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Abstract:
We present several consequences of the geometric ap-
proach to image sampling and reconstruction we have pre-
viously introduced. We single out the relevance of the ge-
ometric method to the vector quantization of images and,
more important, we give a concrete and candidate for the
optimal embedding dimension in Zador’s Thorem. An ad-
ditional advantage of our approach is that that this pro-
vides a constructive proof of the aforementioned theorem,
at least in the case of images. Further applications are also
briefly discussed.

1. Introduction

In recent years it became common amongst the signal pro-
cessing community, to consider images and other signals
as well, as Riemannian manifolds embedded in higher di-
mensional spaces. Usually, the embedding manifold is
taken to be Rn, but other options can, and had been con-
sidered. Along with that, sampling is an essential prelimi-
nary step in processing of any continuous signal by a dig-
ital computer. This step lies at heart of any digital pro-
cessing of any (presumably continuous) data/signal. It is
therefore natural to strive to achieve a sampling method
for images, viewed as such, that is as higher dimensional
dimensional objects (i.e. manifolds), rather than their rep-
resentation as 1-dimensional signals. In consequence, our
sampling and reconstruction techniques stem from the the
fields of differential geometry and topology, rather than
being motivated by the traditional framework of harmonic
analysis. More precisely, our approach to Shannon’s Sam-
pling Theorem is based on sampling the graph of the sig-
nal, considered as a manifold, rather than a sampling of
the domain of the signal, as is customary in both theoreti-
cal and applied signal and image processing. In this con-
text it is important to note that Shannon’s original intuition
was deeply rooted in the geometric approach, as exposed
in his seminal work [14].
Our approach is based upon the following sampling the-
orem for differentiable manifolds that was recently pre-
sented and applied in the context image processing [12]:

Theorem 1 Let Σn ⊂ RN , n ≥ 2 be a connected, not
necessarily compact, smooth manifold, with finitely many
compact boundary components. Then, there exists a sam-
pling scheme of Σn, with a metric density D = D(p) =

D
(

1
k(p)

)
, where k(p) = max{|k1|, ..., |kn|}, and where

k1, ..., kn are the principal curvatures of Σn, at the point
p ∈ Σn.

In particular, if Σn is compact, then there exists a sampling
of Σn having uniformly bounded density. Note, however,
that this is not necessarily the optimal scheme (see [12]).

The constructive proof of this theorem is based on the ex-
istence of the so-called fat (or thick) triangulations (see
[11]). The density of the vertices of the triangulation (i.e.
of the sampling) is given by the inverse of the maximal
principal curvature. An essential step in the construction
of the said triangulations consists of isometrically embed-
ding of Σn in some RN , for large enough N (see [10]),
where the existence of such an embedding is guaranteed
by Nash’s Theorem ([9]). Resorting to such a powerful
tool as Nash’s Embedding Theorem appears to be an im-
pediment of our method, since the provided embedding
dimension N is excessively high (even after further refine-
ments due to Gromov [4] and Günther [5]). Furthermore,
even finding the precise embedding dimension (lower than
the canonical N ) is very difficult even for simple mani-
folds. However, as we shall indicate in the next section,
this high embedding dimension actually becomes an ad-
vantage, at least from the viewpoint of information theory.

The resultant sampling scheme is in accord with the clas-
sical Shannon theorem, at least for the large class of (ban-
dlimited) signals that also satisfy the condition of being C2

curves. In our proposed geometric approach, the radius of
curvature substitutes for the condition of the Nyquist rate.
To be more precise, our approach parallels, in a geomet-
ric setting, the local bandwidth of [7] and [16]. In other
words, manifolds with bounded curvature represent a gen-
eralization of the locally band limited signals considered
in those papers.

We concentrate here only on some of the consequences
of Theorem 1. More precisely, we present, in Sections 2
and 3, two applications of our geometric sampling method
and of the embedding technique employed in the proof,
namely to the vector quantization of images and to de-
termining the embedding dimension in Zador’s Theorem,
respectively. Further directions of study are briefly dis-
cussed in the concluding section.



