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MODULAR OPERADS AND BATALIN-VILKOVISKY

GEOMETRY

SERGUEI BARANNIKOV

Abstract. I describe the noncommutative Batalin-Vilkovisky geometry as-
sociated naturally with arbitrary modular operad. The classical limit of this
geometry is the noncommutative symplectic geometry of the corresponding
tree-level cyclic operad. I show, in particular, that the algebras over the Feyn-
man transform of a twisted modular operad P are in one-to-one correspondence
with solutions to quantum master equation of Batalin-Vilkovisky geometry on
the affine P−manifolds. As an application I give a construction of character-
istic classes with values in the homology of the quotient of Deligne-Mumford
moduli spaces. These classes are associated naturally with solutions to the
quantum master equation on affine S[t]−manifolds, where S[t] is the twisted
modular Det−operad constructed from symmetric groups, which generalizes
the cyclic operad of associative algebras.

1. Introduction.

Modular operads, introduced in [GK], is a generalization of cyclic operads in-
tended to capture information about all orders of Feynman diagrammatics, the
cyclic operads corresponding to the tree-level expansions. In particular, the graph
complexes introduced in [K2] arise naturally as the modular analog of the cobar
transform, called Feynman transform in [GK]. The properties of the Feynman
transform, compared to the cobar transform, are quite misterious and the calcula-
tions of homology of graph complexes constitutes difficult combinatorial problems,
the examples of which include the Vassiliev homology of the spaces of knots and
the cohomology of uncompactified moduli spaces of Riemann surfaces.

In this note I show that the modular operads and their Feynman transforms
are intimately related with a kind of noncommutative Batalin-Vilkovisky geometry.
The classical limit of this geometry is the noncommutative symplectic geometry
described in [K1], [G] in connection with cyclic operads.

I show, in particular, that the algebras over the Feynman transform of an arbi-
trary twisted modular operad P are in one-to-one correspondence with solutions to
quantum master equation of Batalin-Vilkovisky geometry on affine P−manifolds,
see Theorem 1 from Section 5.

As an application I give a construction of characteristic classes with values in
the homology of the quotient of Deligne-Mumford moduli spaces. These classes
are associated naturally with solutions to quantum master equation of Batalin-
Vilkovisky geometry on the affine S[t]−manifolds. The twisted Det−operad S[t] is
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2 SERGUEI BARANNIKOV

introduced in Section 9. It is constructed naturally from symmetric groups and is
a generalization of the cyclic operad of associative algebras. One of the important
properties of this twisted modular operad is the identification of the stable ribbon
graph complex introduced in [K3] with the Feynman transform of S[t], see Theorem
2 in Section 10.

Here is the brief content of the sections. Sections 1-3 are introductory, sections
4-7 are devoted to the characterisation of algebras over Feynman transform and
the description of the corresponding Batalin-Vilkovisky geometry, in sections 8-11 I
introduce the modular twisted Det− operad S[t] and prove the theorem relating the
Feynman transform of S[t] with cell complexes of the compactified moduli spaces
of Riemann surfaces.

This work is a part of a project started in the summer of 2000. The paper
was written during my visits to Research Institut for Mathematical Sciences in
Kyoto in the autumn 2003 and to Max Planck Institut for Mathematics in Bonn
in the winter 2005/2006. I’m grateful to both institutions for support and excelent
working conditions. It is a pleasure to aknowledge the stimulating discussions with
Yu.I.Manin, S.Merkulov and K.Saito. I would like also to thank the referee for
carefull reading of the paper.

Notations: I denote by k a field of characteristic zero, if V = ⊕iVi is a graded
vector space over k then V [i] denotes the vector space with graded components
V [i]j = Vi+j , if x ∈ Vi then x = imod2 denotes its degree modulo Z/2Z, the
cardinality of a finite set I is denoted by |I|. Throughout the paper I work in
the tensor symmetric category of Z−graded vector spaces with the isomorphism
X

⊗
Y ≃ Y

⊗
X

(1.1) x⊗ y → (−1)xyy ⊗ x

I denote via V dual the linear dual of V with (V dual)i = (V−i)
dual. For a module U

over a finite group G I denote via UG the k−vector space of coinvariants, i.e. the
quotient of U by submodule generated by {gu − u|u ∈ U, g ∈ G}, and via UG the
subspace of invariants: {∀g ∈ G : gu = u|u ∈ U}. For a finite set {Vi|i ∈ I} of
k−vector spaces labeled by elements of the finite set I I define the tensor product

⊗

i∈I

Vi =




⊕

bijections:I↔{1,...,l}

Vf−1(1) ⊗ . . .⊗ Vf−1(l)




Sl

.

2. Modular operads.

In this Section I collect for reader convenience the definitions relative to the
concepts of the modular operad and of the Feynman transformation of modular
operad. The material presented in this Section is borrowed from Sections 2-5 of
[GK].

An S-module P is a collection of chain complexes of k−vector spaces P((n)),
n ∈ N, equipped with an action of Sn, the group of automorphisms of the set
{1, . . . , n}. Given an S-module P and a finite set I we extend P to the functor on
finite sets by putting

P((I)) =


 ⊕

bijections:I↔{1,...,n}

P((n))




Sn

.
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A graph G is a triple (Flag(G), λ, σ), where Flag(G) is a finite set, whose el-
ements are called flags, λ is a partition of Flag(G), and σ is an involution acting
on Flag(G). By partition here one understands a disjoint decomposition into un-
ordered subsets, called blocks. The vertices of the graph are the blocks of the
partition. The set of vertices is denoted by V ert(G). The subset of Flag(G) cor-
responding to vertex v is denoted by Leg(v). The cardinality of Leg(v) is called
the valence of v and is denoted n(v). The edges of the graph are the pairs of flags
forming a non-trvial two-cycle of the involution σ. The set of edges is denoted
Edge(G). The legs of the graph are the fixed elements of the involution σ. The set
of legs is denoted Leg(G). The number of legs is denoted n(G). I denote by |G| the
one-dimensional CW-complex which is the geometric realisation of the graph G.

A stable graph G is a connected graph with a non-negative integer number b(v)
assigned to each vertex v ∈ V ert(G), such that 2b(v) + n(v) − 2 > 0 for any
v ∈ V ert(G). For a stable graph G I put

b(G) = Σv∈V ert(G)b(v) + dimH1(|G|).

A stable S-module P is an S-module with extra grading by non-negative integers
on each Sn-module : P((n)) = ⊕b≥0P((n, b)), such that if 2b + n − 2 ≤ 0 then
P((n, b)) = 0. I assume throughout the paper that the chain complexes P((n, b))
have finite-dimensional homology. In the operad framework P((n)) can be thought
of as the space of all possibilities to get an n−tensor using P-operations.

Given a stable S-module P and a stable graph G one defines

P((G)) =
⊗

v∈V ert(G)

P((Leg(v), b(v))).

Let us denote by Γ((n, b)) the set consisting of all pairs (G, ρ) where G is a
stable graph with n(G) = n and b(G) = b and ρ is a bijection Leg(G) ↔ {1, . . . , n}.
Sometimes I shall omit from the notation for an element of Γ((n, b)) the marking ρ
when this does not lead to a confusion. A modular operad P is a stable S-module
P together with composition maps

(2.1) µP
(G,ρ) : P((G)) → P((n, b))

defined for any stable graph with marked legs (G, ρ) ∈ Γ((n, b)) and all possible n
and b. These maps must be Sn−equivariant with respect to relabeling of legs of G
and satisfy the natural associativity condition with respect to the compositions in
the category of stable graphs (see loc.cit. Sections 2.13-2.21).

