quotient group
Γ/Λ is compact.
The Fourier transform on L2(G) is defined in the usual
way:

f∧(γ) = (Ff)(γ) :=
∫
G

f(t)(t, γ) dt,

in the L2 sense, where dt denotes the element of Haar
measure on G (likewise, dγ denotes the element of Haar
measure on Γ). The inverse Fourier transform will be de-
noted by ∨ or by F−1.
We shall need the ‘shift’ property of the Fourier transform:
f(· − x)∧(γ) = (−x, γ)f∧(γ).
Abstract Paley Wiener space PWΩ(G) is defined as fol-
lows:

PWΩ(G) := {f : f ∈ L2(G) ∩ C(G),
f∧(γ) = 0 (Haar) a.a. γ 6∈ Ω} (6)

2.3 Combining harmonic analysis with the re-
producing kernel theory

The abstract set E of §2.1 is often taken to be R or C.
Here, however, we take it to be an LCA groupG thus com-
bining two abstract theories, harmonic analysis and the re-
producing kernel theory. In the notations of §2.1 and §2.2
we also take Kt = (t, ·), H = L2(Ω) and Kg = F−1g,
g ∈ L2(Ω). Then we have

k(s, t) =
∫

Ω

(t, γ)(s, γ) dγ =
∫

Ω

(t− s, γ) dγ

=
(
χΩ
∨)(t− s) =: ϕΩ(t− s), (7)

where χS denotes the characteristic function of a set S. It
does not seem to have been recognised that ϕΩ(t − s) is
the reproducing kernel for PWΩ(G), and that this allows a

close association between sampling in the harmonic anal-
ysis setting and Saitoh’s theory.
The space R of §2.1 is now seen to be the Paley–Wiener
space defined in (6), and its reproducing equation is

f(t) = 〈f, ϕΩ(t− ·)〉L2(G) (8)

Kluvánek’s sampling theorem [4, p. 45] is a consequence:

Theorem 4 Let f ∈ PWΩ. With the assumptions of
§2.2,

f(t) =
∑
h∈H

f(h)ϕΩ(t− h) (9)

in norm, etc., (see Theorem 2).

Our concrete – discrete comparison is beween (8) and (9).

3. Operator kernels and operator reproduc-
ing formulae

The presence of kernels and reproducing equations associ-
ated with operators on a reproducing kernel Hilbert space
add greatly to the richness of its structure, as we shall see
in this section.

3.1 Operator kernels and operator reproducing
equations

Let R be the separable Hilbert space of functions defined
on E with reproducing kernel k(s, t), as we have dis-
cussed it in §2.1. Let B be a bijection on R, and let B∗
denote the adjoint operator. The action of B on R is gov-
erned by the action of B∗ on the reproducing kernel k,
because for f ∈ R,(

Bf
)
(t) = 〈Bf, k(·, t)〉R = 〈f,B∗k(·, t)〉R. (10)

See, e.g., [5].

Definition 1 The kernel

h(s, t) :=
(
B∗k(·, t)

)
(s), s, t ∈ E

will be called the operator kernel of B.

In this notation (10) is(
Bf
)
(t) = 〈f, h(·, t)〉. (11)

Now from Definition 1 above, ((B∗)−1h(·, t))(s) =
k(s, t), so that, using the ordinary reproducing formula
(4), we have

f(t) = 〈f, k(·, t)〉 = 〈f, (B∗)−1h(·, t)〉
= 〈
(
(B∗)−1

)∗
f, h(·, t)〉.

Now using standard properties of operators and their ad-
joints (e.g., [6, p. 202]) we can summarise these calcula-
tions as:

f(t) = 〈(B−1f)(·), h(·, t)〉. (12)

This formula tells us that f can be reproduced, not from its
own values as in the ordinary reproducing kernel theory,
but from the result of acting on it with an operator. We
can call this an operator reproducing equation in analogy
with the ordinary reproducing equation (4).
Similar formulae for B∗ can be obtained in the same way.
First, we make the following



Definition 2

h∗(s, t) := h(t, s) ((t, s) ∈ E × E)

will be called the adjoint operator kernel of B.

Kernels and their adjoints occur in important areas of
study such as the theory of integral equations (see, e.g.,
[6, p. 170] for basic information). We shall find series
expansions for such kernels and identify the action of h∗

explicitly in Theorem 5 below.
First, let {ϕn}, n ∈ X, be an orthonormal basis for R.

