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Abstract: Sample Logmap$l], and, most recentlyRiemannian
) ] ) ] . Normal Coordinate$2, 3].

A novel concept for the analysis of high-dimensional sig- The outline of the paper is as follows. In the following
nal data is proposed. To this end, customized techniquessection 2, the main ingredients of the proposed nonlinear
from manifold learning are combined with convolution gimensionality reduction scheme, especially the construc
transforms, being based on wavelets. The utility of the tjon of the convolution and projection map, are explained.
resulting method is supported by numerical examples con-then in Section 3 relevant aspects concerning distortion
cerning low-dimensional parameterizations of scale mod-gp4\ysis are addressed. Finally, Section 4 shows the good
ulated signals and solutions to the wave equation at vary-performance of the resulting nonlinear dimensionality re-
ing initial conditions. duction method. To this end, numerical examples con-
cerning low-dimensional parameterization of scale modu-
lated signals and solutions to the wave equation at varying

1. Introduction initial conditions are illustrated.

Recent advances in nonlinear dimensionality reduction
and manifold learning have provided new methods for the

analysis of high-dimensional signals. In this problem, a Given a set of signal§’ = {u;}™ , M, that we assume

very large data sd/ C R"™ of scattered points is given, g . : . .
. . %o lie in (or near) a low-dimensional Riemannian compact
where the data points are assumed to lie on a compac ! " : .
submanifold M of R™ ie. U c M c R™ More- submanifoldM, of R ', we vx_nsh to analyse_the given data
o y for the purpose of dimensionality reduction. Therefore,

over, the dimensiork = dm.l(M) .Of Mis assumed to we assume that there is an embeddihg 2 — M, giv-
be much smaller than the dimension of the ambient SPace . . o parameterization of1. where the domaif ¢ R¢
R"™, k < n. Now, the primary goal in the dimensionality gap '

o . ) . lies in a low-dimensional Euclidean spdRg, i.e.,d < n.
reduction is the construction of a low-dimensional repre- .

: But the parameter domaifn is unknown. Therefore, the
sentation of the daté.

. . ._goal of dimensionality reduction is to find a sufficiently
In this paper, a novel concept for signal data analysis

h h di . i duction 4. To thi q accurate approximatiof’ of Q, through which the de-
through dimensionality reduction Is proposed. To this end, .o 1oy dimensional representation féris obtained.

sg::]able te::hfniqt:es fr]? m malr\1/|ifold Iearningtﬁre .comb:netd We remark that the construction of the data analysis is re-
With convolution franstorms. Vioreover, an.o nerlmpokr an quired to depend on intrinsic geometrical and topologi-
mgre_dlent s a (suitable) p_rqectmn _mdb ) _R — R cal properties of the manifold1. To this end, we ap-
that finally outputs the desired low-dimensional represen—ply a particular convolution transfori : M — My
tation forU. Note that for the sake of approximation qual- My — {T(p) : p € M}, to each of tHe eta sitea’

ity, we need to preserve intrinsic geometrical and topolog- ¢ ved by a suitable projectio? : My — €, yielding

;96" p][(t)rﬁ)ertles of t_i;e dmamfo_ld\/l,l_?nd 30 tthe con:;r':rudc- a nonlinear data transformation for dimensionality reduc-
lon otthe composite dimensionality reduction methodre- i, rpq following diagram reflects our concept.

quires particular care. In the proposed data analysis, the
geometric distortion of the manifold, being incurred by A
the chosen convolution transform, plays a key role. QCcR!—>UCMCR" @)
We remark that similar concepts from differential geom- lT

etry are enjoying increasing interest in related applica-
tions of sampling theory, including surface reconstruc-
tion in reverse engineering and image analysis [5]. Fur-Note that both the construction of the transformatibn
ther related concepts can be found in classical dimen-and the projection need particular care. Indeed, in order to
sionality reduction schemes, such agpimcipal compo-  maintain the intrinsic geometrical properties of the mani-
nent analysisand multidimensional scalingwhile more  fold M, it is required to investigate the curvature distor-
recent techniques are includingomapand LLE meth- tion of M under the transforrfi’. For this purpose, con-
ods[4, 7] Local Tangent Space Alignme(litTSA) [6], volution filters are powerful tools for the construction of

2. Construction of the Data Analysis

Q/CRd%P Ur c Mp CR"



suitable signal transformB. This is supported by our nu-  If 7' is invertible, then the Gaussian curvatukg,,. in
merical results in Section 4., where wavelet transforms areM 1 can be computed as a function of the metrio M
used for a customized constructionof by using apullbackof the curvature tensak in M with
Finally, let us remark that standard methods in signal pro-respect to the inverse map! : My — M, or, equiva-
cessing rely on on special characteristics of a discrate-ti  lently, by using gpushforwardof the curvature tensag in
signalu;, € R"™, such as frequency content, time duration, M with respecttd’ : M — M. An alternative strategy
phase and amplitude information, etc. In typical applica- is to consider the composition @f with a particular sys-
tion scenarios, signal data are not just isolated items oftem of local coordinate¢x, ..., z,) of M, along with
information, but they are rather incorporating correlasio  the metric tensor
reflecting characteristic properties of the sampled object
Therefore, when designing customized signal transforms, N _ <8 8>