Given a finite set I let us denote by Γ((I, b)) the set consisting of stable graphs G
with b(G) = b and with exterior legs marked by the elements of I. Using a bijection
I ↔ {1, . . . , n} I extend the composition (2.1) to the map

µP
G : P((G)) → P((I, b))

defined for G ∈ Γ((I, b)). Because of Sn−equivariance this does not depend on the
choice of the bijection.The associativity condition satisfied by the compositions µP

G

can be described as follows. For any subset of edges J ⊆ Edge(G) one has the
stable graph G/J and naturally defined morphism of stable graphs f : G → G/J .
For such morphism one defines the natural map

µP
G→G/J : P((G)) → P((G/J)), µP

G→G/J =
⊗

v∈V ert(G/J)

µP
f−1(v)
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and the associativity condition tells that

µP
G = µP

G/J ◦ µP
G→G/J

It follows from the asssociativity condition, that it is sufficient to define the
compositions 2.1 just for the stable graphs with one edge. There are two types of
such graphs. The first one, which I denote G(I1,I2,b1,b2), has two vertices so that the
set of legs is decomposed into two subsets I1 ⊔ I2 = {1, . . . , n}. The composition
along G(I1,I2,b1,b2) has the form

(2.2) µP
G(I1,I2,b1,b2)

: P((I1 ⊔ {f}, b1))⊗ P((I2 ⊔ {f ′}, b2)) → P((n, b1 + b2))

where f, f ′ are the two flags corresponding to the edge joining the two vertices.
Actually, since the symmetric group Sn, acting on P((n, b1 + b2)), acts transitevely
on the set of pairs I1, I2 in (2.2) with fixed cardinality, it is sufficient to consider
the composition (2.2) just for the subsets I1 = {1, . . . ,m − 1}, I2 = {m, . . . , n}.
The second type of the stable graphs with one edge, which I denote by Gn,b, has
one vertice and its single edge is a loop. The composition along Gn,b is

(2.3) µP
Gn,b

: P(({1, . . . n} ⊔ {f, f ′}, b− 1)) → P((n, b))

where f and f ′ are the flags corresponding to the unique edge.
An example of modular operad is the endomorphism operad of a chain complex

of k−vector spaces V = ⊕iVi[−i] equipped with symmetric pairing B of degree 0,

B(u, v) = (−1)uvB(v, u), B : V ⊗2 → k

so that B(u, v) = 0 unless deg u + deg v = 0. The S−module underlying the
endomorphism modular operad of V is defined by

(2.4) E [V ]((n, b)) = V ⊗n

with the standard Sn−action. Then

E [V ]((G)) = V ⊗Flag(G)

The composition (2.1) is the contraction with B⊗Edge(G). Because degB = 0, this
is compatible with the definition of the usual endomorphisms whose components
are defined by Homk(V

⊗n−1, V ): the isomorphism induced by B: V ≃ V dual gives
the isomorphisms of the underlying operad

E [V ]((n, b)) ≃ Homk(V
⊗n−1, V ).

Another series of examples is given by cyclic operads with P((m)) = 0 for m =
1, 2, which can be considered as modular operads by putting P((m, b)) = 0 for
b ≥ 1.

The image of a modular operad under Feynman transform is some modification
of modular operad with extra signs involved. To take into account these signs one
needs to introduce the twisting of modular operads. The twisting is also unavoidable
when one wishes to associate an endomorphism modular operad with chain complex
with symmetric or antisymmetric inner products of arbitrary degree.
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2.1. Determinants. To simplify the signs bookkeeping it is convenient to intro-

duce for a finite dimensional k−vector space V the determinant

Det(V ) = ΛdimV (V )[dimV ].

This is the top-dimensional exterior power of the k−vector space V concentrated
in degree (− dimV ). I shall mostly need the determinant of the vector space kS

associated with a finite set S. I denote it Det(S):

Det(S) = Det(kS).

Because of (1.1) one has the natural isomorphism for the disjoint union of sets
⊔i∈ISi

(2.5) Det(
∐

i∈I

Si) ≃
⊗

i∈I

Det(Si).

Another obvious property is Det⊗2(S) ≃ k[2|S|]. I shall also put for a graded finite
dimensional k−vector space V∗

Det(V∗) =
⊗

j∈Z

Det(Vj)
((−1)j mod 2).

2.2. Cocycles. I will only consider cocycles with values in the Picard tensor sym-

metric category of invertible graded k−vector spaces. Such a cocycle D is a functor
which assigns to a stable graph G a graded one-dimensional vector space D(G) and
to any morphism of stable graphs f : G → G/J the linear isomorphism

νf : D(G/J) ⊗
⊗

v∈V ert(G/J)

D(f−1(v)) → D(G)

satisfying the natural associativity condition with respect to the composition of two
morphisms, see loc.cit. Section 4.1. For the graph with only one vertice and no
edges G = ∗n,bI must have D(∗n,b) = k. Examples of such cocycles are

(2.6) K(G) = Det(Edge(G))

L(G) = Det(Flag(G))Det−1(Leg(G)).

2.3. Twisted modular operads. A twisted modular D−operad P is a stable

S-module P , P((n)) = ⊕b P((n, b)), together with composition maps

(2.7) µP
(G,ρ) : D(G)⊗ P((G)) → P((n, b))

defined for (G, ρ) ∈ Γ((n, b)) which should satisfy the Sn−equivariance and the
associativity conditions parallel to that of modular operad.
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2.4. Coboundaries. Let s be a stable S-module such that dimk s((g, n)) = 1 for

all g, n. Then s defines a cocycle

(2.8) Ds(G) = s((n, b))⊗
⊗

v∈V ert(G)

s−1((n(v), b(v))).

This is called the coboundary of s. Tensoring underlying S-modules by s defines
equivalence of the category of modular D−operad with the category of modular
D ⊗Ds−operad. Examples of such coboundaries are

Σ((n, b)) = k[−1]

α((n, b)) = k[n]

β((n, b)) = k[b− 1]

s̃ = sgnn[n]

in the first three examples the Sn−action is trivial, and in the last example it is
the alternating representation.

2.5. Free modular operads. The forgetful functor

modular operads → stable S−modules

has the left adjoint functor which associates to a stable S−module A the free
modular operad MA generated by A:

MA((n, b)) =
⊕

G∈[Γ((n,b))]

A((G))Aut(G)

where [Γ((n, b))] denotes the set of isomorphisms classes of pairs (G, ρ) where G is
a stable graph with n(G) = n, b(G) = b and ρ is a bijection Leg(G) ↔ {1, . . . n}.

Similarly one defines the free modular twisted D−operad MDA generated by
stable S−module A:

MDA((n, b)) =
⊕

G∈[Γ((n,b))]

(D(G) ⊗A((G)))Aut(G).

On the subspace of generators the composition map µG is simply the projection
D(G)⊗A((G)) → (D(G) ⊗A((G)))Aut(G).

2.6. Feynman transform. Let P be a modularD−operad. I assume for simplicity
below that all spaces P((n, b)) are finite-dimensional in each degree. One can avoid
this assumption in the standard way by introducing the modular cooperads, see
[GJ], I leave details to an interested reader. In our examples below the spaces
P((n, b)) are finite-dimensional in each degree. Let us put D∨ = KD−1, where
K is the cocycle (2.6). The Feynman transform of a modular D−operad P is a
modular D∨−operad FDP , defined in the following way. As a stable S−module,
forgetting the differential, FDP is the free modular D∨−operad generated by stable
S−module {P((n, b))dual}. The differential on FDP is the sum dF = ∂Pdual + ∂µ
of the differential ∂Pdual induced on MD∨Pdual by the differential on P and of the
differential ∂µ, whose value on the term (D∨(G)⊗Pdual((G)))Aut(G) is a sum over
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all equivalence classes of stable graphs G̃ such that G̃/{e} ≃ G of the map dual to
the composition µP

G̃→G
multiplied by the element e[1] ∈ Det({e}):

∂µ|(D∨(G)⊗Pdual((G)))Aut(G)
=

∑

G̃/{e}≃G

e[1]⊗ (µP
G̃→G

)dual

see Section 5 of loc.cit.
The Feynman transform is a generalization of graph complexes from [K1]. The

Lie, commutative and associative graph complexes correspond to the n(G) = 0
part of the Feynman transforms of the corresponding cyclic operads, considered as
modular operads with P((n, b)) = 0 for b ≥ 1.