Lemma 1

h(s, t) =
∑
n∈X

(
Bϕn

)
(t)ϕn(s), (s, t ∈ E). (13)

Convergence is in the norm of R for each t ∈ E, and the
pointwise convergence is governed by Theorem 2.

Proof The coefficients for the expansion of h(·, t), t
fixed, in the basis {ϕn} are

〈h(·, t), ϕn〉 = 〈ϕn, h(·, t)〉 =
(
Bϕn

)
(t)

by (11), thus (13) is obtained. �
It will be recalled that if we put{

Bϕn = ψn

(B∗)−1ϕn = ψ∗n,
(14)

then {ψn} is a Riesz basis for R with dual basis {ψ∗n}. In
this notation (13) can be written

h(s, t) =
∑
n∈X

ψn(t)ϕn(s). (15)

Hence by Definition 2 we have

h∗(s, t) =
∑
n∈X

ϕn(t)ψn(s). (16)

in the norm of R for each t ∈ E.
By uniqueness the coefficients {ϕn(t)} are such that

ϕn(t) = 〈h∗(·, t), ψ∗n〉 = 〈(B∗)−1ϕn, h
∗(·, t)〉, (17)

Since this relationship is true for every member ϕn of a
basis for R, it holds for every f ∈ R by the usual density
argument. This argument runs as follows:
Let
∑
N cnϕn be the Nth partial sum of the expansion for

f in the basis ϕn. Then taking linear combinations in (17),∑
N

cnϕn(t) = 〈(B∗)−1
∑
N

cnϕn(t), h∗(·, t)〉. (18)

Consider
f(t)− 〈(B∗)−1f, h∗(·, t)〉. (19)

Put f(t)−
∑
N cnϕn(t) = Fn(t). Now inserting the right

and left hand sides of (18) we find from (19) that∣∣f(t)− 〈(B∗)−1f, h∗(·, t)〉
∣∣ (20)

=
∣∣Fn(t)− 〈(B∗)−1(f −

∑
N

cnϕn), h∗(·, t)〉
∣∣

≤
∣∣Fn(t)

∣∣+
∣∣〈(B∗)−1(f −

∑
N

cnϕn), h∗(·, t)〉
∣∣

≤
∣∣Fn(t)

∣∣+ ‖(B∗)−1(f −
∑
N

cnϕn)‖‖h∗(·, t)‖

≤
∣∣Fn(t)

∣∣+B‖f −
∑
N

cnϕn‖‖h∗(·, t)‖ (21)

for a constant B which is consequent upon the fact that,
since B is bounded, B∗ is bounded and by Banach’s
‘bounded inverse’ theorem (B∗)−1 is bounded.
Now N can be made to approach ∞. Since Fn(t) con-
verges to 0 both in norm and pointwise on E (see Theo-
rem 2), the expression in (21) approaches 0 for each fixed
t ∈ E. Finally, from (20) we obtain the following

Theorem 5 Let R, B and E be as above. Then we have
the adjoint operator reproducing formula

f(t) = 〈(B∗)−1f, h∗(·, t)〉.

This shows the basic property of h∗; it reproduces f from
(B∗)−1f .

3.2 Operator sampling series
There are connections here to the theory of single channel
sampling (see, e.g., [3, Ch. 12]), but the present approach
is much more general.
In order to match the operator reproducing equation (12)
with a discrete analogue, some further assumption will
have to be made. In fact we shall assume the existence
of a sequence (sn) ⊂ E, n ∈ X such that {h(sn, t)} is
an orthogonal basis for R with normalising factors νn, so
that {νnh(sn, t)} is orthonormal. This can sometimes be
traced back to the condition that {Ksn} be an orthogo-
nal basis for H. Again, we could assume that {h(sn, t)}
is just a basis for R, or just a frame. However, weaker
assumptions demand more technicalities and we will not
pursue this kind of generality here.
Let f ∈ R. Its expansion in our assumed orthonormal
basis is

f(t) =
∑
n∈X

cnνn h(sn, t) (22)

where

cn = 〈f, νnh(sn, ·)〉 = νn〈f, h∗(·, sn〉 = νn(B∗f)(sn)

by Theorem 5. So (22) is

f(t) =
∑
n∈X
|νn|2(B∗f)(sn)h(sn, t). (23)

Then (12) and (23) are concrete – discrete analogues of
each other.

