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Abstract:

The harmonizable Piranashvili — type stochastic pro-
cesses are approximated by a finite time shifted average
sampling sum. Truncation error upper bound is es-
tablished; various consequences and special cases are
discussed.
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1. Introduction and preparation

Given a probability space (Q, 3, P) and the related
Hilbert-space Lo(f2) := {X: E|X|? < oo}. Let us con-
sider a non—stationary, centered stochastic L (€2)—process
&: R x Q — R having covariance function (associated to
some domain A C R with some sigma—algebra o(A)) in
the form:

Blts) = /A /A SN F (s ) Fe(dh dp), (1)

with analytical exponentially bounded kernel function
f(t,\), while Fy is a positive definite measure on R? pro-
vided the total variation || F¢||(A, A) of the spectral distri-
bution function Fy such that satisfies

|%MAM:AAMwmmm<w

(We mention that the sample function £(t) = £(¢,wp) and
f(t, \) possess the same exponential types [1, Theorem
4], [11, Theorem 3]). Then, by the Karhunen—Cramér the-
orem the process £(¢) has the spectral representation as a
Lebesgue integral

£(t) = / F(E ) Ze (dN); @)
A
in (1) and (2)

FE(Sl, 52) == EZ{(Sl)Zg(SQ) 51,52 Q O'(A)

Such a process will be called Piranashvili process in the
sequel [11], [12].

Being f (¢, \) entire, it possesses the Maclaurin expansion
FEA) =300, £ (0, A" /nl. Put

i=supc(A) = supim {/|f(M(0,\)| <o0. (3
7 1= supe(A) = suplim {/[ (0, )] <00 ()

As the exponential type of f(¢, ) is equal to =, for all
w > ~ there holds

) = Yo g(0T) Tt nm). )

wt — nmw
nez

uniformly in the mean square and in the almost sure sense
[11, Theorem 1]. This result we call Whittaker—Kotel’-
nikov—Shannon (WKS) stochastic sampling theorem [12].

Specifying Fe(z,y) = dzyFe(x) in (1) we conclude the
Karhunen-representation of the covariance function

B(t, s):/Af(t,/\)f*(s,A)Fg(d/\).

Also, putting f(¢,\) = €™ in (1) one gets the Logve-
representation:

B(t,s) = /A /A ¢i(A=5) 7 (N, dp).

Here is ¢(A) = |A|. Therefore, WKS—formula (4) holds
for all w > 7 = sup|A|. Then, the Karhunen process
with the Fourier kernel f(t, \) = e** we recognize as the
weakly stationary stochastic process having covariance

B(r) = / e Fe(dN), T=t-—s.
A

Deeper insight into different kind harmonizabilities
present [5, 13, 14] and the related references therein. Fi-
nally, using A = [—w, w] for some finite w in this con-
siderations, we get the band-limited variants of the same
kind processes.

By physical and applications reasons the measured sam-
ples in practice may not be the exact values of the mea-
sured process £(t), or its covariance B(t, s) itself, near to
the sample time ¢,,, but only the local average of the signal
& near to t,,. So, the measured sample values will be

(& unyr = /U E@)un(z)dz, U =supp(un)  (5)



for a sequence u := (un (t)) ,, of non-negative, norma-

lized, that is (1, u,) = 1, averaglng functions such that

supp(u,) C [tn — o)ty + O'TJ . 6)

The local averaging method was introduced by Grochenig
[2] and developed by Butzer and Lei. Recently Sun
and Zhou gave some results in this direction, while the
stochastic counterpart of this average sampling was inten-
sively studied in the last three—four years by He, Song,
Sun, Yang and Zhu in a set of articles [15], [16] and their
references therein; see for example the exhaustive refer-
ences list in [4]. The listed, recently considered stochastic
average sampling results are restricted to weakly statio-
nary stochastic processes, while the approximation ave-
rage sampling sums are used around the origin.

Our intentions are to extend these results to time shifted
average sampling, considered for the very wide class of
Piranashvili processes.