3. Endomorphisms operad with inner products of degree l ∈ Z.

Here I discuss the natural twisted modular operads of endomorphisms associ-
ated with symmetric or antisymmetric inner products of degree l ∈ Z. This is a
relatively straightforward extension of the degree zero symmetric and degree −1
antisymmetric cases described in [GK], subsections 2.25 and 4.12.

3.1. Symmetric inner product of degree l ∈ Z. Let V be a chain complex with

symmetric inner product B of arbitrary degree, degB = l, l ∈ Z:

B(u, v) = (−1)uvB(v, u), B : V ⊗2 → k[−l], l ∈ Z

so that B(u, v) = 0 unless deg u+ deg v = l. If I put for underlying S-modules

E [V ]((n, b)) = V ⊗n

then the contraction with BEdge(G)defines naturally the composition map

µ
E[V ]
G : K⊗l(G)⊗ E [V ]((G)) → E [V ]((n, b))

of the modular K⊗l−operad where

K⊗l(G) = Det⊗l(Edge(G))

Indeed, for even l, l = 2l′, the tensoring by the cocycle acts simply as the degree
shift

K⊗2l′ (G) = k[2l′|Edge(G)|]

and the contraction with BEdge(G) acting on V Flag(G) decreases the total degree
exactly by 2l′|Edge(G)|. For odd l, l = 2l′ + 1, the cocycle is the degree shift
tensored by the top exterior power of kEdge(G)

K⊗2l′+1(G) = Λ|Edge(G)|(kEdge(G))[(2l′ + 1)|Edge(G)|].

Notice that the permutation of any two edges inverses the sign of the value of
B⊗Edge(G) on V ⊗Flag(G) since B is of odd degree. This explains the necessity for
the term Λ|Edge(G)|(k|Edge(G)|) in the case of odd degree.
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3.2. Antisymmetric inner product of degree l ∈ Z. Let V be a chain complex
with antisymmetric inner product

B(u, v) = −(−1)uvB(v, u), degB = l, l ∈ Z.

The cocycle corresponding to such inner product is

K⊗l−2L(G) = Det⊗l−2(Edge(G))Det(Flag(G))Det−1(Leg(G)).

Using (2.5) I see that

K⊗l−2L(G) = K⊗l ⊗ (
⊗

e∈Edge(G)

Λ2(k{se,te}))

where {se, te} is the set of two flags corresponding to the edge e. I put now
E [V ]((n, b)) = V ⊗n and define the composition map (2.7) as in the previous cases:
identify E [V ]((G)) with V Flag(G) and contract with BEdge(G). The composition
map is well defined since permutation of two flags se, te reverses the sign of Λ2(k{se,te}).

Definition 1. Twisted modular P-algebra structure on chain complex V with sym-
metric (respectively antisymmetric) inner product of degree l is a morphism of
twisted modular K⊗l−operads (respectively K⊗l−2L−operads): P → E [V ].

3.3. Suspension. The suspension coboundary Ds, defined in [GK], subsection 4.4,
is associated with the S−module

s((n, b)) = sgnn[2(b− 1) + n]

where sgnn is the standard alternating representation of Sn. If I identify in the
tensor product (2.8) sgnn(v)[n(v)] with Det(Leg(v)) then I get

Ds(G) = Det(Leg(G))[2(b(G)− 1)]
⊗

v∈V ert(G)

Det−1(Leg(v))[2(1− b(v))].

This is equal to

Ds(G) = L−1[2|Edge(G)|] = L−1K⊗2(G)

because of the formula

Σv∈V ert(G)(b(v)− 1) = b(G)− 1− |Edge(G)|

I see that the multiplication by s transforms modular K⊗l−2L-operads to modu-
lar K⊗l-operads and vice versa. In particular, for algebras over such operads the
degrees of the corresponding inner products must be the same. The coboundary
associated with

s̃ = sgnn[n]

so that

D
s̃
= L−1

is sometimes more useful in the situation of inner products of arbitrary degree.
The multiplication by s̃ of the underlying S−module transforms modular K⊗l−2L-
operad to modular K⊗l−2-operad and, since L2 ≃ K⊗4, it transforms modular
K⊗l+2-operad to modular K⊗l−2L-operad. If V is a chain complex with symmetric
(respectively antisymmetric) inner product B of degree degB = l, then the suspen-
sion of V is a chain complex V [1] with the antisymmetric (respectively symmetric)

inner product B̃ of degree l − 2 defined by

B̃(x[1], y[1]) = (−1)xB(x, y).
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The multiplication by s̃ of the modular K⊗l-operad E [V ] gives the modular K⊗l−4L-
operad E [V [1]]. It follows that if P is a K⊗l−operad and V is a chain complex with
symmetric inner product B of degree l, then the modular P−algebra structure on
V corresponds under the suspension to the modular s̃P-algebra structure on the

chain complex V [1] equipped with the antisymmetric inner product B̃ of degree
l− 2.

3.4. Reducing the twistings. The twistings corresponding to the inner products
can be reduced using coboundaries to just two cocycles: the trivial cocycle, if l is
even, and the cocycle Det whose value on a graph G is

Det(G) = Det(H1(G)),

if l is odd. The last cocycle is isomorphic to

Det(G) ≃ K−1D−1
s̃

D−1
Σ

see loc.cit. Proposition 4.14. Notice that both cocycles are trivial on trees. Possible
choices of the coboundaries reducing the twistings to the trivial or Det is given by
the following identities :

(K⊗2l)D⊗−2l
β ≃ k, (K⊗2lL)D

s̃
D⊗−2l

β ≃ k,

(K⊗2l−1)D−1
s̃

D⊗−2l
β D−1

Σ ≃ Det(G) (K⊗2l−1L)D⊗−2l
β D−1

Σ ≃ Det(G).

Let P be a cyclic operad. Putting P((n, b)) = 0 for b > 0, the cyclic operad can
be considered both as a modular operad and as a twisted modular Det−operad.
Tensoring the cyclic operad by the coboundaries as above one can obtain the twisted
K⊗l−operad or K⊗l−2L−operad. In such a way one can define for any cyclic
operad the notion of P−algebra on complexes with symmetric or antisymmetric
inner products of arbitrary degree.

4. Algebras over Feynman transform.

In this Section I write down in several equivalent forms the equation defining
the structure of algebra over Feynman transform for an arbitrary twisted modular
D−operad. As I show in Section 5 this is in fact a Maurer-Cartan equation in the
differential graded Lie algebra of geometric origin.

Let us consider first the case of FDP−algebra structure on the chain complex
V with symmetric inner product B of degree l, B : V ⊗2 → k[−l], this implies
that D ≃ K⊗1−l. The FDP−algebra structure on V is a morphism of twisted
modular K⊗l−operads m̂ : FDP → E [V ]. Since, forgetting the differential, FDP is
the free twisted modular operad generated by stable S−module P((n, b))dual, the
FDP-algebra structure on V is determined by a set of Sn−equivariant linear maps

m̂n,b : P((n, b))dual → V ⊗n

or, equivalently, the set of degree zero elements

(4.1) mn,b ∈ (V ⊗n ⊗ P((n, b)))Sn .

As above, for any finite set I one can extend this to the collection of elements {m̂I,b}:

m̂I,b ∈ Hom(P((I, b))dual, V ⊗I), and {mI,b}: mI,b ∈ (V ⊗I ⊗P((I, b)))Aut(I), using
an arbitrary bijection I ↔ {1, . . . , |I|}. An element from the subspace

(4.2) (K⊗l(G)⊗ Pdual((G)))Aut(G) ⊂ FDP((n, b))
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corresponding to a stable graph G ∈ [Γ((n, b))], is represented as the result of

composition µFDP
G acting on an element from

⊗
v∈V ert(G) P((n(v), b(v)))dual. It

follows that on the subspace (4.2) the map

m̂ : FDP((n, b)) → V ⊗n

is given by

(4.3) µ
E[V ]
G ◦


 ⊗

v∈V ert(G)

m̂Leg(v),b(v)


 .

