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Abstract:

We consider a multi-channel sampling with asymmetric

sampling rates in shift invariant spaces, while related pre-

vious works have supposed that each channel has a sym-

metric(uniform) sampling rate. Motivated by the fact that

shift invariant spaces are isomorphic images of L2[0, 2π],
we obtain a sampling expansion in shift invariant spaces

by using frame or Riesz basis expansion in L2[0, 2π]. The

samples in the expansion are expressed in terms of frame

coefficients of an appropriate function with respect to a

certain frame in L2[0, 2π]. The involved reconstruction

functions are given explicitly by using the frame opera-

tor. We also present relation between asymmetric multi-

channel sampling and symmetric one.

1. Introduction

Reconstructing a band-limited signal f from samples

which are taken from several channeled versions of f is

called multi-channel sampling. The multi-channel sam-

pling method goes back to the work of Shannon [6] and

Fogel [2], where the reconstruction of a band-limited sig-

nal from samples of the signal and of its derivatives was

suggested. Generalized sampling expansion for arbitrary

multi-channel sampling was introduced first by Papoulis

[5].

Papoulis’ result has been extended to a general shift-

invariant space [1, 7, 8]. Here, a shift invariant space V (φ)
with a generator φ ∈ L2(R) is defined by the closed sub-

space of L2(R) spanned by integer translates {φ(t − n) :
n ∈ Z} of φ. Recently Garcı́a and Pérez-Villalón [3] de-

rived stable generalized sampling in a shift-invariant space

by using some special dual frames in L2[0, 1].
The previous works related to the multi-channel sampling

have assumed that numbers of samples from each channel

are uniform, namely, sampling rates of channels are same.

In this paper we consider a multi-channel sampling with

asymmetric sampling rates in shift invariant spaces. We

find an expression for the samples as frame coefficients of

an appropriate function in L2[0, 2π] with respect to some

particular frame in L2[0, 2π] and present the sufficient and

necessary condition under which a sequence of functions

of particular form becomes a frame or a Riesz basis for

L2[0, 2π]. Using isomorphism between a shift invariant

space V (φ) and L2[0, 2π], we derive sampling theory in

V (φ) with some Riesz generator φ and find a formula of

reconstruction functions by means of the frame operator.

The theory contains both a frame and Riesz basis expan-

sion as sampling formulas.

2. Asymmetric multi-channel sampling

Assume that φ(t) is everywhere well defined complex val-

ued square integrable function on R throughout the paper.

Moreover, let φ(t) be a Riesz generator with Cφ(t) < ∞
for any t ∈ R so that V (φ) is an RKHS(see Proposition

2.4 in [4]). We now are given a LTI system {Lj [·]}
N
j=1

whose impulse response is {lj(t) : lj ∈ L2(R), j =
1, 2, · · · , N}. The aim of this paper is to recover any

f(t) ∈ V (φ) via discrete samples from {Lj [f ]}Nj=1 as

f(t) =

N∑

j=1

∑

n∈Z

Lj [f ](σj + rjn)sj,n(t), (1)

where {sj,n(t) : j = 1, · · · , N and n ∈ Z} is a frame or

a Riesz bases of V (φ) and 0 ≤ σj < rj with a positive

integer rj for j ∈ {1, 2, · · · , N}.

2.1 An expression for the samples

Define an isomorphism J from L2[0, 2π] onto V (φ) by

JF (t) =
1

2π

∑

n∈π

〈F (ξ), e−inξ〉φ(t−n), F (ξ) ∈ L2[0, 2π].

By the isomorphism J : L2[0, 2π] → V (φ), the recon-

struction formula (1) is equivalent to the following one:

F (ξ) =
N∑

j=1

∑

n∈Z

Lj [f ](σj+rjn)Sj,n(ξ), F (ξ) ∈ L2[0, 2π],

(2)

where f(t) = JF (t) and sj,n(t) = JSj,n(t). Notice fur-

ther that Ljf(σj+rjn) is represented by an inner product

of F (ξ) and some function in L2[0, 2π].

Lemma 2.1.1 Let L[·] be a LTI system with an impulse

response l(t) ∈ L2(R) and ψ(t) = L[φ](t) = (φ ∗ l)(t).

(a) L is a bounded operator from L2(R) into L∞(R),
‖f ∗ l‖∞ ≤ ‖f‖2‖l‖2 and Lf(t) ∈ Co

∞
(R),

(b) sup
R
Cψ(t) <∞,



(c) (cf. Lemma 2 in [3]) for any f(t) = (c ∗ φ)(t) with

c ∈ ℓ2 in V (φ), L[f ](t) = (c∗ψ)(t) converges abso-

lutely and uniformly on R. For any f(t) = JF (t) ∈
V (φ) with F (ξ) ∈ L2[0, 2π],

L[f ](t) = 〈F (ξ),
1

2π
Zψ(t, ξ)〉L2[0,2π].

In particular,

L[f ](σj+rjn) = 〈F (ξ),
1

2π
Zψ(σj , ξ)e

−irjnξ〉L2[0,2π].

(3)

2.2 The sampling theorem

For a given LTI system {Lj [·]}
N
j=1, let Ljφ(t) = ψj(t),

1 ≤ j ≤ N . Using equation (3), the expansion (2) is

equivalent to

F (ξ) =

N∑

j=1

∑

n∈Z

〈F (ξ),
1

2π
Zψj

(σj , ξ)e
−irjnξ〉L2[0,2π]

·Sj,n(ξ), F (ξ) ∈ L2[0, 2π],

where f(t) = JF (t) and sj,n(t) = JSj,n(t).
For convenience, we introduce a few more notations.

