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Abstract:
We analyze the Basis Pursuit recovery of signals when ob-
serving sparse data with general perturbations. Previous
studies have only considered partially perturbed observa-
tions Ax+e. Here, x is a K-sparse signal which we wish
to recover, A is a measurement matrix with more columns
than rows, and e is simple additive noise. Our model also
incorporates perturbations E (which result in multiplica-
tive noise) to the matrix A in the form of (A + E)x + e.
This completely perturbed framework extends the previ-
ous work of Candès, Romberg and Tao on stable signal
recovery from incomplete and inaccurate measurements.
Our results show that, under suitable conditions, the sta-
bility of the recovered signal is limited by the noise level
in the observation. Moreover, this accuracy is within a
constant multiple of the best-case reconstruction using the
technique of least squares.

1. Introduction

Employing the techniques of compressed sensing (CS) to
recover signals with a sparse representation has enjoyed a
great deal of attention over the last 5–10 years. The initial
studies considered an ideal unperturbed scenario:

b = Ax. (1)

Here b ∈ Cm is the observation vector, A ∈ Cm×n

(m ≤ n) is a full-rank measurement matrix or system
model, and x ∈ Cn is the signal of interest which has a K-
sparse representation (i.e., it has no more than K nonzero
coefficients) under some fixed basis. More recently re-
searchers have included an additive noise term e into the
received signal [1, 2, 4, 8], creating a partially perturbed
model:

b̂ = Ax + e (2)

This type of noise generally models simple, uncorrelated
errors in the data or at the receiver/sensor.

As far as we can tell, practically no research has been
done yet on perturbations E to the matrix A. Our com-
pletely perturbed model extends (2) by incorporating a
perturbed sensing matrix in the form of

Â = A + E.

It is important to consider this kind of noise since it can ac-
count for precision errors when applications call for physi-

cally implementing the matrix A in a sensor. When A rep-
resents a system model, such as in the context of radar [7]
or telecommunications, then E can absorb errors in as-
sumptions made about the transmission channel, as well as
quantization errors arising from the discretization of ana-
log signals. In general, these perturbations can be charac-
terized as multiplicative noise, and are more difficult to an-
alyze than simple additive noise since they are correlated
with the signal of interest. To see this, simply substitute
A = Â−E in (2); there will be an extra noise term Ex.
(Note that it makes no difference whether we account for
the perturbation E on the “encoding side” (2), or on the
“decoding side” (7). The model used here was chosen so
as to agree with the conventions of classical perturbation
theory which we use in Section 4.)

1.1 Assumptions and Notation

Without loss of generality, assume the original data x to
be a K-sparse vector for some fixed K. Denote σ

(K)
max(Y ),

‖Y ‖(K)
2 , and rank(K)(Y ) respectively as the maximum

singular value, spectral norm, and rank over all K-column
submatrices of a matrix Y . Similarly, σ(K)

min(Y ) is the min-
imum singular value over all K-column submatrices of Y .
Let the perturbations in (2) be relatively bounded by

‖E‖(K)
2

‖A‖(K)
2

≤ ε
(K)
A ,

‖e‖2
‖b‖2 ≤ εb (3)

with ‖A‖(K)
2 , ‖b‖2 6= 0. In the real world we are only

interested in the case where both ε
(K)
A , εb < 1.

2. CS `1 Perturbation Analysis

2.1 Previous Work

In the partially perturbed scenario (i.e., E = 0 in (2)) we
are concerned with solving the Basis Pursuit (BP) prob-
lem [3]:

z? = argmin
ẑ

‖ẑ‖1 s.t. ‖Aẑ − b̂‖2 ≤ ε′ (4)

for some ε′ ≥ 0.
The restricted isometry property (RIP) [2] for any ma-

trix A ∈ Cm×n defines, for each integer K = 1, 2, . . . ,



the restricted isometry constant (RIC) δK , which is the
smallest nonnegative number such that

(1− δK)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δK)‖x‖22 (5)

holds for any K-sparse vector x. In the context of the
RIC, we observe that ‖A‖(K)

2 = σ
(K)
max(A) =

√
1 + δK ,

and σ
(K)
min(A) =

√
1− δK .

Assuming K-sparse x, δ2K <
√

2− 1 and ‖e‖2 ≤ ε′,
Candès has shown in Theorem 1.2 of [1] that the solution
to (4) obeys

‖z? − x‖2 ≤ CBP ε′ (6)

for some constant CBP.