The map m̂ : FDP → E [V ] corresponding to the set {mn,b} is a morphism of
twisted modular K⊗l-operads if and only if

(4.4) dE[V ] ◦ m̂ = m̂ ◦ dFDP .

Since the differentials dFDP , dE[V ] are compatible with the composition maps µFDP
G ,

µ
E[V ]
G , it is sufficient to check the condition (4.4) on the generators of FDP . On

the subspace P((n, b))dual the differential dFDP is a sum of dPdual plus sum of the
adjoints to the structure maps µP

G (2.7) corresponding to the stable graphs with
single edge G(I1,I2,b1,b2) and Gn,b, multiplied by e[1], the canonical element of degree
(-1) from Det({e}) where e is the unique edge of the graph G:

dFDP = dPdual + e[1]⊗ (µP
Gn,b

)dual +
∑

{1,...,n}=I1⊔I2, b1+b2=b

e[1]⊗ (µP
G(I1,I2,b1,b2)

)dual.

We see that the condition (4.4) is equivalent to

(4.5) dV ⊗nm̂n,b = m̂n,bdPdual + µ
E[V ]
Gn,b

(e[1]⊗ m̂{1,...,n}⊔{f,f ′},b−1µ
P
Gn,b

dual)+

+
1

2

∑

{1,...,n}=I1⊔I2
b1+b2=b

µ
E[V ]
G(I1,I2,b1,b2)

(e[1]⊗ (m̂I1⊔{f},b1 ⊗ m̂I2⊔{f ′},b2)µ
P
G(I1,I2,b1,b2)

dual).

Recall that E [V ] is a K⊗l−operad and

K⊗l(Gn,b) = K⊗l(G(I1,I2,b1,b2)) = (k[1])⊗l.

Then µ
E[V ]
Gn,b

is the contraction (V ⊗{f,f ′} ⊗ V ⊗n)[l] → V ⊗n with the bilinear form

B applied to the factors corresponding to f, f ′ and µ
E[V ]
G(I1,I2,b1,b2)

is the similar

contraction (V ⊗I1⊔{f} ⊗ V ⊗I2⊔{f ′})[l] → V ⊗n. I denote these contractions by
Bf,f ′ . If I introduce the degree (l− 1) maps, which are the evaluation on (e[1])⊗1−l

of the P−compositions µP
G

φP
f,f ′ : P((I1 ⊔ {f}, b1))⊗ P((I2 ⊔ {f ′}, b2)) → P((n, b1 + b2))[l − 1](4.6)

φP
f,f ′ = µP

G(I1,I2,b1,b2)
(e[1]⊗1−l)

ξPf,f ′ : P(({1, . . . n} ⊔ {f, f ′}, b− 1)) → P((n, b))[l − 1](4.7)

ξPf,f ′ = µP
Gn,b

(e[1]⊗1−l)
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then in terms of mI,b the equation (4.5) is written as

(4.8) (dP + dV )mn,b −Bf,f ′ ⊗ ξPf,f ′m{1,...,n}⊔{f,f ′},b−1

−
1

2

∑

{1,...,n}=I1⊔I2
b1+b2=b

Bf,f ′ ⊗ φP
f,f ′(mI1⊔{f},b1 ⊗mI2⊔{f ′},b2) = 0.

Let us put mn =
∑

b z
bmn,b then

(4.9) (dP + dV )mn − zBf,f ′ ⊗ ξPf,f ′m{1,...,n}⊔{f,f ′}

−
1

2

∑

{1,...,n}=I1⊔I2

Bf,f ′ ⊗ φP
f,f ′(mI1⊔{f} ⊗mI2⊔{f ′}) = 0.

For the sake of simplicity I can rewrite this equation directly in terms of {mn}
using the canonical projection 1

n! (Σσ∈Snσ) to the Sn−invariant subspace. Notice
that the terms of the last summand in (4.8) are invariant with respect to the action
of the subgroup Scard(I1)×Scard(I2). The Sn-equivariance of composition maps (2.1)
implies that the result of the action of arbitrary element σ of Sn on such a term is

(Bf,f ′φĨ1 Ĩ2
)(mĨ1⊔{f},b1

⊗mĨ2⊔{f ′},b2
) with Ĩ1 = σ(I1), Ĩ2 = σ(I2). Let us single out

the term Bf,f ′φP
f,f ′(mI1⊔{f} ⊗mI2⊔{f ′}) with I1 = {1, . . . , n1} and denote via oP

the composition φP
f,f ′after the identification of I1 ⊔ {f} with {1, . . . , n1 + 1} such

that i ↔ i for 1 ≤ i ≤ n1 and f ↔ n1 + 1, and the identification of I2 ⊔ {f ′} with
{1, . . . , n2 + 1} such that f ′ ↔ 1, i ↔ i− n1 + 1 for n1 + 1 ≤ i ≤ n :

oP : P((n1 + 1, b))⊗ P((n− n1 + 1, b′)) → P((n, b+ b′))[l − 1].

Let us identify also in the first summand {1, . . . , n}⊔ {f, f ′} with {1, . . . , n+2} in
such a way that i ↔ i for i ∈ {1, . . . , n} and f ↔ n + 1, f ′ ↔ n + 2. Then I can
write the equation (4.8) as

(4.10) (dP + dV )mn − zB(n+1,n+2)ξ(n+1,n+2)mn+2+

−
1

2

∑

n1+n2=n

1

n1!n2!

∑

σ∈Sn

σ(B(n1+1,1)o
P (mn1+1 ⊗mn2+1)) = 0.

In the case when V is a chain complexes with antisymmetric inner product of
degree l the FDP−algebra structures on V is described again by m̂n,b satisfying
the equation (4.5). In this case P must be a D−operad with D = K⊗−1−lL. If one
rewrites this equation in terms of {mn} then one gets the equations (4.9), (4.10)
with degree (l − 1) evaluations of the compositions

(4.11) φP
f,f ′ = µP

G(I1,I2,b1,b2)
(e[1]⊗−1−l ⊗ (f [1] ∧ f ′[1]))

(4.12) ξPf,f ′ = µP
Gn,b

(e[1]⊗−1−l ⊗ (f [1] ∧ f ′[1]))

and Bf,f ′ : V ⊗{f} ⊗ V ⊗{f ′} → k[−l] the degree (−l) contraction with B. I have
proved the following result:

Proposition 1. Let P be a twisted K⊗1−l−modular operad (respectively twisted

K⊗−1−lL−modular operad). The set {mn,b}, mn,b ∈ (V ⊗n ⊗ P((n, b)))Sn0 de-
fines a modular FDP−algebra structure on the chain complex V with symmetric
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(respectively antisymmetric) inner product B of degree l, B : V ⊗2 → k[−l], iff
mn =

∑
b z

bmn,b satisfies the equation (4.10).

5. Differential graded Lie algebra
⊕

n,b(V
⊗n ⊗ P((n, b)))Sn [1].

Recall that the equation defining the algebra structure over the
cobar−transformation of some cyclic operad A can be written as [h, h] = 0, where
h is a function on the symplectic affine A−manifold. The cobar−transformation is
the tree-level part of the Feynman transform. As we shall see below in Section 6 the
equation (4.9) describing the algebra over the Feynman transform for the twisted
modular operad P is the principal equation of the Batalin-Vilkovisky P−geometry
on the affine P-manifold.

5.1. Odd vector field on the space of morphisms MD∨Pdual → E [V ]. Let V
be chain complex with symmetric or antisymmetric inner product B of degree l. Let
P be a modular D−operad, so that D∨ is the cocycle corresponding to the twisting
of E [V ], i.e. D = K⊗1−l for symmetric B and D = K⊗−1−lL for antisymmetric
B. I explain in this subsection that the linear and quadratic terms in the equation
(4.10) define the structure of differential graded Lie algebra on the graded k-vector
space

⊕
n,b(V

⊗n ⊗ P((n, b)))Sn [1].