2. Time shifted average sampling

Now, instead to follow the approach used in [16] we
take time shifted [7], [8] finite average sampling sum
in approximating the initial stochastic signal £. First,
we consider weighted average over J,,(t) = [nm/w —
ol (t),nm/w + op(t)] for the measured value of £(¢) at
nw/w, n € Iy (t) where

In(t) :={n€Z: |tw/m —n| < N}, N eN.
Let NV be the integer nearest to tw/m.
By obvious reasons we restrict the study to
= max sup ma t), t) < —
o = maxsupmas (o, (1) 7(1)) < 5.

Let us define the time shifted average sampling approxi-
mation sum in the form

Au(&) = (& un)z, 0 '§§1@£§;:12§2,

wt —nm
Z

and its truncated variant

sin(wt — n)
Au,n(§t) = Z <§aun>3n(t) Tl —nm
In (%)

One defines mean—square, time shifted, average sampling
truncation error Ty n(&;¢) = E|¢(t) — Aqu(S;t)|2.
Now, we are interested in some reasonably simple effi-
cient mean square truncation error upper bound appearing
in the approximation £(t) ~ Ay n(£;1).

Let us introduce some auxiliary results. As N, stands for
the integer nearest to zw/m, z € R, let

y(@)i={z€C: |s=N,J < (N+1)2}, NeN.

In what follows denote int(R) the interior of some R,
while the series

1
Ag) = Z m

n=1

stands for the Dirichlet lambda function.

Theorem 1 Let f(z) be entire, bounded on the real axis
and exponentially bounded having type v < w. Denote

2wL | sin(wz)| .
m(w — ) (1 — e*”)

Then for all z € int (I‘N (x)) and N € N enough large it

holds
in( )
> ) |

Ly := s%p ‘f(x) Lo(z) :=

Z\IN (@)
- LO(Z)ef(N+1/2)7r(w7'y)/w - Lo(z) o
— |z— Ny |w :
(N + 1/2)|1 T (N+1/2)7 N

The proving method is contour integration, following Pi-
ranashvili’s traces [11]. Denote here and in what follows

nm\ sin(wt — nm)
=3 () T
—nm
HN (t
the time shifted truncated WKS restoration sum.

By simple use of (1), (2) and the Theorem 1 one deduces
the following modest generalization of [11, Theorem 2] to
time shifted case of sampling restoration procedure.

Theorem 2 Let £(t) be a Piranashvili process with expo-
nentially bounded kernel function f(t, \) and let

Ly :=supsup |f(t,\)],
R A

Qwa | sin(wt)| '
m(w—7)(1—e")

Then for all t € int(T y(t)), we have

Lo(t) := (®)

Ele(t) — Ya(&:0)|* < LO()HFgII(AA) ©)

Remark 1 Let us point out that the straightforward con-
sequence of (9) is not only the exact Lo—restoration of the
initial Piranashvili-type harmonizable process £ by a se-
quence of approximants Y (§;t) when N — oo, but since

E|¢(t) — Yn(&0)|" = O(N72),

the perfect reconstruction is possible in the a.s. sense as
well (by the celebrated Borel-Cantelli Lemma).

Second, the first order difference A, , B [3] of B(t,s) on
the plane satisfies

(A yB)(t,s) = B(t +z,5+y)

- B(t, s+y)+B(t s)

[

Theorem 3 Let (t) be a Piranashvili process with the
covariance B(t,t) € C?(R). Let (p,q) be a conjugated
Holder pair of exponents:

1 1

+
P q

—B(t+uz,s)

t+u erv) dodu . (10)



Then we have
2
E|Yn(&t) — Aun(&:t)]

2
L sup B (4, 0)] - 2N+ 1D¥P, (1)
R

where
2471 | sin(wt) |7

C, = (1 + = )\(q)>2/q. (12)

PROOF. Having on mind (1), the properties of averaging
functions sequence u and (10), we clearly derive

Hm@@—&w@m2
sin(wt — nm) |2
- E‘ Z “w ) u”>3n(t) ’ wt — na
In t)

(x+nT)um(y +mi)

>/ /
B o )
'/0 /0 Oudv

sin(wt — nw) sin(wt — mm)

B(u +ni v+ m%)dvdu

wt — nm wt —mm
Z ‘smwt—mr Hsm wt—mw ’

wt — nmw

I

being u normalized. For the sake of brevity let us denote
H,(n,m) the sup—term in the last display. Then, by the
Holder inequality with conjugate exponents p,q; p > 1,
we get