2.2 Incorporating nontrivial perturbation E

Now assume the completely perturbed situation with
E,e 6= 0 in (2). In this case the BP problem of (4) can be
generalized to include a different decoding matrix Â:

z? = argmin
ẑ

‖ẑ‖1 s.t. ‖Âẑ − b̂‖2 ≤ ε′A,K,b (7)

for some ε′A,K,b ≥ 0. The following two theorems sum-
marize our results.

Theorem 1 (RIP for Â). For any K = 1, 2, . . . , assume
and fix the RIC δK associated with A, and the relative
perturbation ε

(K)
A associated with E in (3). Then the RIC

δ̂K :=
(
1 + δK

)(
1 + ε

(K)
A

)2

− 1 (8)

for matrix Â = A + E is the smallest nonnegative con-
stant such that

(1− δ̂K)‖x‖22 ≤ ‖Âx‖22 ≤ (1 + δ̂K)‖x‖22 (9)

holds for any K-sparse vector x.

Remark 1. The flavor of the RIP is defined with respect to
the square of the operator norm. That is, (1 − δK) and
(1 + δK) are measures of the square of minimum and
maximum singular values of A, and similarly for Â. In
keeping with the convention of classical perturbation the-
ory however, we defined ε

(K)
A in (3) just in terms of the

operator norm (not its square). Therefore, the quadratic
dependence of δ̂K on ε

(K)
A in (8) makes sense. Moreover,

in discussing the spectrum of Â, we see that it is really a
linear function of ε

(K)
A .

Theorem 2 (Completely perturbed observation). Fix the
relative perturbations ε

(K)
A , ε

(2K)
A and εb in (3). As-

sume that the RIC for matrix A satisfies δ2K <√
2
(
1 + ε

(2K)
A

)−2 − 1. Set

ε′A,K,b :=
(
cε

(K)
A + εb

)
‖b‖2, (10)

where c =
√

1+δK√
1−δK

. If x is K-sparse, then the solution to
the BP problem (7) obeys

‖z? − x‖2 ≤ CBP ε′A,K,b, (11)

where

CBP :=
4
√

1 + δ2K

(
1 + ε

(2K)
A

)

1 − (
√

2 + 1)
(

(1 + δ2K)
(
1 + ε

(2K)
A

)2

− 1
) .

(12)

Remark 2. Theorem 2 generalizes of Candès’ results in [1]
for K-sparse x. Indeed, if matrix A is unperturbed, then
E = 0 and ε

(K)
A = 0. It follows that δ̂K = δK in (8),

and the RIPs for A and Â coincide. Moreover, the condi-
tion in Theorem 2 reduces to δK <

√
2 − 1, and the total

perturbation (see (17)) collapses to ‖e‖2 ≤ ε′b := εb‖b‖2;
both of these are identical to Candès’ assumptions in (6).
Finally, the constant CBP in (12) reduces to the same as
outlined in the proof of [1].

It is also interesting to examine the spectral effects due
to the assumptions of Theorem 2. Namely, we want to be
assured that the rank of submatrices of A are unaltered by
the perturbation E.

Lemma 1. If the hypothesis of Theorem 2 is satisfied, then
for any k ≤ 2K

σ(k)
max(E) < σ

(k)
min(A), (13)

and therefore

rank(k)(Â) = rank(k)(A).

This fact is necessary (although, not explicitly stated) in
the least squares analysis Section 4.

The utility of Theorems 1 and 2 can be understood
with two simple numerical examples. Suppose that mea-
surement matrix A in (2) is designed to have an RIC of
δ2K = 0.100. Assume, however, that its physical im-
plementation will experience a worst-case relative error
of ε

(2K)
A = 5%. Then from (8) we can design a ma-

trix Â with RIC δ̂2K = 0.213 to be used in (7) which
will yield a solution whose accuracy is guaranteed by (11)
with CBP = 9.057. Note from (12), we see that if there
had been no perturbation, then CBP = 5.530.

Consider now a different example. Suppose instead
that δ2K = 0.200 and ε

(2K)
A = 1%. Then δ̂2K = 0.224

and CBP = 9.643. Here, if A was unperturbed, then we
would have had CBP = 8.473.