LetMor(MD∨Pdual, E [V ]) denotes the space of operad morphisms fromMD∨Pdual

to E [V ]. Since MD∨Pdual is a free modular operad I have

Mor(MD∨Pdual, E [V ]) = (
⊕

n,b

(V ⊗n ⊗ P((n, b)))Sn)0.

One can consider the corresponding graded version of the space of morphism
Mor(MD∨Pdual, E [V ]). It is the affine Z− graded scheme representing the functor
R → Mor(MD∨Pdual⊗R, E [V ]) where R is a graded commutatitve k−algebra. For
the graded version I have

Mor(MD∨Pdual, E [V ]) =
⊕

n,b

(V ⊗n ⊗ P((n, b)))Sn .

The differential dF acting on MD∨Pdual induces the canonical odd vector field on
Mor(MD∨Pdual, E [V ]):

(5.1) Q(ϕ) = dV ϕ− ϕdF .

Since d2F = d2V = 0 it follows that

(5.2) [Q,Q] = 0.

The equation (4.4) describing the FDP−algebra structures on V is precisely the
equation

Q(ϕ) = 0

considered on the subspace degϕ = 0. The same calculation as in the previous
Section shows that the vector field Q has only linear and quadratic components
and they are given by the linear in {mn} and the quadratic in {mn} terms in
(4.10). The vector field Q induces the odd coderivation of free cocommutative
coalgebra generated by the Z− graded vector space F =

⊕
n,b(V

⊗n ⊗P((n, b)))Sn .

The equation (5.2) is equivalent to three equations for the linear and quadratic
components of Q. These are the identities for a differential and a Lie bracket in a
differential graded Lie algebra. I have proved the following result.
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Proposition 2. The linear and the quadratic terms in (4.10) are components of
the structure of differential graded Lie algebra on F [1] (in the category of chain
complexes). In particular,

{m1,m2} =
(−1)m1m2

n1!n2!

∑

σ∈Sn

σ(oE[V ] ⊗ oP)(m1 ⊗m2),(5.3)

mi ∈ (V ⊗ni+1 ⊗ P((ni + 1, bi)))
Sni+1 , i = 1, 2

defines the odd Lie bracket and

(5.4) ∆m = (−1)mξ
E[V ]
n−1,n ⊗ ξPn−1,nm, m ∈ (V ⊗n ⊗ P((n, b)))Sn

is a degree (−1) differential.

Notice that the bracket (5.3) is defined in terms of the compositions of the
underlying cyclic operads, while the operator (5.4) is defined in terms of the modular
compositions along the graphs of type Gn,b. Remark that the bracket essentually
coincides in the case of cyclic operads with the Lie brackets described in [KM] and
[G]. If I put dm = ((−1)m+1dP − dV )m then our basic equation (4.9) becomes the
familiar equation

(5.5) dm+ z∆m+
1

2
{m,m} = 0.

Combining Propositions 2 and 1 I get the following result

Theorem 1. The modular FDP−algebra structures on the chain complex V with
symmetric (respectively antisymmetric) inner product B of degree l, B : V ⊗2 →
k[−l], where P is an arbitrary twisted K⊗1−l−modular operad (respectively K⊗−1−lL-
moduar operad), are in one-to-one correspondence with solutions of the quantum
master equation (5.5) in the space (

⊕
n,b(V

⊗n ⊗ P((n, b)))Sn)0.

This theorem is a generalizaion of the well-known results concerning algebras
over Bar−transform of cyclic operads or co-operads, see [K1], [GJ]. We shall see
in the next Section that the space (

⊕
n,b(V

⊗n ⊗ P((n, b)))Sn can be interpreted
as the vector space of hamiltonians, generating derivations preserving symplec-
tic structure. Such description of algebras over arbitrary Feynman transform via
derivations preserving symplectic structure can also be compared with the charac-
terisation of the Feynman transform in the special case of modular completion of
the commutative operad studied in [M], where an interpretation via higher order
coderivations of the free cocommutative coalgebra was given.

If one considers the modular FDP−algebra structures over some commutative
graded algebra C then they are in one-to-one correspondence with solutions to
(5.5) in the space (F ⊗C)0. One can define in the standard way using the algebra
C = k[ε]/ε2, the modular homotopy equivalence of the FDP−algebra structures.
Then it is easy to see that the equivalence classes of the modular FDP−algebra
structure are in one-to-one correspondence with the gauge equivalence classes of
solutions to the quantum master equation (5.5).

5.2. DGLA of morphisms FDP → P̃. One may notice that the definitions of

the odd bracket (5.3) and the odd differential (5.4) work in fact for an arbitrary
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pair (P , P̃) where P is a modular D−operad with arbitrary D and P̃ is a modular
D∨−operad. Then there is a natural differential graded Lie algebra structure on

⊕

n,b

(P̃((n, b))⊗ P((n, b)))Sn [1]

defined by the components of the vector field (5.1). The solutions to the correspond-

ing Maurer-Cartan equation in
⊕

n,b(P̃((n, b)) ⊗ P((n, b)))Sn [1] are in one-to one

correspondence with morphisms of operads FDP → P̃ . Notice that this equation

coincides with the equation describing the morphisms FD∨P̃ → P .

6. Free P−algebra.

If P is a cyclic operad then the free P−algebra generated by the graded k−vector
space V is

C =
⊕

n

(V ⊗n ⊗ P((n+ 1)))Sn .

It was argued in ([K1],[G]) that the vector space

F =
⊕

n

(V ⊗n ⊗ P((n)))Sn

can be considered naturally as the analog of the space of functons on Spec(C). If P
is a twisted modular operad then the compositions along trees form twisted version
of cyclic operad. There is the corresponding version of the free P algebra and the
arguing can be repeated that F can be seen as the space of functions on Spec(C)
in the twisted case.

Let P be a modular Det−operad in the category of graded vector spaces and
let CycP = ⊕n P((n, 0)) is the cyclic operad, which is b = 0 part of P . Then the
cobar transformation of CycP is related to the Feynman transform as follows: the
b = 0 part of Σ−1FDetP = FDΣDetΣP is equal to sBCycP , that is the suspension
of the cobar transformation of CycP . In the framework of Q−symplectic geometry
associated with a cyclic operad Q, see [K1] and also [G], the BQ−algebra structure
on a vector space V with symmetric inner product β of degree zero is described by
a function on affine Q−manifold sV of degree deg h = 1, such that

(6.1) [h, h] = 0, h ∈
⊕

n

((sV )⊗n ⊗Q((n)))Sn

where the bracket is the Poisson bracket which is associated with the antisymmetric
inner product sβ.

Let us put P̃ = ΣP and consider the FDP̃−algebra stractures on sV , where
D = DΣDet. Then b = 0 part of such structure is the same as the BCycP−algebra

structure on V . The FDP̃−algebra structures on sV is described, according to the

Theorem from Section 4, by an element ĥ(z) =
∑

b≥0 hbz
b, hb ∈

⊕
n((sV )⊗n ⊗

P((n, b)))Sn , deg hb = 1, such that

z∆ĥ(z) +
1

2
[ĥ(z), ĥ(z)] = 0.

We see that in the ”classical” limit z → 0, ĥ(z) becomes a solution to (6.1), the
”classical” master equation, describing the BCycP−algebra structure on V . The
operator ∆ can be seen as the odd second order operator and the bracket is the
odd Poisson bracket on

⊕
n,b((sV )⊗n⊗ΣP((n, b)))Sn extending the previous bracket



MODULAR OPERADS AND BV-GEOMETRY 15

from the subspace b = 0. The whole picture is a noncommutative P−analog of the
usual commutative Batalin-Vilkovisky geometry described in [S],[W]. It would be
interesting to study the combinatorial consequences of P−analogs of the Theorems

of loc.cit. on invariance of integrals of exp(ĥ(z)/z) under deformations.