. . . . Gij (p) = Gij (1, axm) = ) .
one should exploit available context information on char- Oz; Ox;
acteristic properties of the target object in order to invero
the quality of the data analysis. In our particular applica- When considering the linear transformatiérrepresent-
tion scenario, special emphasis needs to be placed on ining the convolution filter, an important case is wHErns
trinsic geometrical properties of the manifaold, where represented by a Toeplitz matrix, with filter coefficients
a preprocessing distortion analysis of the curvature is of H = (hy, ..., hp), i.€.,
vital importance.

[ 0 ... 0
3. Curvature Distortion Analysis ho  hp ... 0
Our main objective is to estimate the curvature distortion : : SR
) . . T=1| hm hmo1 ... M
in the geometry of the manifold incurred by the ap- 0 3 h
plication of the linear transformatioff : M — Mo, . e '2
whereT may, for instance, representing a wavelet or a : : e
convolution filter. To this end, we first need to evaluate | 0 0 N .

relevant effects on the geometrical deformation\gfun-

der various specific transformatios This then amounts  Note that the curvature distortion caused by the ffiapll

to constructing suitable transformaticfisvhich are well- be controlled by the singular values’Bf which due to the
adapted to the characteristic properties of the specifa& dat Toeplitz matrix structure, are obtained from the Fourier
Preferable choices faf' : M — Mgy are diffeomor- coefficients ofH .

phisms, in which caséim(M) = dim(Mr). Now, our primary objective is to investigate the influence
of the filter coefficients ini{ on the curvature distortion
3.1 Sectional Curvature Distortions DL Moreover, we study filters being required to obtain a

given curvature distortion. The latter is particularly fuse

In general, a fundamental invariant of a manifold with re- the adaofi fructi fa low di ional
spect to its isometries are the sectional curvatures. Thisgzrnta?isn 3%“’6 construction of a fow dimensional repre-

concept is derived from the idea of the Gaussian curvature
in the setting of 2-manifolds, and is defined as

<RX,) Y)Y, X > 3.2 Curvature Distortions for Curves

2 2__ 27
IXTIY]2— < X, ¥ > As for the special case of a curve T = [tg,t1] — R™,
for the curvature tensoirz, defined for a triple of smooth  \yith arc-length parameterizatioria, t) = ft 17 ()| da

vector fieldsX, Y, Z as recall that the curvature ofis k(s) = || (s)|. For an
R(X,Y)Z =VxVyZ —NVyVxZ -V xy|Z. arbitrary parameterizations of its curvature is given by

Kp =

We recall that the affine connection (a Levi-Cevita con- 2112 .o
. L o 1FN =12 = < 7 >
nection for our situation) is a bilinear map K? = GBE !
r

V:C®M, TM) x C®°(M,TM) — C*°(M, TM)
that can be expressed with the Christoffel symbols defined,ln the remainder of this section, we briefly discuss the cur-

for a particular system of local coordinates, ) vature distortion under linear maps (e.g. convolutiongran
asVy d- = S T* 8. The Christoffel symiaols’cr:n,be form) and under smooth maps. To compute the curvature
Vg — k=1+ijYk-

described with respect to the metric tensor via distortion of a cune - I'= [to,ta] — R™ under a linear
mapT, we consider the curvature of = {T'r(t),t € I},

1<~ (9gje  Ogie | Ogi; computed as follows.
) R gt | 99 | 99 ek
4 22(8xi +8xj +axg

=1
T#||?||T7||>— < T#, Tr >2

In order to estimate the distortion caused by the linear map K% = K%(t) = 17 (EBE . @

T : M — My, we compare the Gaussian curvatures be-

tweenM and M, denoted respectiveli{ o4, and K vy,

As for the general case of smooth maps R™ — R",
DL(p) = Kpm(p) — Kpm(T(p))  forpe M. the curvature distortion can be approximated by using the



Jacobian matri¥/z and its singular value decomposition, presents a curvature correction that recovers the original
geometry of fairly well.

L) .o () To explain the resulting curvature correction, we need to
Jr(p) = : - . anal)_/ze the singular values ar_ld singular vectors of the con-

of. of. volution mapT'. In fact, the singular values @f can be

871(79) T m@) viewed as scaling factors (stretching or shrinking) along

corresponding axis in the (local) embeddinglaf More-
over, the spectrum of’ depends on the particular filter
design.

= Ur(p)Dr(p)Vi(p)  forpe M.

