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The harmonizable Piranashvili -type stochastic processes are approximated by a finite time shifted average sampling sum. Truncation error upper bound is established; various consequences and special cases are discussed.

Introduction and preparation

Given a probability space Ω, F, P and the related Hilbert-space L 2 (Ω) := {X : E|X| 2 < ∞}. Let us consider a non-stationary, centered stochastic L 2 (Ω)-process ξ : R × Ω → R having covariance function (associated to some domain Λ ⊆ R with some sigma-algebra σ(Λ)) in the form:

B(t, s) = Λ Λ
f (t, λ)f * (s, µ)F ξ (dλ, dµ), [START_REF] Belyaev | Analytical random processes[END_REF] with analytical exponentially bounded kernel function f (t, λ), while F ξ is a positive definite measure on R 2 provided the total variation F ξ (Λ, Λ) of the spectral distribution function F ξ such that satisfies

F ξ (Λ, Λ) = Λ Λ F ξ (dλ, dµ) < ∞.
(We mention that the sample function ξ(t) ≡ ξ(t, ω 0 ) and f (t, λ) possess the same exponential types [START_REF] Belyaev | Analytical random processes[END_REF]Theorem 4], [START_REF] Zurab | On the problem of interpolation of random processes[END_REF]Theorem 3]). Then, by the Karhunen-Cramér theorem the process ξ(t) has the spectral representation as a Lebesgue integral

ξ(t) = Λ f (t, λ)Z ξ (dλ); (2) 
in ( 1) and ( 2)

F ξ (S 1 , S 2 ) = EZ ξ (S 1 )Z * ξ (S 2 ) S 1 , S 2 ⊆ σ(Λ).
Such a process will be called Piranashvili process in the sequel [START_REF] Zurab | On the problem of interpolation of random processes[END_REF], [START_REF] Tibor | Almost sure sampling restoration of bandlimited stochastic signals[END_REF].

Being f (t, λ) entire, it possesses the Maclaurin expansion

f (t, λ) = ∞ n=0 f (n) (0, λ)t n /n!. Put γ := sup Λ c(λ) = sup Λ lim n n |f (n) (0, λ)| < ∞ . (3) 
As the exponential type of f (t, λ) is equal to γ, for all w > γ there holds

ξ(t) = n∈Z ξ nπ w sin(wt -nπ) wt -nπ , (4) 
uniformly in the mean square and in the almost sure sense [START_REF] Zurab | On the problem of interpolation of random processes[END_REF]Theorem 1]. This result we call Whittaker-Kotel'nikov-Shannon (WKS) stochastic sampling theorem [START_REF] Tibor | Almost sure sampling restoration of bandlimited stochastic signals[END_REF].

Specifying F ξ (x, y) = δ xy F ξ (x) in (1) we conclude the Karhunen-representation of the covariance function

B(t, s) = Λ f (t, λ)f * (s, λ)F ξ (dλ).
Also, putting f (t, λ) = e itλ in (1) one gets the Loèverepresentation:

B(t, s) = Λ Λ e i(tλ-sµ) F ξ (dλ, dµ).
Here is c(λ) = |λ|. Therefore, WKS-formula (4) holds for all w > γ = sup |Λ|. Then, the Karhunen process with the Fourier kernel f (t, λ) = e itλ we recognize as the weakly stationary stochastic process having covariance

B(τ ) = Λ e iτ λ F ξ (dλ), τ = t -s.
Deeper insight into different kind harmonizabilities present [START_REF] Kakihara | Multidimensional Second Order Stochastic Processes[END_REF][START_REF] Priestley | Non-linear and Nonstationary Time Series[END_REF][START_REF] Malempati | Harmonizable processes: structure theory[END_REF] and the related references therein. Finally, using Λ = [-w, w] for some finite w in this considerations, we get the band-limited variants of the same kind processes.