7. Characteristic classes of FDP−algebras.

Let m̂ : FDP → E [V ] be an FDP−algebra structure on the chain complex V
with symmetric or antisymmetric inner product B of degree l. Here P is a modular
D−operad, such that D∨ is the cocycle corresponding to the twisting of E [V ], i.e.
D = K⊗1−l for symmetric B and D = K⊗−1−lL for antisymmetric B. It is one of
the main application of the formalism developed in [GK] that the component of the
morphism m̂ with n = 0

m̂((0, b)) :
⊕

G∈[Γ((0,b))],b>1

(D∨(G) ⊗ Pdual((G)))Aut(G) → k

is a cocycle on the subcomplex of FDP corresponding to graphs with no external
legs:

(7.1) m̂((0, b))|Im dF = 0.

More generally if m̂t : FDP → E [V ]⊗ k[t] is the FDP−operad structure depending
on some graded parameters t then all Taylor cofficient of expansion of the compo-
nent m̂t((0, b)) at t = 0 are cocycles on the subcomplex of graphs with no external
legs

(7.2)
∂|α|

∂tα1
1 . . . ∂tαn

n
m̂t((0, b))|t=0,Im dF = 0

It follows from (4.3) that the value m̂((0, b)) on an element from

(D∨(G)⊗ Pdual((G)))Aut(G)

corresponding to the stable graph G is given by the partition function obtained by
contracting the product ⊗

v∈V ert(G)

mLeg(v),b(v)

with B⊗Edge(G). Similarly the cocycle (7.2) is a partition function involving inser-

tions of the derivatives ∂|β|

∂t
β1
1 ...∂tβn

n

mLeg(v),b(v)|t=0 with βi ≤ αi at vertices of G so

that for all 1 ≤ i ≤ n the total sum of βi for all such insertions in the graph G is
equal to αi.

8. Stable ribbon graphs.

In the Section below I shall use this construction in order to construct the homol-
ogy classes in Deligne -Mumford moduli spaces associated with solutions to the mas-
ter equation (5.5) on affine S[t]−manifold, where S[t] is the modular Det−operad
introduced below in Section 9. I use the complex of stable ribbon graphs and its
relation with a compactification of moduli spaces of algebraic curves described in
[K3], see also [L]. This is a generalization of the equivalence of ”decorated” mod-
uli spaces of algebraic curves and moduli spaces of ribbon graphs due to J.Harer,
D.Mumford, R.C.Penner, W.Thurston and others.
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A stable ribbon graph is a connected graph G together with :

• partitions of the set of flags adjacent to every vertex into i(v) subsets

Leg(v) = Leg(v)(1) ⊔ . . . ⊔ Leg(v)(i(v)), v ∈ V ert(G)

• fixed cyclic order on every subset Leg(v)(k) ,
• a map g : V ert(G) → Z≥0 such that for any vertex 2(2g(v) + i(v) − 2) +
n(v) > 0, so that putting b(v) = 2g(v) + i(v)− 1 defines a stable graph.

Let us denote via SR(n,b) the set of all stable ribbon graphs with n exterrior
legs and b(G) = b. The usual ribbon graphs correspond to the case b(v) = 0 for all
v ∈ V ert(G).

It is easy to see that for graphs from SR(0,b) our definition is equivalent to the
definition given in [K3] via the limit of a certain functor on ribbon graphs. A metric
on the stable ribbon graph is a function l : Edge(G) → R>0. Given a stable ribbon
graphG ∈ SR(0,b) and a metric on G one can construct by the standard procedure a
punctured Riemann surface Σ(G), which will have double points in general. Namely
one should replace every edge by oriented open strip [0, l]×]− i∞,+i∞[ and glue
them for each cyclically ordered subset according to the cyclic order. In this way
one gets several punctured Riemann surfaces and for every vertex of the graph G
one should identify the points on these surfaces corresponding to different cyclically
ordered subsets associated with the given vertex of G. We also have the nonnegative
integer g(v) associated to every singular point of the Riemann surface Σ(G). The
one-dimensional CW-complex |G| is naturally realized as a subset of Σ(G). One
can also construct in the similar way the Riemman surface associated with stable
ribbon graph G having legs. In such case one gets the singular Riemann surface
associated with the graph G/Legs(G), i.e. the stable ribbon graph G with legs
removed, plus the extra structure, which consists of the lines on Σ(G/Legs(G)),one
for each leg, which connect the vertex with the corresponding adjacent puncture,
so that |G| is again naturally realized as a subset of Σ(G). I shall denote in the
sequel the set of punctures of the surface Σ(G) via PΣ(G).

One can consider the moduli space M
comb

γ,ν parametrizing the equivalence classes
of data (G, l), where G is a graph from SR(0,b) whose associated surface Σ(G)
has genus γ and exactly ν punctures numbered from 1 to ν, and l is a metric
on G. It can be shown, see loc.cit. and [L], that there is a natural factor space

M
′

γ,ν of the Deligne-Mumford moduli space of stable curves Mγ,ν so that M
comb

γ,ν

is homeomorphic to M
′

γ,ν × Rν
>o and the projection to Rν

>o corresponds to the
map which sends stable graph with metric and numbered punctures to the set
of perimeters of edges surrounding the punctures. In particular the preimage of

p = (p1, . . . , pν), p ∈ Rν
>o inM

comb

γ,ν can be considered as the moduli spaceM
comb

γ,ν (p)
of data (G, l) such that the perimeters around punctures are equal to p1, . . . , pν .

This moduli space M
comb

γ,ν (p) is then homeomorphic to M
′

γ,ν. The space M
comb

γ,ν (p)
has natural structure of a cell complex, or better say, orbi-cell complex, with (orbi-
)cells indexed by equivalence classes of stable graphs G with numbered punctures
as above.
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9. Modular Det−operad S[t].

Let us introduce the following modular Det−operad S[t]. Let k[Sn]
′ denotes the

graded k−vector space with the basis indexed by elements (σ, aσ), where σ ∈ Sn is a
permutation with iσ cycles σα and aσ = σ1∧ . . .∧σiσ , aσ ∈ Det(Cycle(σ)) is one of
the generators of the one-dimensional determinant of the set of cycles of σ, i.e. aσ is
an order on the set of cycles defined up to even reordering, and (σ,−aσ) = −(σ, aσ).
The symmetric group Sn acts naturally on k[Sn]

′ by conjugation. Let k[t] denotes
the space of polynomials in one variable t, deg t = −2. The cyclic S−module
underlying our modular operad is the set of graded Sn−modules

S[t]((n)) = k[Sn]
′[−1]⊗ k[t]

where Sn acts trivially on k[t], and the degree b of the element (σ, aσ)t
g is defined

by

b = 2g + iσ − 1.

In particular S[t]((n, b)) is a graded k−vector space concentrated in degree (−b).
I also put S[t]((n, 0)) = 0 for n ≤ 2. Notice that for b = 0 I get the underlying
S−module of the cyclic operad Ass of associative algebras with invariant scalar
products.

Compositions in S[t] are k[t]−linear and defined via sewings and dissections of
cycles of permutations. The compositions can be easily described using multipli-

cation on the group of permutations. Let us describe the composition µ
S[t]
G(I,J,b,b′)

along the simplest graph with two vertices (2.2). Let (σ, aσ)t
g ∈ S[t]((I ⊔ {f}, b)),

aσ = σ1∧. . .∧σiσ , (ρ, aρ)t
g′

∈ S[t]((J⊔{f ′}, b′)), aρ = ρ1∧. . .∧ρiρ with f belonging
to the cycle σk and f ′ belonging to the cycle ρl. Let us denote by πf,f ′

πf,f ′ : Aut({1, . . . , n} ⊔ {f, f ′}) → Sn

the operation erasing the elements f and f ′ from the cycles of permutation

πf,f ′ : (i1 . . . iαfj1 . . . jβf
′) → (i1 . . . iαj1 . . . jβ).