The curvature distortion of a curve: [ty,t;] — R™ un-

der F' can in this case be analyzed through the expression . . o
4.2 Low dimensional parameterization of wave

| Jp#||2 || T ]| 2= < Jpi, Jpi- >2 equation solutions
([TF7)? ’ In this second example, we regard the one-dimensional

L . _ . wave equation
where, unlike in the linear case (2), the Jacobian matrices a

K% = K3(p) =]

Jr depend om € M.
» dep meM %202%, 0<zx<1l,t>0, 3
ot oz
4. Numerical Examples with initial conditions

to illustrate basic properties of the proposed analysis of ot

high-dimensional signal data. Further details shall be dis \\2 make use of the previous example to construct a set
cussed during the conference. of initial values (i.e. functions) parameterized by a star
shaped curvé/y, = U. Our objective is to investigate the
4.1 Low-dimensional parameterization of scale distortion caused by the evolutidii of the solutions on
modulated signals given initial valuesU,. Recall that the evolution of the
wave equation is constituted by the set of solutions

This section presents three different numerical examples w(0,z) = f(z) Ou 0,2) = g(z), 0<z<1. (4)

In this example, we illustrate the geometrical effect of a
convolution transform for a set of functions lying on a
curve embedded in a high dimensional space. More pre-
cisely, we analyze a scale modulated family of functions
U c R%, parameterized by three valuestinc R3,

= {uq = ua(t, ) : u, satisfying(3) with
initial condition f = f,, in (4) for a € Q}.

Now, the solution of the wave equation can numerically be
} computed by using finite differences, yielding the itenatio

3
U = {f&(t) = Zeiai(t)('fbi) . a(t) c 9]

i=1

wl+) = Ayl) 4 ),

The parameter set for the scale modulation is given by thewhere fory = yAt/(Ax)?, the iteration matrix is given

curve by
Q= {a(t) = (a1 (t),az(t), a3(t)T € R?, :t € [to, 1]} . 1=2p  p
% 1—-2p %
Figure 1 (left) shows the parameter domdn a star 4 — 1% 1=2p p
shaped curve ilR3. A PCA projection inR3, applied U
to the set/ c R%4, is also displayed in Figure 1 (mid- 0 u 1-2u

dle). The projection illustrates the curvature distortion
caused by the nonlinear map : Q@ ¢ R?> - U C Recall that in the convergence analysis of the iteration,

RO, A(a(t)) = faq)- which can be rewritten as,
np T ] e SV I CE ) BN S VI ACASY
Q;W e o S = A(AuY 4 p@) 4 pUtD
| . < , A A
oy = A@y0) 4 ApU) 4 platD)

01 -0.08
0.1 ‘015 01 005 0 005 01 0.1

R the spectrum of the matrice$® play a key role. In fact,
due to the decompositiad* = UD*UT, the geometrical
distortion in the evolution of/; depends on the evolution
of the eigenvalues ofl.

Figure 1: Parameter s€ c R?, dataU c R%, and
wavelet correctio’(U) C R%.

Finally, Figure 1 (right), shows the resulting data tramsfo
mationT'(U) using a Daubechies wavelet w.r.t. a specific
band of the multiresolution analysis, resulting in a filter- In this final example, we illustrate one relevant phe-
ing process for each elementin The resultingl’'(U), nomenon concerning the topological distortion caused by

4.3 Topological Distortion via Filtering



7 utilized convolution involves a selection of suitable band
I from the corresponding wavelet multiresolution decompo-
sition. Further details on this shall be explained duriregy th

Figure 2: One solution of the wave equatioft, =) and

one measurememt(ty, x), tp = 20.

Figure 3: Curvature distortion of the initial manifold un-
der the evolution of the wave equation. The outer curve
represents the initial conditiorig, while the inner curve
reflects the corresponding solutiobis for some timet.

the utilized convolution transformation. In this couple of
two test cases, we take one 1-tofus C R® and one 2-
torusQ, C R? as parameter space, respectively. As in
the previous examples, we generate a corresponding s
of scale modulation functions; and U, (see Figure 4),
using?; and(2, as parameter domains. This gives, for
j = 1,2, two different data sets

5.

—a (t)(- =b])* . ol (t) e QJ} :

nnnnnn

(3]

Figure 4: PCA projections d;, U, C R% ontoR?, gen-
erated by);, 2, C R3, two tori of genus 1 and 2.

(4]
(5]

Now we combine the séf; andU- by

U= {ft = fal(t) + foc2(t) : al(t) € Ql?a2(t)

The resulting projection of the datais shown in Figure 5.
For the purpose of illustration, we recover the détsand

U, from U. Note that this is a rather challenging task,
especially since the genus of surfaégsandU; are dif-
ferent. Figure 6 shows the reconstructions of the two sur-
facesU; andU,. Note that the both the geometrical and [7]
topological properties of/; and U, are recovered fairly

well, which supports the good performance of our convo-
lution transform yet once more. The reconstruction of the

EQQ}.

(6]

[2] A. Brun,

| conference.

Figure 6: Reconstruction d@f; (left), U, (right) fromU.
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