These numerical examples show how the stability con-
stant CBP of the BP solution gets worse with perturbations
to A. It must be stressed however, that they represent
worst-case instances. It is well-known in the CS commu-
nity that better performance is normally achieved in prac-
tice.

2.3 Numerical Simulations
Numerical simulations were conducted as follows. Gaus-
sian matrices of size 128× 512 were randomly generated
in MATLAB. The entries of matrix A were normally dis-
tributedN (0, σ2

A) where σ2
A = 1/128, while those of ma-

trix E were N (0, σ2
E) with σ2

E = ε2
A/128. The parame-

ter εA is a measure of the relative perturbation of matrix A
and took on values {0, 0.01, 0.05, 0.10}. Next, a random
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Figure 1: Average (100 trials) relative error of BP solution
z? with respect to K-sparse x vs. Sparsity K for different
relative perturbations εA of A ∈ C128×512 (and εb = 0) .

vector x of sparsity K = 1, . . . , 64 was randomly gener-
ated (nonzero entries uniformly distributed with N (0, 1))
and b̂ = Ax in (2) was created (note, we set e = 0 so
as to focus on the effect of perturbation E). Given b̂ and
Â = A + E, the BP program (7) was implemented with
cvx software [5]. For each value of εA and K, 100 trials
were performed.

Fig. 1 shows the average relative error ‖z?−x‖2/‖x‖2
as a function of K for each εA. As a reference, the ideal,
noise-free case can be seen for εA = 0. It is interesting
to notice that all perturbations, including εA = 0, experi-
ence significant jumps simultaneously at several places,
such as K = 31, 42, 43, 44, etc. Now fix a particular
value of K ≤ 30 and compare the relative error for the
three nonzero values of εA. It is clear that the error scales
roughly linearly with εA. This empirical study essentially
confirms the conclusion of Theorem 2, that the stability of
the BP solution scales linearly with ε

(K)
A (i.e., the singular

values of E).
Note that better performance in theory and in simula-

tion can be achieved if BP is used solely to determine the
support of the solution. Then we can use least squares to
find a better result. This is similar to the the best-case,
oracle least squares solution discussed in Section 4.

3. Proofs

3.1 Proof Sketch of Theorem 1
From the triangle inequality, (5) and (3) we have

‖Âx‖22 ≤ (‖Ax‖2 + ‖Ex‖2
)2

(14)

≤
(√

1 + δK + ‖E‖(K)
2

)2

‖x‖22 (15)

≤ (1 + δK)
(
1 + ε

(K)
A

)2

‖x‖22. (16)

Moreover, this inequality is sharp for the following rea-
sons:

• Equality occurs in (14) if E is a multiple of A.

• Equality occurs in (15) whenever x is in the direction
of the vector associated with the value (1 + δK) in
the RIP for A.

• Equality occurs in (16) since, in this hypothetical
case, we assume that E = βA for some 0 < β < 1.
Therefore, the relative perturbation ε

(K)
A in (3) no

longer represents a worst-case deviation (i.e., the ra-

tio ‖E‖(K)
2

‖A‖(K)
2

= β =: ε
(K)
A ).

The full details of this proof can be found in [6] ¤

3.2 Bounding the perturbed observation
Before proceeding, we need some sense of the size of the
total perturbation incurred by E and e. We don’t know a
priori the exact values of E, x, or e. But we can find an
upper bound in terms of the relative perturbations in (3).
The main goal in the following lemma is to remove the
total perturbation’s dependence on the input x.

Lemma 2 (Total perturbation bound). Set ε′A,K,b :=(
cε

(K)
A + εb

)
‖b‖2, where c =

√
1+δK√
1−δK

, and ε
(K)
A and

εb are defined in (3). Then the total perturbation obeys

‖Ex‖2 + ‖e‖2 ≤ ε′A,K,b (17)

for all K-sparse x.

Proof. From (1), (5) and (3) we have

‖Ex‖2 + ‖e‖2 =
(‖Ex‖2
‖Ax‖2 +

‖e‖2
‖b‖2

)
‖b‖2

≤
(
‖E‖(K)

2 ‖x‖2√
1− δK ‖x‖2

+
‖e‖2
‖b‖2

)
‖b‖2

≤
(
cε

(K)
A + εb

)
‖b‖2

for all x which are K-sparse.

