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Abstract:

For the Schoenberg B-splines, interesting relations be-

tween their functional representation, Dirichlet averages

and difference operators are known. We use these rela-

tions to extend the B-splines to an arbitrary (infinite) se-

quence of knots and to higher dimensions. A new Fourier

domain representation of the multidimensional complex

B-spline is given.

1. Complex B-Splines

Complex B-splines are a natural extension of the clas-

sical Curry-Schoenberg B-splines [2] and the fractional

splines first investigated in [16]. The complex B-splines

Bz : R→ C are defined in Fourier domain as

F(Bz)(ω) =

∫

R

Bz(t)e
−iωt dt =

(
1− e−iω

iω

)z

for Re z > 1. They are well-defined, because of { 1−e−iω

iω
|

ω ∈ R} ∩ {y ∈ R | y < 0} = ∅ they live on the main

branch of the complex logarithm. Complex B-splines are

elements of L1(R) ∩ L2(R). They have several inter-

esting basic properties, which are discussed in [5]. Let

Re z,Re z1,Re z2 > 1.

• Complex B-splines Bz are piecewise polynomials of

complex degree.

• Smoothness and decay:

– Bz ∈ W r
2 (R) for r < Re z − 1

2 . Here W r
2 (R)

denotes the Sobolev space with respect to the

L2-Norm and with weight (1 + |x|2)r.

– Bz(x) = O(x−m) for m < Re z+1, |x| → ∞.

• Recursion formula: Bz1
∗Bz2

= Bz1+z2
.

• Complex B-splines are scaling functions and gener-

ate multiresolution analyses and wavelets.

• But in general, they don’t have compact support.

• Last but not least: They relate difference and differ-

ential operators.

In this paper, we take closer look at this last relation and

the respective multivariate setting. To this end, we will

consider the known relations between classical B-splines,

difference operators and Dirichlet averages.

B-splines

Dirichlet averages Difference operators

Figure 1: Relations between classical B-splines, differ-

ence operators and Dirichlet averages.

2. Representation in time-domain

We defined complex B-splines in Fourier domain, and

Fourier inversion shows that these functions are piecewise

polynomials of complex degree:

Proposition 1. [5] Complex B-splines have a time-

domain representation of the form

Bz(t) =
1

Γ(z)

∑

k≥0

(−1)k
( z

k

)
(t− k)z−1

+ ,

pointwise for all t ∈ R and in L2(R)-norm. Here,

tz+ =

{
tz = ez ln t, if t > 0,

0, if t ≤ 0,

is the truncated power function, and Γ : C \ Z
−
0 → C

denotes the Euler Gamma function.

Compare: The cardinal B-spline Bn, n ∈ N, has the simi-

lar representation

Bn(t) =
1

(n− 1)!

n∑

k=0

(−1)k
(n

k

)
(t− k)n−1

+

=
1

Γ(n)

∞∑

k=0

(−1)k
(n

k

)
(t− k)n−1

+ .

3. Relations to Difference Operators

It is well-known that in the construction of the Curry-

Schoenberg B-splines difference operators are deeply in-

volved. The same is true for complex B-splines. To estab-

lish the corresponding relation, let us first recall the defi-

nition of the backward difference operator ∇.



Let g : R → C be a function. Then the backward differ-

ence operator∇ = ∇1 is recursively defined as follows:

∇g(t) = g(t)− g(t− 1),

∇n+1g(t) = ∇(∇ng(t)) for n ∈ N.

This definition yields the explicit representation

∇ng(t) =
n∑

k=0

(
n

k

)
(−1)kg(t− k).

For the cardinal B-splines Bn we can write:

Bn(t) =
1

(n− 1)!

n∑

k=0

(−1)k

(
n

k

)
(t− k)n−1

+

=
1

(n− 1)!
∇ntn−1

+ .

In comparison: For the complex B-splines, we have an

analog representation:

Bz(t) =
1

Γ(z)

∞∑

k=0

(−1)k

(
z

k

)
(t− k)z−1

+ , Re z ≥ 1.