2. Vector Quantization for Images

A complementary byproduct of the constructive proof of
Theorem 1 is a precise method of vector quantization (or
block coding). Indeed, the proof of Theorem 1 consists
in the construction of a Voronoi (Dirichlet) cell complex
{γ̄n

k } (whose vertices will provide the sampling points).
The centers ak of the cells (satisfying a certain geometric
density condition) represent, as usual, the decision vec-
tors. An advantage of this approach, besides its simplic-
ity, is entailed by the possibility to estimate the error in
terms of length and angle distortion when passing from
the cell complex {γ̄n

k } to the Euclidean cell complex {c̄n
k}

having the same set of vertices as {γ̄n
k } (see [10]). In-

deed, in contrast to other related studies, our method not
only produces a piecewise-flat simplicial approximation
of the given manifold, it also actually renders a simpli-
cial complex on the manifold. Moreover, one can actually
compute the local distortion resulting by passing from the
Euclidean geometry of the piecewise-flat approximation
to the intrinsic geometry of its projection on the manifold.
If M = Mn is a manifold without boundary, then locally,
for any triangulation patch the following inequality holds
[10]:

3
4
dM (x, y) ≤ deucl(x̄, ȳ) ≤ 5

3
dM (x, y) ;

where deucl, dM denote the Euclidean and intrinsic met-
ric (on M ) respectively, and where x, y ∈ M and x̄, ȳ
are their preimages on the piecewise-flat complex. For
manifolds with boundary, the same estimate holds (for the
intM and ∂M ), except for a (small) zone of “mashing”
triangulations (see [11]), where the following weaker dis-
tortion formula is easily obtained:

3
4
dM (x, y)−f(θ)η∂ ≤ deucl(x̄, ȳ) ≤ 5

3
dM (x, y)+f(θ)η∂ ;

where f(θ) is a constant depending on the θ =
min {θ∂ , θint M} – the fatness of the triangulation of ∂M
and intM, respectively, and η∂ denotes the mesh of the tri-
angulation of a certain neighbourhood of ∂M (see [11]).
In other words, the (local) projection mapping π between
the triangulated manifold M and its piecewise-flat approx-
imation Σ is (locally) bi-lipschitz if M is open, but only
a quasi-isometry (or coarsely bi-lipschitz) if the boundary
of M is not empty.
But the main advantage of a geometric sampling of im-
ages resides in the fact that the sampling is done according
to the geometric, hence intrinsic, features of the image,
rather in the arbitrary (as far as features are concerned)
manner of classical approach that transforms the image
into a 1-dimensional array (signal). Therefore, the result-
ing sampling is adaptive, hence sparse in regions of low
curvature, and, as shown in [1], it is even compressive in
some special cases.

3. Zador’s Theorem

A more important application stems, however, from
Zador’s Theorem [15], implying that we can turn into an

advantage the inherent “curse of dimensionality”. Indeed,
by of Zador’s Theorem, the average mean squared error
per dimension:

E =
1
N

∫

RN

deucl(x, pi)p(x)dx ,

pi being the code point closest to x and p(x) denoting
the probability density function of x, can be reduced by
making avail of higher dimensional quantizers (see [2]).
Since for embedded manifolds it obviously holds that
p(x) = p1(x)χM , we obtain:

E =
1
N

∫

Mn

deucl(x, pi)p1(x)dx ,

It follows that, if the main issue is accuracy, not simplicity,
then 1-dimensional coding algorithms (such as the classi-
cal Ziv-Lempel algorithm) perform far worse than higher
dimensional ones. Of course, there exists an upper limit
for the coding dimension, since otherwise one could just
code the whole data as one N -dimensional vector (albeit
of unpractically high dimension). The geometric coding
method proposed here provides a natural high dimension
for the quantization of Mn – the embedding dimension N .
Moreover, it closes (at least for images and any other data
that can be represented as Riemannian manifolds) an open
problem related to Zador’s Theorem: finding a construc-
tive method to determine the dimension of the quantizers
(Zador’s proof is nonconstructive). In fact, for a uniformly
distributed input (as manifolds, hence noiseless images,
can assumed to be, at least in first approximation) a better
estimate of the average mean squared error per dimension
can be obtained, namely:

E =
1
N

∫
Mn deucl(x, pi)dx∫

Mn dx
=

1
N

∫
Mn deucl(x, pi)dx

Vn(Mn)dx
,

where Vn denotes the n-dimensional volume (area) of M .
Whence, for compact manifolds one obtains the following
expression for E :

E =
1
N

∫
Mn deucl(x, pi)dx∑m

i

∫
Vi

dx
=

1
N

∫
Mn deucl(x, pi)dx∑m

i Vn(Vi)dx
,

where Vi represent the Voronoi cells of the partition.
Moreover, we have the following estimate for the quan-
tizer problem, that is: Chose centers of cells such that the
quantity

Q =
1
N

1
m

∫
Mn deucl(x, pi)dx

(
1
m

∑m
i Vn

)1+ 2
N

.

is minimized. Here, again, the high embedding dimension
N furnishes us with yet an additional advantage. Indeed,
manifolds N increases dramatically, even for compact
manifolds and even taking into consideration Gromov’s
and Günther’s improvement of Nash’s original method
(see [4], resp. [5]). For instance, n = 2 requires em-
bedding dimension N = 10 and n = 3 the necessitates
N = 14. Hence, for large enough n one can write the
following rough estimate:



Q ≈ 1
N

∫
Mn deucl(x, pi)dx∑m

i Vn
.

4. Conclusions and Future work

As we have stressed above, our geometrical approach to
sampling lends itself to consideration of a much broader
range of topics in communications, for such problems
as Coding, Channel Capacity, amongst others (see [13]).
In particular, and almost as an afterthought of the ideas
presented in Section 2, it offers a new method for PCM
(pulse code modulation – see [2] for a brief yet lucid pre-
sentation) of images, considered as such and not as 1-
dimensional signals. This approach is endowed with an
inherent advantage in that the sampling points are asso-
ciated with relevant geometric features (via curvature) of
the image, viewed as a manifold of dimension≥ 2, and are
not chosen via the Nyquist rate of some rather arbitrarily
computed 1-dimensional signal. Moreover, the sampling
is in this case adaptive and, indeed, compressive, lending
itself to interesting technological benefits.
The implementation of the PCM method described above,
as well as experimenting with the geometric quantization
method, represent the applicative directions of study that
are natural and interesting to pursue further. A better un-
derstanding of the geometry of images, included color,
texture and other relevant features, in terms of curvature,
represent the theoretical directions to be pursued in future.
In particular, determining the lowest embedding dimen-
sion and finding global curvature constraints are, as we
have seen, important for a highly compressive sampling.

5. The role of curvature

We briefly discuss here the crucial role of curvature in de-
termining the embedding dimension (and hence the Zador
dimension) by illustrating it on a “toy” example, namely
that of the torus.
For a “round” torus of revolution T 2

r in R3, the embed-
ding dimension is N = 3, since the metric of T 2

r is the
intrinsic one induced by the Euclidian one of the ambi-
ent space R3, thus in this case our method does not depart
too much from standard ones. However, if one consid-
ers the flat torus T 2

f , i.e. of Gaussian curvature K ≡ 0,
then the minimal dimension needed for isometric embed-
ding is N = 4 (see, e.g. [3]). (Before we proceed further,
let us note that such tori arise naturally when considering
planar rectangles with opposite sides identified – that is,
“glued” – via translations. In a practical context, these
would model 2-dimensional repetitive patterns on a com-
puter screen, e.g. screen savers. Flat tori also appear in
another context relevant to Computer Graphics and Im-
age Processing, namely as solutions for discrete curvature
flows (on triangular meshes), see e.g. [8].) In general,
given a 2-dimensional torus, equipped with generic Rie-
mannian metric, the whole range of dimensions, up to,
and including, the one prescribed by the Nash-Gromov-
Günther Theorem, is possible. There are huge differences
arising not only from the sign of the curvature, but from

its “speed of change” as well – for a exhaustive treatment
of this subject see [6].
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