Let gj(ξ) ∈ L2[0, 2π] for 1 ≤ j ≤ N , gj,mj
(ξ) :=

gj(ξ)e
irj(mj−1)ξ for 1 ≤ mj ≤

r
rj

and

G(ξ) = [Dg1,1(ξ), Dg1,2(ξ), · · · , Dg1, r
r1

(ξ),

Dg2,1(ξ), · · · , DgN, r
rN

(ξ)]T ,

whereD is an unitary operator fromL2[0, 2π] ontoL2(I)r

defined by (DF )(ξ) = [F (ξ), F (ξ + 2π
r

), · · · , F (ξ +
(r − 1) 2π

r
)]T , F (ξ) ∈ L2[0, 2π]. Note that G(ξ) is

the
∑N

j=1
r
rj

× r matrix whose entries are in L2[0, 2π
r

].

And define λM (ξ)(resp. λm(ξ)) as the largest(resp. the

smallest) eigenvalue of r × r matrix G(ξ)∗G(ξ), βG as

‖λM (ξ)‖∞ and αG as ‖λm‖0.

Lemma 2.2.1 Let gj ∈ L2[0, 2π] and rj be a positive in-

teger for 1 ≤ j ≤ N . Define r as the least common multi-

plier of {rj}
N
j=1. Then {gj(ξ)e

−irjnξ : 1 ≤ j ≤ N, n ∈
Z } is a

(a) Bessel sequence in L2[0, 2π] if and only if

‖λM (ξ)‖∞ < ∞ if and only if gj ∈ L∞[0, 2π]
for 1 ≤ j ≤ N . In this case, optimal bound is
2π
r
‖λM (ξ)‖∞;

(b) frame of L2[0, 2π] if and only if 0 < ‖λm(ξ)‖0 ≤

‖λM (ξ)‖∞ < ∞ so that r ≤
∑N

j=1
r
rj

and optimal

bounds are 2π
r
‖λm(ξ)‖0 ≤ 2π

r
‖λM (ξ)‖∞;

(c) Riesz basis of L2[0, 2π] if and only if frame of

L2[0, 2π] and r =
∑N

j=1
r
rj

, i.e., 1 =
∑N

j=1
1
rj

if

and only if gj(ξ) ∈ L∞[0, 2π] for 1 ≤ j ≤ N ,

1 =
∑N

j=1
1
rj

and |detG(ξ)| ≥ ∃α > 0 a.e..

Appealing to the setting gj(ξ) = 1
2πZψj

(σj , ξ) for 1 ≤
j ≤ N , we have

Theorem 2.2.2 Let φ(t) be a Riesz generator with

Cφ(t) < ∞, t ∈ R and {Lj [·]}
N
j=1 be LTI systems with

an impulse response {lj(t)}
N
j=1 ∈ L2(R) . Let {ψj(t) =

(φ ∗ lj)(t)}
N
j=1, rj ≥ 1 an integer and 0 ≤ σj < rj .

(a) If 0 < αG ≤ βG < ∞, i.e., 0 < αG and

Zψj
(σj , ξ) ∈ L∞[0, 2π], 1 ≤ j ≤ N , then there

is a frame {sj,n(t) : 1 ≤ j ≤ N, n ∈ Z } of V (φ)
for which

f(t) =

N∑

j=1

∑

n∈Z

Ljf(σj+rjn)sj,n(t), f(t) ∈ V (φ).

(4)

(b) Assume that Zψj
(σj , ξ) ∈ L∞[0, 2π], 1 ≤ j ≤ N .

Then there is a frame {sj,n(t) : 1 ≤ j ≤ N, n ∈ Z }
of V (φ) for which (4) holds if and only if 0 < αG.

(c) Assume that Zψj
(σj , ξ) ∈ L∞[0, 2π], 1 ≤ j ≤ N .

Then there is a Riesz basis {sj,n(t) : 1 ≤ j ≤
N, n ∈ Z } of V (φ) for which (4) holds if and only

if 0 < αG and 1 =
∑N

j=1
1
rj

.

In all cases, sampling series (4) converges in L2(R), ab-

solutely on R and uniformly on any subset of R on which

Cφ(t) is bounded.

Remark 2.2.3 Asymmetric multi-channel sampling series

with LTI system {Lj [·]}
N
j=1 whose impulse response is

{lj(t)}
N
j=1 can be considered as symmetric multi-channel

sampling series with LTI system {L̃j,mj
[·]}

N, r
rj

j=1,mj=1 with

impulse response {l̃j,mj
(t)}

N, r
rj

j=1,mj=1, where l̃j,mj
(t) =

lj(rj(mj − 1) + t).

2.3 Reconstruction functions

Let S be a frame operator with frame {gj(ξ)e
−irjnξ}j,n.

For any F (ξ) ∈ L2[0, 2π],

SF (ξ) =

N∑

j=1

r
rj∑

mj=1

gj(ξ)e
−irj(mj−1)ξ

·
2π

r
gj,m(ξ)TDF (ξ)

so that

DSF (ξ) =
2π

r
G∗G(ξ)DF (ξ).

Then, from Lemma 2.2.1 (b), there exists (G∗G)−1(ξ) a.e.

such that

D(S−1(gj(ξ)e
−irjnξ)) =

r

2π
(G∗G)−1(ξ)D(gj(ξ)e

−irjnξ)

for 1 ≤ j ≤ N and n ∈ Z . Hence,

{sj,n}j,n = {
r

2π
JD−1[(G∗G)−1(ξ)D(gj(ξ)e

−irjnξ)]}j,n.

Remark 2.3.1 One sufficient condition under which

{sj,n}j,n is translates of a single function in L2[0, 2π] is

that r divides rj for all 1 ≤ j ≤ N . Since r is the least

common multiplier of {rj}
N
j=1, the condition holds if and

only if r = rj for all 1 ≤ j ≤ N .
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