This invites to define a complex difference operator:

Definition 2. [5, 6] The difference operator ∇z of com-

plex order z is defined as

∇zg(t) :=

∞∑

k=0

(−1)k

(
z

k

)
g(t−k), z ∈ C, Re z ≥ 1.

Hence a second time domain representation of the com-

plex B-spline is

Bz(t) =
1

Γ(z)
∇ztz−1

+ .

In a similar way, we can establish a relation to divided dif-

ferences. Recall that for a knot sequences {t0, . . . , tn} ⊂
R, n ≥ 1, divided differences are recursively defined as

follows. Let g : R→ C be some function.

[t0]g = g(t0),

[t0, . . . , tn]g =
[t0, . . . , tn−1]g − [t1, . . . , tn]g

t0 − tn

=
n∑

j=0

g(tj)∏
l 6=j(tj − tl)

.

For the cardinal B-spline,

Bn(t) =
1

(n− 1)!

n∑

k=0

(−1)k
(n

k

)
(t− k)n−1

+

= n

n∑

k=0

(−1)k 1

k!(n− k)!
(t− k)n−1

+

= (−1)nn

n∑

k=0

(t− k)n−1
+∏

l 6=k(k − l)

= (−1)nn[0, 1, . . . , n](t− •)n−1
+ .

(The factor (−1)n is due to our representation of the car-

dinal B-spline via backward difference operators.)

The same ideas give rise to the definition of complex di-

vided differences.

Definition 3. Let g : R→ C be some function. We define

the complex divided differences for the knot sequence N0

via

[z; N0]g :=
∑

k≥0

(−1)k g(k)

Γ(z − k + 1)Γ(k + 1)
.

Then the complex B-spline can be written as

Bz(t) = z[z, N0](t− •)z−1
+ .

Comparing “old” and “new” divided difference operator

for z = n ∈ N, yields

(−1)n[0, 1, . . . n] = [n, N0].

Proposition 4. [6, 7] Let Re z > 0 and g ∈ S(R+). Then

[z; N0]g =
1

Γ(z + 1)

∫

R

Bz(t)g
(z)(t) dt,

where g(z) = W zg is the complex Weyl derivative:

For n = ⌈Re z⌉, ν = n− z,

W zg(t) = (−1)n dn

dtn

[
1

Γ(ν)

∫ ∞

t

(x− t)ν−1g(x) dx

]
.

Sketch of proof:

1

Γ(z + 1)

∫

R

Bz(t)g
(z)(t) dt

=
1

Γ(z + 1)

∫

R

z[z, N0](t− •)z−1
+ W zg(t) dt

= [z, N0]
1

Γ(z)

∫ ∞

•

(t− •)z−1
+ W zg(t) dt

= [z, N0]W
−zW zg = [z, N0]g.

Here, W−zf = 1
Γ(z)

∫ ∞

•
(t− •)z−1

+ f(t) dt is the complex

Weyl integral of the function f , i.e., the inverse operator

of W z . �

Now we are able to establish a first relation between di-

vided difference operators and Dirichlet averages.

Proposition 5. (Generalized Hermite-Genocchi-Formula:

Divided Differences and Dirichlet Averages) [6, 7]

Let ∆∞ be the infinite-dimensional simplex

∆∞ := {u := (uj) ∈ (R+
0 )N0 |

∞∑

j=0

uj = 1} = lim←−∆n,

defined as the projective limit of the finite dimensional

simplices ∆n, and let µ∞
e be the generalized Dirichlet

measure defined by the projective limit

µ∞
e = lim←−Γ(n + 1)λn,

where λn the Lebesgue measure on ∆n. Then

[z, N0]g =
1

Γ(z + 1)

∫

∆∞

g(z)(N0 · u)dµ∞
e (u)

=
1

Γ(z + 1)

∫

R

Bz(t)g
(z)(t) dt

for all real-analytic g ∈ S(R+).



Up to now we have considered complex B-splines with

knot sequence N0 and derived from there new difference

operators and finally the relation to Dirichlet averages, just

as indicated in the diagram in Fig. 1:

B-splines→ Difference operators→ Dirichlet averages.