By physical and applications reasons the measured samples in practice may not be the exact values of the measured process ξ(t), or its covariance B(t, s) itself, near to the sample time t n , but only the local average of the signal ξ near to t n . So, the measured sample values will be

ξ, u n U = U ξ(x)u n (x)dx, U = supp(u n ) (5)
for a sequence u := u n (t) n∈Z of non-negative, normalized, that is 1, u n ≡ 1, averaging functions such that

supp(u n ) ⊆ t n -σ n , t n + σ n . (6) 
The local averaging method was introduced by Gröchenig [START_REF] Gröchenig | Reconstruction algorithms in irregular sampling[END_REF] and developed by Butzer and Lei. Recently Sun and Zhou gave some results in this direction, while the stochastic counterpart of this average sampling was intensively studied in the last three-four years by He, Song, Sun, Yang and Zhu in a set of articles [START_REF] Song | Error estimate on non-bandlimited random signals by local averages[END_REF], [START_REF] Song | Approximation of weak sense stationary stochastic processes from local averages[END_REF] and their references therein; see for example the exhaustive references list in [START_REF] He | Truncation error estimate on random signals by local average[END_REF]. The listed, recently considered stochastic average sampling results are restricted to weakly stationary stochastic processes, while the approximation average sampling sums are used around the origin.

Our intentions are to extend these results to time shifted average sampling, considered for the very wide class of Piranashvili processes.

Time shifted average sampling

Now, instead to follow the approach used in [START_REF] Song | Approximation of weak sense stationary stochastic processes from local averages[END_REF] we take time shifted [START_REF] Ya | Time shifted aliasing error upper bounds for truncated sampling cardinal series[END_REF], [START_REF] Ya | On sharp bounds for remainders in multidimensional sampling theorem[END_REF] finite average sampling sum in approximating the initial stochastic signal ξ. First, we consider weighted average over J n (t) := nπ/wσ n (t), nπ/w + σ n (t) for the measured value of ξ(t) at nπ/w, n ∈ I N (t) where

I N (t) := {n ∈ Z : |tw/π -n| ≤ N }, N ∈ N.
Let N t be the integer nearest to tw/π.

By obvious reasons we restrict the study to σ := max

I N (t) sup R max σ n (t), σ n (t) ≤ π 2w .
Let us define the time shifted average sampling approximation sum in the form

A u (ξ; t) = Z ξ, u n Jn(t) • sin(wt -nπ) wt -nπ ,
and its truncated variant

A u,N (ξ; t) = I N (t) ξ, u n Jn(t) • sin(wt -nπ) wt -nπ .
One defines mean-square, time shifted, average sampling truncation error T u,N (ξ; t)

:= E ξ(t) -A u,N (ξ; t) 2 .
Now, we are interested in some reasonably simple efficient mean square truncation error upper bound appearing in the approximation ξ(t) ≈ A u,N (ξ; t).

Let us introduce some auxiliary results. As N x stands for the integer nearest to xw/π, x ∈ R, let

Γ N (x) := z ∈ C : |z -N x | ≤ N + 1 2 π w , N ∈ N.
In what follows denote int(R) the interior of some R, while the series

λ(q) := ∞ n=1 1 (2n -1) q
stands for the Dirichlet lambda function.

Theorem 1 Let f (z) be entire, bounded on the real axis and exponentially bounded having type γ < w. Denote

L f := sup R f (x) , L 0 (z) := 2wL f | sin(wz)| π(w -γ) 1 -e -π .
Then for all z ∈ int Γ N (x) and N ∈ N enough large it holds

Z\I N (x) f n π w sin(wz -nπ) wz -nπ ≤ L 0 (z)e -(N +1/2)π(w-γ)/w (N + 1/2) 1 -|z-Nx|w (N +1/2)π < L 0 (z) N . (7) 
The proving method is contour integration, following Piranashvili's traces [START_REF] Zurab | On the problem of interpolation of random processes[END_REF]. Denote here and in what follows By simple use of ( 1), ( 2) and the Theorem 1 one deduces the following modest generalization of [START_REF] Zurab | On the problem of interpolation of random processes[END_REF]Theorem 2] to time shifted case of sampling restoration procedure.