4. Multiplier operators with respect to the
Fourier transform

Take E to be an LCA group G with dual Γ (for notations
and references, see §2.2), and let R be a Paley–Wiener
space PWΩ. Let µ(γ) be a non-nul complex valued func-
tion on Γ such that{

0 < α ≤ |µ(γ)| ≤ β <∞, (Haar) a.a. γ ∈ Ω;

µ(γ) = 0, γ 6∈ Ω.
(24)

Let M denote the operation of multiplication by
χΩ(γ)µ(γ).



Definition 3 Let f ∈ PWΩ. The operator T is defined by

(T f)(s) := (F−1MFf)(s)

Lemma 2 The operator T of Definition 3 is a bijection on
PWΩ

Proof Clearly T is linear. Furthermore it is one-to-one,
since the null space of T is

{f : T f = θ} = {f : µ(γ)f∧(γ) = θ}

which implies that f = θ.
Again, T is “onto”. Let g ∈ PWΩ. Then ifM−1 denotes
multiplication by [µ(γ)]−1, f = F−1M−1Fg ∈ PWΩ.
Then from Definition 3, T f = g.
The boundedness of T follows from two applications of
Plancherel’s Theorem. Indeed, let f ∈ PWΩ. Then

‖T f‖L2(G) = ‖F−1MFf‖L2(G) = ‖MFf‖L2(Γ)

≤ |µ|‖Ff‖L2(Γ) = |µ|‖f‖L2(G).

�

4.1 The operator kernel for T

First we need to know the adjoint T ∗. Let f1, f2 ∈ PWΩ.
The defining equation is

〈T f1, f2〉 = 〈f1, T ∗f2〉.

Suppose that T ∗ is of the same form as T of Definition 3,
that is,

T ∗f = F−1M∗Ff, (25)

where M∗ denotes multiplication by the multiplier µ∗

which is to be determined.
In the integral notation, and using the ‘hat’ notation for the
Fourier transform, the criterion is:∫
G

(
µ(·)f1

∧(·)
)∨(t)f2(t) dt =

∫
G

f1(t)
(
µ∗(·)f2

∧(·)
)
∨(t) dt.

By Plancherel’s theorem this is:∫
Γ

µ(γ)f1
∧(γ)f2

∧(γ) dγ =
∫

Γ

f1
∧(γ)µ∗(γ)f2

∧(γ) dγ,

from which we may choose µ∗(γ) = µ(γ).
It may be noted that T is self-adjoint if µ is real-valued.
It is now evident that the assumption (25) leads to

(T ∗f)(s) =
∫

Γ

µ(γ)f∧(γ)(s, γ) dγ (26)

The operator kernel for T can now be calculated. From
Definition 1 and (7) we have

h(s, t) =
(
T ∗ϕΩ(· − t)

)
(s), s, t ∈ G.

Therefore from (26), and using the ‘shift’ property of the
Fourier transform,

h(s, t) =
∫

Γ

µ(γ)
(
χΩ
∨(· − t)

)∧(γ)(s, γ) dγ

=
∫

Γ

µ(γ)(−t, γ)χΩ(γ)(s, γ) dγ

=
∫

Ω

µ(γ)(s− t, γ) dγ

= µ(·)∨(s− t).

Hence

h(s, t) = µ(·)∨(s− t) = µ∧(s− t).

Now (12) becomes

f(t) = 〈(T −1f)(·), µ ∨(· − t)〉, (27)

and (23) becomes

f(t) =
∑
n∈X
|νn|2(T ∗f)(sn)µ∧(sn − t). (28)

5. Examples

Example 1 The classical case

Naturally, we expect to recover the case of the classical re-
producing equation and sampling formula as special cases
of the theory. To do this we pick G = R, Ω = [−π, π],
T = I = T ∗ = T −1 and µ = χ

[−π,π](y). Therefore we
have

µ∨(s− t) =
1√
2π

∫ π

−π
ei(s−t)y dy =

√
2π sinc(s− t).

Here and in subsequent Examples the choice of Haar mea-
sure on G, Γ, etc., accounts for apparent anomalies in the
normalising constants in the formulae (e.g., Haar measure
on R is taken to be (2π)−1/2 times Lebesgue measure. See
[2, p. 257]). With these choices, (27) becomes (1).
The classical sampling series (2) now follows the text-
book proof. Since {e−iny/

√
2π : n ∈ Z} is an orthonor-

mal (ON) basis of L2(−π, π), Plancherel’s theorem shows
that the inverse Fourier transforms {sinc(n−t)} : n ∈ Z}
form an orthonormal basis of PW[−π,π]. Coefficients in
the expansion of f in this basis are obtained from (1) and
so, with sn = n, our choices for T and µ show that (28)
becomes (2).