If b = b′ = 0 then I have simply the cyclic permutations and the composition

µ
S[t]
G(I,J,b,b′)

coincides with the composition in the cyclic operad Ass, which can be

written as πf,f ′σρ(ff ′) where (ff ′) is the transposition f ↔ f ′. For general ele-
ments of S[t] I have the following expression

µ
S[t]
G(I,J,b,b′)

= (πf,f ′σρ(ff ′), aµ)t
g+g′

where

aµ = (−1)k+lπf,f ′(σkρl(ff
′)) ∧ σ1 ∧ . . . ∧ σ̂k ∧ . . . ∧ σiσ ∧ ρ1 ∧ . . . ∧ ρ̂l ∧ . . . ∧ ρiρ .

I leave to an interested reader to verify that the sign in the expression for aµ follows
from the natural isomorphisms

Det(Cycle(πf,f ′σρ(ff ′)) ≃ Det({πf,f ′σkρl(ff
′)})⊗

⊗Det(Cycle(σ) \ {σk} ⊔Cycle(ρ) \ {ρl}),

Det(Cycle(σ))[−1] ≃ Det(Cycle(σ) \ {σk}),(9.1)

Det(Cycle(ρ))[−1] ≃ Det(Cycle(ρ) \ {ρl}).
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Let us describe the composition along the graph with one loop (2.3)

µ
S[t]
Gn,b

: Det(H1(Gn,b))⊗ S[t](({1, . . . , n} ⊔ {f, f ′}, b− 1)) → S[t]((n, b)).

Let (σ, aσ)t
g ∈ S[t](({1, . . . , n} ⊔ {f, f ′}, b − 1)), aσ = σ1 ∧ . . . ∧ σiσ and f ∈ σk

and f ′ ∈ σl with k < l. The pair f, f ′ defines the oriented loop eff ′ and hence an

element eff ′ [1] of Det(H1(Gn,b)). Then the composition µ
S[t]
Gn,b

on eff ′ [1]⊗(σ, aσ)t
g

is the sewing of cycles σk and σl times t

µ
S[t]
Gn,b

= (πf,f ′σ(ff ′), aµ′)tg+1

where

aµ′ = (−1)k+l−1πf,f ′(σkσl(ff
′)) ∧ σ1 ∧ . . . ∧ σ̂k ∧ . . . ∧ σ̂l ∧ . . . ∧ σiσ

following a sequence of natural isomorphisms analogous to (9.1). If the elements f

and f ′ belong to the same cycle f, f ′ ∈ σk then the value of the composition µ
S[t]
Gn,b

on eff ′ [1]⊗ (σ, aσ)t
g is the dissection of the cycle σk into two cycles whose relative

order in Det(Cycle) is determined by the orientation of the edge eff ′ :

µ
S[t]
Gn,b

= (πf,f ′σ(ff ′), aµ′′ )tg

where, if I denote by σf
k and σf ′

k the two cycles of σk(ff
′) containing f and f ′

correspondingly, then we have

aµ′′ = (−1)k−1(πfσ
f
k ) ∧ (πf ′σf ′

k ) ∧ σ1 ∧ . . . ∧ σ̂k ∧ . . . ∧ σiσ

which follows from natural isomorphisms analogous to (9.1). Remark that if one of

the cycles σf
k , σ

f ′

k consist of just one element f or f ′ correspondingly, which happens
precisely when f and f ′are neighbours in the cycle σk, then the composition is zero

in such case ((πfσ
f
k ) = 0 or (πf ′σf ′

k ) = 0).
One can check that these compositions define on S[t] the structure of twisted

modular Det−operad. Namely, contraction of several edges corresponds, forgetting
the elements from k[t] and Det(Cycle), to successive operators of multiplications
by transpositions followed by erasing operators. But operators corresponding to
different edges commute [πf,f ′ , πgg′ ] = 0, [πf,f ′ , (gg′)] = 0. It follows that the com-
position on the level of permutations is associative with respect to the morphisms
of stable graphs. It follows from commutativity of the diagrams of natural isomor-
phisms that the rules for compositions of decorations from k[t] and Det(Cycle) are
also compatible with morphisms of stable graphs.

10. Feynman transform of S[t] and stable ribbon graphs.

Let us consider the Feynman transform of S[t]. Notice that S[t]((n)) has a basis
labeled by partitions of [n] into i subsets with cyclic orders on the subsets, plus
the nonnegative integer g, such that 2(2g + i− 2) + n > 0 and plus a choice of the
ordering of cycles from Det(Cycle). It follows immediately from the definition that
the Feynman transform FDetS[t] has the basis labeled by the pairs (G,αG), where
G is a stable ribbon graph and αG is a choice of orientation from

(10.1) KDet−1(G)(⊗v∈V ert(G)Det−1(Cycle)[1− 2g(v)]).
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If G is a stable ribbon graph let ν(G) be the number of punctures of the Rie-
mann surface Σ(G) associated with G. Then (G,αG) belongs to the subspace
FDetS[t]((n, b)) where n is the number of legs of G and

b(G) = 2γ(G)− 1 + ν(G)

where γ(G) is the genus of Σ(G) taking into account the genus defects associated
with vertices of G

γ(G) = g(NΣ(G)) +
∑

v∈V ert(G)

(g(v) + i(v)− 1)

where g(NΣ(G)) is the genus of the normalization of Σ(G). It is easy to see that
every chain complex FDetS[t]((n, b)) is in fact the direct sum of complexes

FDetS[t]((n, b)) =
⊕

b=2γ−1+ν

FDetS[t]((n, γ, ν).

The moduli space M
comb

γ,ν (p)/Sν has natural (orbi-)cellular decomposition with
(orbi-)cells indexed by the isomorphism classes of stable ribbon graphs with γ =
γ(G), ν = ν(G) and |Leg(G)| = 0. Let us show that this cochain cell complex is
identified naturally with the complex FDetS[t]((0, γ, ν)).

Theorem 2. Hi(M
′

γ,ν/Sν) ≃ H−i(FDetS[t]((0, γ, ν)))[2γ − 1].

Proof. It is easy to see from the definition of the moduli space M
comb

γ,ν (p) that the
(orbi-)cells, lying in the boundary of the orbi-cell of the equivalence class of stable
ribbon graph G, correspond to the equivalence classes of the stable ribbon graphs
of the form G/{e}, e ∈ Edge(G), see [L], [Z]. It remains to check that the coorien-
taition of the orbi-cell is naturally identified with an element from (10.1), so that
the differential on FDetS[t]((0, γ, ν)) coincides with the differential of the cochain

cell complex of M
′

γ,ν/Sν . This identification is analogous to the Proposition 9.5
of [GK]. Firstly, for every stable ribbon graph G the vector space K(G) is natu-
rally isomorphic to Htop

c (CG) where CG is the (orbi-)cell corresponding to G. To
prove that the complex FDetS[t]((0, γ, ν))[1− 2γ] computes indeed the cohomology

⊕iH
i(M

′

γ,ν/Sν) it is sufficient to identify the inverse to the sheaf of cohomology of

the fibers of projection M
comb

γ,ν /Sν → M
′

γ,ν/Sν , i.e it is sufficient to show that

(10.2) Det(G)−1
⊗

v∈V ert(G)

Det−1(Cycle(σ(v))[1− 2g(v)] ≃ Det−1(PΣ(G))[1− 2γ].

In order to prove this let us consider the surface Σ̃(G) which is obtained topolog-
ically as follows. Let us remove a small neighborhoud of every singular point v of
Σ(G). If v has the genus defect g(v) and there are i(v) branches that are meeting at
v, then let us glue instead of this neighborhoud a curve Σ(v) of the genus g(v) and
with i(v) boundary components. I obtain topologically a curve of genus γ without
ν marked points. Then
(10.3)

Det(H∗(Σ̃(G),⊔v∈V ert(G)Σ(v))) ≃ Det(H∗(|G|, V ert(G)) ≃ Det(G)−1[1−|V ert(G)|]

since (Σ̃(G),⊔v∈V ert(G)Σ(v)) is homotopic to (|G|, V ert(G)). Using the Poincare

duality for the compact surface Σ̃(G) ⊔ PΣ(G), where recall that PΣ(G) denotes the
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set of marked points, and the Mayer-Vietoris sequence as in loc.cit. I get

Det(H∗(Σ̃(G))) ≃ Det−1(PΣ(G))[2− 2γ].