Y N (ξ; t) := I N (t)
Theorem 2 Let ξ(t) be a Piranashvili process with exponentially bounded kernel function f (t, λ) and let

L f := sup R sup Λ |f (t, λ)|, L 0 (t) := 2 L f w | sin(wt)| π(w -γ) 1 -e -π . (8) 
Then for all t ∈ int Γ N (t) , we have

E ξ(t) -Y N (ξ; t) 2 < L 2 0 (t) N 2 F ξ (Λ, Λ) . (9) 
Remark 1 Let us point out that the straightforward consequence of (9) is not only the exact L 2 -restoration of the initial Piranashvili-type harmonizable process ξ by a sequence of approximants Y N (ξ; t) when N → ∞, but since

E ξ(t) -Y N (ξ; t) 2 = O N -2 ,
the perfect reconstruction is possible in the a.s. sense as well (by the celebrated Borel-Cantelli Lemma).

Second, the first order difference ∆ x,y B [3] of B(t, s) on the plane satisfies

∆ x,y B (t, s) = B(t + x, s + y) -B(t + x, s) -B(t, s + y) + B(t, s) = x 0 y 0 ∂ 2 ∂u∂v B t + u, s + v dvdu . ( 10 
)
Theorem 3 Let ξ(t) be a Piranashvili process with the covariance B(t, t) ∈ C 2 (R). Let (p, q) be a conjugated Hölder pair of exponents:

1 p + 1 q = 1, p > 1 .
Then we have

E Y N (ξ; t) -A u,N (ξ; t) 2 ≤ C q π 2 4w 2 sup R B (t, t) • (2N + 1) 2/p , (11) 
where

C q = 1 + 2 q+1 | sin(wt)| q π q λ(q) 2/q . ( 12 
)
PROOF. Having on mind (1), the properties of averaging functions sequence u and ( 10), we clearly derive

E Y N (ξ; t) -A u,N (ξ; t) 2 = E I N (t) ξ nπ w -ξ(x), u n Jn(t) • sin(wt -nπ) wt -nπ 2 = I 2 N (t) σ n (t) -σ n (t) σ m (t) -σ m (t) u n (x + n π w )u m (y + m π w ) • x 0 y 0 ∂ 2 ∂u∂v B u + n π w , v + m π v dvdu • sin(wt -nπ) wt -nπ sin(wt -mπ) wt -mπ ≤ I 2 N (t) sin(wt -nπ) wt -nπ sin(wt -mπ) wt -mπ • sup x,y≤σ x 0 y 0 ∂ 2 ∂u∂v B u + n π w , v + m π v dvdu
being u normalized. For the sake of brevity let us denote H σ (n, m) the sup-term in the last display. Then, by the Hölder inequality with conjugate exponents p, q; p > 1, we get

E Y N (ξ; t) -A u,N (ξ; t) 2 ≤ I 2 N (t) H p σ (n, m) 1/p I N (t) sin(wt -nπ) wt -nπ q 2/q .
It is not hard to see that for all n, m ∈ I N (t) there holds

H σ (n, m) ≤ σ 2 sup R 2 ∂ 2 B(t, s) ∂t∂s ≤ π 2 4w 2 sup R 2 ∂ 2 B(t, s) ∂t∂s .
Applying now the Cauchy-Bunyakovsky-Schwarz inequality to the covariance

∂ 2 B, we deduce sup R 2 ∂ 2 B(t, s) ∂t∂s ≤ sup R ∂ 2 B(t, t) ∂t 2 = sup R |B (t, t)| .
It remains to evaluate the sum of qth power of the sincfunctions. As sin(wt

-N t π) wt -N t π ≤ 1
we conclude

I N (t) sin(wt -nπ) wt -nπ q ≤ 1 + C N n=1 1 (n -∆) q + 1 (n + ∆) q < 1 + 2C ∞ n=1 1 (n -1/2) q < 1 + 2 q+1 C λ(q) , where C = | sin(wt)| q π q .
Collecting all these estimates, we deduce (11).