Example 2 The Hilbert transform

Another well-known example illustrates the present the-
ory; a member of PW[−π,π] can be sampled and recon-
structed from samples of its Hilbert transform (see, e.g.,
[3, p. 126] and references there). This idea can be fitted
it into the theme of the present lecture by taking G = R,
Ω = [−π, π], T = H := F−1MF where M denotes
multiplication by −i sgn(y). H is the Hilbert transform
on PW[−π,π].



For (27) we need

µ ∨(s− t) =
1√
2π

i√
2π

∫ π

−π
sgn(y)ei(s−t)y dy

= − sinc 1
2 (s− t) sin π

2 (s− t) (29)

after a simple calculation. Also we have H−1 = −H =
H∗, therefore (27) is

f(t) = −
∫

R

(
Hf
)
(τ) sinc 1

2 (τ−t) sin π
2 (τ−t) dτ. (30)

For (28) we need to find {sn} such that {µ∧(sn− t)}, n ∈
Z, is an ON basis of PWπ . We can start with the ON basis
{einy/

√
2π}, (n ∈ Z), of L2(−π, π), then multiply each

member by −i sgn(y). The result is again an ON basis, as
a consequence of | − i sgn(y)| = 1 a.e. on [−π, π]. The
inverse Fourier transform of a typical one of these basis
elements is

−i
2π
F−1

(
sgn(·)e−in·

)
(t) = − sinc 1

2 (n− t) sin π
2 (n− t)

by the same calculation as in (29). But, taking account
of Haar measure, this also gives µ∧(n − t). Hence (28)
becomes

f(t) =
∑
n∈Z

(
Hf
)
(n) sinc 1

2 (n− t) sin π
2 (n− t) (31)

Our concrete – discrete comparison is between (30) and
(31).

Example 3 The Riesz transforms

For background on the Riesz transforms see [9, p. 223]
Take G to be Rd, (d ∈ N). Let t = (t1, . . . , td) and
let y = (y1, . . . , yd) etc. Let the scalar product in Rd be
denoted by 〈 , 〉.

Definition 4 Let f ∈ L2(Rd), and define

Rjf := F−1MjFf, j = 1, . . . , d, (32)

Mj denoting multiplication by −iyj/|y| χ[−π,π]d(y).

We note that this multiplier is not bounded away from zero
when d ≥ 2 and y ∈ [−π, π]d and therefore does not
always satisfy the criterion (24). However, it is possible to
define operators involving the Riesz transforms which do
satisfy the criterion (24).
First we consider the case d = 2, and define the operator

R := R1 + iR2 (33)

acting on PW[−π,π]2 . Its multiplier is

m(y) := (−i)
(
y1

|y|
+ i

y2

|y|

)
and clearly we have |m(y)| = 1 a.e. Hencem satisfies the
criterion (24) with respect to two-dimensional Lebesgue
measure. Now (27) becomes

f(t) =
1

2π

∫
R2

(
R−1f

)
(s)m∨(s− t) ds. (34)

Since the multiplier is of unit modulus, a two dimensional
version of the construction that we used in the previous
example shows that{

−i
2π

(
y1

|y|
+ i

y2

|y|

)
e−i〈k,y〉

}
, (k ∈ Z2),

is an ON basis of L2([−π, π]2). Then (28) becomes

f(t) =
∑
k∈Z2

(
R∗f

)
(k)m∧(k− t). (35)

The comparison for this example lies between the concrete
(34) and the discrete (35).
Other combinations of the Riesz transforms are possible,
in two and higher dimensions, whose multipliers satisfy
(24) but are not always of unit modulus.

6. Conclusions

The multiplier transforms treated in this study form a
rather restricted class of operators; nevertheless, the meth-
ods can be used in connection with the very important
Riesz transforms. It remains to investigate extensions to
other types of operator. Likely candidates are, for ex-
ample, multiplier transforms with less restrictive condi-
tions on the multiplier, the singular integral operators of
Calderón–Zygmund type (a class containing the Riesz
transforms, see, e.g., [9, Ch. VI]), and operators of the
Hankel and Toeplitz type (e.g., [7]).
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