Our next step will consist of generalizing the setting with

appropriate weights in travelling through the diagram an-

other way round: Dirichlet averages for other knot se-

quences τ and with weights→Generalized B-splines with

knot sequence τ → Difference operators.

4. Splines and Dirichlet Averages

Let b ∈ R
∞
+ be a weight vector and τ = {tk}k∈N0

∈ R
N0

+

an increasing sequence of knots with lim supk→∞
k
√

tk ≤
ρ < e.

Definition 6. A complex B-spline Bz(• | b; τ) with

weight vector b and knot sequence τ is a function satis-

fying
∫

R

Bz(t | b; τ)g(z)(t) dt =

∫

∆∞

g(z)(τ · u)dµ∞
b (u) (1)

for all real-analytic g ∈ S(R+). Here, µ∞
b = lim←−µn

b is

the projective limit of Dirichlet measures with densities

Γ(b0) . . .Γ(bn)

Γ(b0 + . . . + bn)
ub0−1

0 ub1−1
1 . . . ubn−1

n .

Since both W z and W−z are linear operators mapping

S(R+) into itself [11, 15] and since the real-analytic func-

tions in S(R+) are dense in S(R+) [13], (1) holds for all

g ∈ S(R+). Moreover, since S(R+) is dense in L2(R+),
we deduce that Bz(• | b, τ) ∈ L2(R+).
Equation (1) means, we define the weighted version of the

complex B-spline in a weak sense via Dirichlet averages.

Referring again to the diagram in Fig. 1, we now move

from the generalized B-splines to generalized divided dif-

ferences.

Definition 7. For knot sequences τ ∈ R
N0

+ and weight

vectors b ∈ R
∞
+ as above, we define the generalized com-

plex divided differences [z; τ ]b as follows. Let g : R→ C

be some function.

[z; τ ]bg :=
1

Γ(z)

∫

R

Bz(t|b; τ)g(z)(t) dt

for all g ∈ S(R).

This definition is compatible with the usual Dirichlet

splines. In fact, for all finite τ = τ(n) ∈ R
n+1
+ and

b = b(n) ∈ R
n+1
+ , and for z = n ∈ N0 the Dirichlet

spline Dn(•|b; τ) of order n is defined by

∫

R

g(n)(t)Dn(t|b; τ) dt =

∫

∆n

g(n)(τ · u) dµn
b (u)

= G(n)(b; τ)

for all g ∈ Cn(R). Here, G is the Dirichlet average of g:

G(b; τ) =

∫

∆n

g(τ · u) dµn
b (u).

5. Multivariate Complex B-Splines

To define complex B-splines in a multivariate setting, we

consider ridge functions and define multivariate B-splines

on their basis. Then, we walk again through the diagram

in Fig. 1: Multivariate B-splines → Multivariate differ-

ence operators. Results on Dirichlet averages yield new

recurrence relations for multivariate B-splines: Dirichlet

averages→ B-splines.

Note that the approach via ridge functions had already let

to an extension of the Curry-Schoenberg-splines to a mul-

tivariate setting, e.g. [3, 4, 10, 12]. However, some of

these approaches have certain restrictions on the knots and

none of them considers complex splines.

Given λ ∈ R
s\{0}, a direction, and g : R→ C a function.

The ridge function gλ corresponding to g is defined via

gλ : R
s → C, gλ(x) = g(〈λ, x〉) for all x ∈ R

s.

Definition 8. [9] Let τ = {τn}n∈N0
∈ (Rs)N0 a sequence

of knots in R
s with lim supn→∞

n

√
‖τn‖ ≤ ρ < e. The

multivariate complex B-spline Bz(•|b; τ ) with weights

b ∈ C
N0

+ and knots τ is defined on ridge functions via

∫

Rs

g(〈λ, x〉)Bz(x | b; τ ) dx =

∫

R

g(t)Bz(t | b;λτ ) dt,

(2)

where g ∈ S(R+) and λ ∈ R
s \ {0}, such that λτ =

{〈λ, τn〉}n∈N0
is separated.