Main result

We are ready to formulate our upper bound result for the mean square, time shifted average sampling truncation error T u,N (ξ; t). The almost sure sense restoration procedure has been treated too.

As we use average sampling sum A u,N (ξ; t) instead of Y N (ξ; t) to obtain asymptotically vanishing T u,N (ξ; t), it is not enough letting N → ∞ as in Remark 1. For average sampling we need additional conditions upon w or σ to guarantee smaller average intervals for larger/denser sampling grids.

Theorem 4 Assume the conditions of Theorems 2 and 3 have been fulfilled. Then, we have

T u,N (ξ; t) ≤ 2 L 2 0 (t) N 2 F ξ (Λ, Λ) + C q π 2 2w 2 sup R B (t, t) • (2N + 1) 2/p , (13) 
where L 0 , C q are described by [START_REF] Ya | On sharp bounds for remainders in multidimensional sampling theorem[END_REF], [START_REF] Zurab | On the problem of interpolation of random processes[END_REF] respectively.

Moreover, when w = O N 1/2+1/p+ε , ε > 0, we have

P lim N →∞ A u,N (ξ; t) = ξ(t) = 1 (14) 
for all t ∈ R.

PROOF. By direct calculation we deduce

T u,N (ξ; t) = E ξ(t) -A u,N (ξ; t) 2 = E ξ(t) -Y N (ξ; t) + Y N (ξ; t) -A u,N (ξ; t) 2 ≤ 2E ξ(t) -Y N (ξ; t) 2 + 2E Y N (ξ; t) -A u,N (ξ; t) 2 .
Now, we get the asserted upper bound by ( 9) and [START_REF] Zurab | On the problem of interpolation of random processes[END_REF].

To derive [START_REF] Malempati | Harmonizable processes: structure theory[END_REF], we apply the Chebyshev inequality to evaluate the probability

P N := P ξ(t) -A u,N (ξ; t) ≥ η ≤ η -2 T u,N (ξ; t) .
Accordingly, since L 0 (t) = O(1) as N → ∞, we have

N P N ≤ K N 1 N 2 + (2N + 1) 2/p w 2 < ∞,
K being a suitable absolute constant. Therefore, by the Borel-Cantelli Lemma, the the a.s. convergence result (14) holds true.

Remark 2 Theorem 4 ensures the perfect time shifted average sampling restoration in the mean square sense when

w = O N 1/p+ε , ε > 0: lim N →∞ T u,N (ξ; t) = 0 .
The a.s. sense restoration (14) requires stronger assumption, it holds when w = O N 1/2+1/p+ε .

Remark 3

In both cases we use the so called approximate sampling procedure, that is, when in the restoration procedure w → ∞ in some fashion. The consequence of these results is that we have to restrict ourselves to the case Λ = R, such that we recognize as the non-bandlimited Piranashvili type harmonizable process case.

The importance of approximate sampling procedures for investigations of aliasing errors in sampling restorations and different conditions on joint asymptotic behaviour of N and w have been discussed in detail in [START_REF] Ya | Time shifted aliasing error upper bounds for truncated sampling cardinal series[END_REF].

Conclusions

We have analyzed upper bounds on truncation error for time shifted average sampling restorations in the stochastic initial signal case. The convergence of the truncation error to zero was discussed. However, certain new questions immediately arise:

• to derive sharp upper bounds in Theorems 3 and 4;

• to obtain new results for L p -processes using recent deterministic findings [START_REF] Ya | Universal truncation error upper bounds in sampling restoration[END_REF], [START_REF] Ya | Universal truncation error upper bounds in irregular sampling restoration[END_REF];

• to obtain similar results for irregular/nonuniform sampling restoration using methods exposed in [START_REF] Ya | Direct Lagrange-Yen type interpolation of random fields[END_REF] and [START_REF] Ya | Universal truncation error upper bounds in irregular sampling restoration[END_REF].

  -nπ) wt -nπ the time shifted truncated WKS restoration sum.
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