- sup B(u—l—n%,v—km%)dvdu

zy<o

Judv

E[Yn (&) — Aun (&)

1/p " . 2/q
sin(wt — n)
{5 ) [ et}
SRl ey
1% () In(t)
It is not hard to see that for all n,m € I (t) there holds
0?B(t, s) ‘
Otos

0%B(t,s) )
otds |’

H,(n,m) < o?sup
R2
2

- 4'[1}2 R2
Applying now the Cauchy—Bunyakovsky—Schwarz in-
equality to the covariance 9% B, we deduce
82Bts’ ‘EFBtt)‘
Otds |~ ot?
— sup B (t,1)].
R

su
]R2

It remains to evaluate the sum of qth power of the sinc—

functions. As
sin(wt — Nymr)

<1
—Ntﬂ' -

we conclude

2.

HN(t)

sin(wt — nm) |4

wt — nm

<1 CN L !
=+ Z{n—Aq+(n+A)4}

<1+2CZ _1/2

<14+ 2q+1c q),

where .
i t
C— | sin(wt)] '
w4
Collecting all these estimates, we deduce (11). (I

3. Main result

We are ready to formulate our upper bound result for the
mean square, time shifted average sampling truncation er-
ror Ty n(&;t). The almost sure sense restoration proce-
dure has been treated too.

As we use average sampling sum Ay n(&;t) instead of
Yn(&;t) to obtain asymptotically vanishing Ty n(&;1), it

is not enough letting N — oo as in Remark 1. For av-
erage sampling we need additional conditions upon w or
o to guarantee smaller average intervals for larger/denser
sampling grids.

Theorem 4 Assume the conditions of Theorems 2 and 3
have been fulfilled. Then, we have

2L2
Tun(&t) < 00 rg . a)
+ S G (BN )PP, a3)
2w2 R ’ ’

where EO, C, are described by (8), (11) respectively.

Moreover, when w = O(NUQH/?H‘E), e > 0, we have

P{ lim Aun(&1) =€)} =1 (14)

forallt € R.

PROOQOF. By direct calculation we deduce

Tun(E1) = E[E(0) — Aun(&0)[*
= E[¢(t) — Y (&) + Yo (&) - Aun(& D)
< 2E[¢(t) - Yn (&)
+2E[YN (€1) — Aun (1)
Now, we get the asserted upper bound by (9) and (11).
To derive (14), we apply the Chebyshev inequality to eval-
uate the probability

Py = P{[¢(t) — Aun(&1)] 2 0} <0 2Tun(&1).

Accordingly, since Lo(t) = O(1) as N — oo, we have

(2N +1)%/p

1
SPvEE Y (gt
N N

)<<>o7



K being a suitable absolute constant. Therefore, by the
Borel-Cantelli Lemma, the the a.s. convergence result
(14) holds true. U

Remark 2 Theorem 4 ensures the perfect time shifted av-

erage sampling restoration in the mean square sense when
w=O(NVPTe), ¢ > 0

]\}Enoo Tun(&t) =0.

The a.s. sense restoration (14) requires stronger assump-
tion, it holds when w = O (N1/2+1/p+e),

Remark 3 In both cases we use the so called approximate
sampling procedure, that is, when in the restoration proce-
dure w — o0 in some fashion. The consequence of these
results is that we have to restrict ourselves to the case
A = R, such that we recognize as the non—bandlimited
Piranashvili type harmonizable process case.

The importance of approximate sampling procedures for
investigations of aliasing errors in sampling restorations
and different conditions on joint asymptotic behaviour of
N and w have been discussed in detail in [7].

4. Conclusions

We have analyzed upper bounds on truncation error for
time shifted average sampling restorations in the stochas-
tic initial signal case. The convergence of the truncation
error to zero was discussed. However, certain new ques-
tions immediately arise:

e to derive sharp upper bounds in Theorems 3 and 4;

e to obtain new results for L,—processes using recent
deterministic findings [9], [10];

e to obtain similar results for irregular/nonuniform
sampling restoration using methods exposed in [6]
and [10].
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