Since ridge functions are dense in L2(Rs) [14], we deduce

that Bz(• | b; τ ) ∈ L2((R+)s).

Example 9. (Divided differences in the multivariate case)

Given b = e := (1, 1, 1, . . .). Then for all g ∈ S(R∞):

[z; τ ]egλ = [z; τ ]gλ = [z; τ ]g(〈λ, •〉)

=
1

Γ(z)

∫

Rs

g(z)(〈λ, x〉)Bz(x | e; τ ) dx

=
1

Γ(z)

∫

R

g(z)(t)Bz(t | e;λτ ) dt = [z;λτ ]g.

for all λ ∈ R
s such that λτ is separated.

Example 10. (Multivariate cardinal B-splines) For n ∈ N

and a finite sequence of knots τ = {τ0, τ1, . . . , τn}:

[τ0, . . . , τn]gλ := [n; τ ]g(〈λ, •〉)

=
1

n!

∫

Rs

g(n)(〈λ, x〉)Bn(x | e; τ ) dx

=
1

n!

∫

R

g(n)(t)Bn(t | e;λτ ) dt

= [n;λτ ]g =
n∑

j=0

g(〈λ, τ j〉)∏
l 6=j〈λ, τ j − τ l〉 .

Given a sequence of knots τ ⊂ R
s and a weight vector b

as above. In addition, let b ∈ l1(N0) such that ‖b‖1 =: c.

Then the Dirichlet averages of g(z) ∈ D(R) and g
(z+1)
j :=

(〈λ, τ j〉 − •)g(z+1), j ∈ N0, satisfy:

(c−1)G(z)(b;λτ ) = (c−1)G(z)(b−ej ;λτ )+G
(1+z)
j (b;λτ ).



For the finite dimensional case see [1, 12]. These and other

relations of similar type on Dirichlet averages yield new

results for multivariate complex B-splines. As a example,

we state:

Proposition 11. [9] Under the above conditions, for all

j ∈ N0:

(c− 1)

∫

Rs

g
(z)
λ (x)Bz(x | b; τ )dx =

= (c− 1)

∫

Rs

g
(z)
λ (x)Bz(x | b− ej ; τ )dx

+

∫

Rs

〈λ, τ j − x〉 g(1+z)
λ (x)Bz(x | b; τ )dx.

More relations of this type are given in [8].

6. Fourier representation of multivariate
complex B-splines

We saw above that both the univariate and the multivari-

ate complex B-splines are L2-functions: Bz(• | b; τ) ∈
L2(R+) and Bz(• | b; τ ) ∈ L2((R+)s) Therefore, we

can apply the Plancherel transform to both functions and

consider their frequency spectrum.

Let ω = (ω1, . . . , ωs) ∈ R
s and let λ ∈ R

s, ‖λ‖ = 1, be

the direction of ω, i.e., ω = ωλ for some ω ≥ 0. For the

Fourier transform of the generalized complex B-spline we

have for x = (x1, . . . , xs) ∈ R
s:

B̂z(ω | b;λτ ) =

=

∫

R

e−iωtBz(t | b;λτ ) dt

=

∫

Rs

e−iω〈λ,x〉
Bz(x | b; τ ) dx

=

∫

Rs

e−iω(λ1x1+...+λsxs)
Bz(x | b; τ ) dx

=

∫

Rs

e−i(ω1x1+...+ωsxs)
Bz(x | b; τ ) dx

=

∫

Rs

e−i〈ω,x〉
Bz(x | b; τ ) dx

= B̂z(ω | b; τ ) = B̂z(ωλ | b; τ ).

This shows that the frequency spectrum of the multivari-

ate complex B-spline along directions λ is given by the

spectrum of the univariate spline with knots projected onto

these λ.

7. Summary

Complex B-splines allow to define difference and divided

difference operators of complex order for arbitrary knots

and weights. Via their relation to Dirichlet averages and

Dirichlet splines, they can be extended to higher dimen-

sions via ridge functions. The Fourier transform of the

univariate and multivariate complex B-spline are also re-

lated on ridges.
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