Also, by similar arguments

Det(H∗(Σ(v))) ≃ Det−1(Cycle(σ(v))[2 − 2g(v)].

Now the equality (10.2) follows from (10.3) and the exact sequence associated with

the pair (Σ̃(G),⊔v∈V ert(G)Σ(v)). �

11. Algebras over Feynman transform of S[t].

11.1. Coboundary Dχl
. The operadFDetS[t] is a twisted modularKDet−1−operad.

To consider algebras over FDetS[t] I should apply a coboundary so that the twisting
becomes compatible with corresponding twisting of E [V ]. Notice that

KDet−1 ≃ K2lDχl

where χl = s̃Σβ2(1−l). Let us put Sχl
[t] = χlS[t], so that Sχl

[t] is a twisted K1−2l-
operad. This shifts the grading on our operad and also the Sn−action is changed
by the multiplication by the alternating representation:

Sχl
[t]((n, b)) = S[t]((n, b))⊗ sgnn[n+ (2l − 2)(1− b)− 1].

Then the Feynman transform

FK1−2lSχl
[t] = χ−1

l FDetS[t]

is the twisted modular K2l-operad. In particular the twisting of the Feynman trans-
form FKSχ0 [t] is trivial and FKSχ0 [t] is a usual modular operad. As the complex
of vector spaces the Feynman transform FK1−2lSχl

[t] is isomorphic to FDetS[t] up
to a shift of degrees

FK1−2lSχl
[t]((n, b)) ≃ FDetS[t]((n, b))[1 − n+ (2l − 2)(b− 1)]

so that the characteristic classes of FK1−2lSχl
[t]−algebras take the value also in

⊕iHi(M
′

γ,ν/Sν). By the Theorem 1 from the section 4 FK1−2lSχl
[t]−algebra on

vector space V with inner product B, is defined by the set of elements

mn ∈
⊕

n

(V ⊗n ⊗ Sχl
[t]((n)))Sn0

satisfying the quantum master equation (5.5). If V has a basis {eα}α∈Ξ then I can
write

mn =
∑

I⊂Ξ,|I|=n

∑

σ∈Aut(I),g
4(g−1)+2iσ+n>0

mσ,gt
g

mσ,g ∈ ∧i=iσ
i=1 (V ⊗λi)Z/λiZ , degmσ,g = (2l− 3)(2− 2g − iσ) + n

where σ has iσ cycles of lenghts λ1, . . . , λiσ .

Proposition 3. The FK1−2lSχl
[t]−algebra structure on V is defined by the set of

tensors {mσ,g} satisfying the quantum master equation for functions on the affine
Sχl

[t]−manifold V . The partition function constructed from the tensors mσ,g de-

fines the characteristic class with value in ⊕iHi(M
′

γ,ν/Sν).
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Notice that for an FK1−2lSχl
[t]−algebra the elements mσ,g with iσ = 1, g = 0

define an A∞−algebra with inner product of degree 2l. The characteristic class map
for the A∞−algebras was described in ([K2]). It takes values in the homologies of
the uncompactified moduli spaces of curves. We see that the FK1−2lSχl

[t]−algebra
is the algebraic structure whose operadic characteristic class map extends the

A∞−algebra’s map to the homologies of the compactification M
′

γ,ν .

11.2. Modular K2l−operads FK1−2lSχl
[t] and higher genus GW-invariants.

The twisted modular K2l−operad FK1−2lSχl
[t] arises naturally in the counting of

holomorphic curves of arbitrary genus with boundaries in the set of Lagrangian
submanifolds of a simplectic manifold of dimension 4l. Namely, let us consider a
set of graded Lagrangian submanifolds, intersecting transversally, and let σ be a
permutation acting on the set of intersection points of these submanifolds, which
I also mark by {1, . . . , n}. Consider the total number of holomorphic maps of the
surfaces of genus g with iσ boundary components along with set of points lying on
these boundaries, such that the components of the boundaries are mapped to the
Lagrangian submanifolds, and the points are mapped to the intersection points, so
that the cyclic orders on the intersection points corresponding to every boundary
component form the permutation σ. These numbers define naturally the set of
elements {mσ,g} from

⊕
n(V

⊗n ⊗ Sχl
[t]((n, 2g + i − 1)))Sn where V is the graded

vector spaces with the basis labeled by points of intersection of Lagrangian sub-
manifolds. Then the standard arguments, using the degeneration of one-parameter
families of such maps, show that this set of elements satisfy the quantum master
equation (5.5) of the noncommutative Batalin-Vilkovisky geometry on the affine
Sχl

[t]−manifold. Similarly, there exists the odd version, corresponding to the case
of symplectic manifold of dimension 4l + 2. It corresponds to the modular operad

of Sn−modules S̃[t]((n)) = k[Sn] ⊗ k[t] with compositions defined as for S[t], by
simply omitting the terms involvinvg Det(Cycle(σ)). Then the complex underly-

ing the Feynman transform F S̃[t] is identified with cochain complex of M
′

γ,ν/Sν
with coefficients in the local system Det(PΣ) . The counting of holomorphic curves
with boundaries in Lagrangian submanifolds of a symplectic manifold of dimension

4l + 2 defines an algebra over FK−2lβ−2lS̃[t]. One can show that this leads to a
combinatorial description of Gromov-Witten invariants via the characteristic class
map and the periodic cyclic homology of the twisted modular operads along the
lines of [B1],[BK].

11.3. The map FAss → Sχ0 [t]. There is a close interplay between the twisted

modular operad S[t] and the Feynman transform of the cyclic operad Ass which I
would like to illustrate in this subsection. Forgetting the differential the Feynman
transformFAss of the cyclic operadAss is aK−operad generated by the S−module
Assdual. It follows that FAss has a basis labeled by ribbon graphs with a choice of
a generator of the one-dimensional vector space K(G). The complex FAss((n, b))
is decomposed as the sum of subcomplexes FAss((n, γ, ν)) according to the genus
γ and the number of punctures ν of the Riemann surface associated with the ribbon
graph, see [GK], proposition 9.2. Recall that Det(G) ≃ KD−1

χ0
where Dχ0 is the

coboundary associated with the S−module χ0 = sΣ. It follows that χ−1
0 FAss is

a modular Det−operad which as a k−vector space consist of linear combinations
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of elements (G, α̂G) where G is a ribbon graph and α̂G is an element of the one-
dimensional vector space Det(G)⊗(⊗v∈V ert(G)Det(Leg(v)[−3]). The subset of legs
of ribbon graph G adjacent to a given puncture has natural cyclic order. It follows
that every ribbon graph G defines naturally a permutation σG on the set Leg(G).
Notice that for graphs with at least one leg adjacent to every puncture I have

(11.1) Det(G) ≃ Det(Cycle(σG))[2γ − 1]

see loc.cit, page 117. Let G be a trivalent ribbon graph. The cyclic order on Leg(v)
gives a canonical element in Det(Leg(v))[−3] for every vertex v. This is the element
e1 ∧ e2 ∧ e3 if e1 → e2 → e3 → e1 denotes the cyclic order on the three flags. Let
α̂can
G denotes the product of an element αG ∈ Det(G) with the tensor product of

the canonical elements in ⊗v∈V ert(G)Det(Leg(v))[−3]. Let ασG
denotes the element

from Det(Cycle(σG))[2γ− 1] corresponding to αG under the isomorphism (11.1). I
state here the following result, the proof is a simple check.

Proposition 4. Let G be a trivalent ribbon graph such that for every puncture of G
there is a leg of G adjacent to this puncture. Let us put φ(G, α̂can

G ) = (σG, ασG
)tγ

for such graph and φ(G, α̂G) = 0 for all other ribbon graphs. Then φ defines a
morphism of twisted modular Det−operads χ−1

0 FAss → S[t].
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