Note that the results in this paper can easily be expressed
in terms of the perturbed observation by replacing

‖b‖2 ≤ ‖b̂‖2
1− εb

.

This can be useful in practice since one normally only has
access to b̂.

3.3 Proof Sketch of Theorem 2
We duplicate the techniques used in Candès’ proof of The-
orem 1.2 in [1], but with decoding matrix A replaced
by Â. Set the BP minimizer in (7) as z? = x+h. Here, h
is the perturbation from the true solution x induced by E
and e. Instead of Candès’ (9), we determine that the image
of h under Â is bounded by

‖Âh‖2 ≤ ‖Âz? − b̂‖2 + ‖Âx− b̂‖2
≤ 2 ε′A,K,b

which follows from the BP constraint in (7) as well as x
being a feasible solution (i.e., it satisfies Lemma 2). The
rest of this proof can be found in [6] ¤



3.4 Proof of Lemma 1
Assume the hypothesis of Theorem 2. It is easy to show
that this implies

‖E‖(2K)
2 <

4
√

2 −
√

1 + δ2K .

Simple algebraic manipulation then confirms that
4
√

2 −
√

1 + δ2K <
√

1− δ2K = σ
(2K)
min (A).

Therefore, (13) holds with k = 2K. Further, for
any k ≤ 2K we have σ

(k)
max(E) ≤ σ

(2K)
max (E) and

σ
(2K)
min (A) ≤ σ

(k)
min(A), which proves the lemma. ¤

4. Classical `2 Perturbation Analysis

Let the subset T ⊆ {1, . . . , n} have cardinality |T | = K,
and note the following T -restrictions: AT ∈ Cm×K de-
notes the submatrix consisting of the columns of A in-
dexed by the elements of T , and similarly for xT ∈ CK .

Suppose the “oracle” case where we already know the
support T of K-sparse x. By assumption, we are only
interested in the case where K ≤ m in which AT has full
rank. Given the completely perturbed observation of (2),
the least squares problem consists of solving:

z#
T = argmin

ẑT

‖ÂT ẑT − b̂‖2.

Since we know the support T , it is trivial to extend z#
T to

z# ∈ Cn by zero-padding on the complement of T . Our
goal is to see how the perturbations E and e affect z#.

More discussion on the oracle least squares analysis
can be found in [6]. In the end, we find using the same
ε′A,K,b in (10) that its stability is

‖z# − x‖2 ≤ CLS ε′A,K,b (18)

where CLS := 1/
√

1− δK .

4.1 Comparison of LS with BP
Now, we can compare the accuracy of the least squares
solution in (18) with the accuracy of the BP solution found
in (11). In both cases the error bound is of the form

Cε′A,K,b.

A detailed numerical comparison of CLS with CBP is not
entirely valid, nor illuminating. This is due to the fact
that we assumed the oracle setup in the the least squares
analysis, which is the best that one could hope for. In this
sense, the least squares solution we examined here can be
considered a “best, worst-case” scenario. In contrast, the
BP solution really should be thought of as a “worst, of the
worst-case” scenarios.

The important thing to glean is that the accuracy of the
BP solution, like the least squares solution, is on the order
of the noise level ε′A,K,b in the perturbed observation.
This is an important finding since, in general, no other
recovery algorithm can do better than the oracle least
squares solution. These results are analogous to the
comparison by Candès, Romberg and Tao in [2], although
they only consider the case of additive noise e.

5. Conclusion

We introduced a general perturbed model for CS, and
found the conditions under which BP could stably recover
the original data. This completely perturbed model ex-
tends previous work by including a multiplicative noise
term in addition to the usual additive noise term. We only
considered K-sparse signals, however these results can be
extended to also include compressible signals (see [6]).

Simple numerical examples were given which demon-
strated how the multiplicative noise reduced the accuracy
of the recovered BP solution. In terms of the spectrum
of the perturbed matrix Â, we showed that the penalty
on δ̂K was a graceful, linear function of the relative per-
turbation ε

(K)
A . Numerical simulations were performed

with εb = 0 and appear to confirm the conclusion of The-
orem 2, that the BP solution scales linearly with ε

(K)
A .

We also found that the rank of Â did not exceed the
rank of A under the assumed conditions. This permit-
ted an analysis of the oracle least squares solution which
showed that its accuracy, like the BP solution, was limited
by the total noise in the observation.
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