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Asymmetric Multi-channel Sampling in Shift Invariant Spaces

We consider a multi-channel sampling with asymmetric sampling rates in shift invariant spaces, while related previous works have supposed that each channel has a symmetric(uniform) sampling rate. Motivated by the fact that shift invariant spaces are isomorphic images of L 2 [0, 2π], we obtain a sampling expansion in shift invariant spaces by using frame or Riesz basis expansion in L 2 [0, 2π]. The samples in the expansion are expressed in terms of frame coefficients of an appropriate function with respect to a certain frame in L 2 [0, 2π]. The involved reconstruction functions are given explicitly by using the frame operator. We also present relation between asymmetric multichannel sampling and symmetric one.

Introduction

Reconstructing a band-limited signal f from samples which are taken from several channeled versions of f is called multi-channel sampling. The multi-channel sampling method goes back to the work of Shannon [START_REF] Shannon | Communication in the presence of noise[END_REF] and Fogel [START_REF] Fogel | A note on the sampling theorem[END_REF], where the reconstruction of a band-limited signal from samples of the signal and of its derivatives was suggested. Generalized sampling expansion for arbitrary multi-channel sampling was introduced first by Papoulis [START_REF] Papoulis | Generalized sampling expansion[END_REF]. Papoulis' result has been extended to a general shiftinvariant space [START_REF] Djokovic | Generalized sampling theorems in multiresolution subspaces[END_REF][START_REF] Unser | Generalized sampling: Stability and performance analysis[END_REF][START_REF] Unser | A generalized sampling theory without band-limiting constraints[END_REF]. Here, a shift invariant space V (φ) with a generator φ ∈ L 2 (R) is defined by the closed subspace of L 2 (R) spanned by integer translates {φ(tn) : n ∈ Z} of φ. Recently García and Pérez-Villalón [START_REF] García | Dual frames in L 2 (0, 1) connected with generalized sampling in shift-invariant spaces[END_REF] derived stable generalized sampling in a shift-invariant space by using some special dual frames in L 2 [0, 1]. The previous works related to the multi-channel sampling have assumed that numbers of samples from each channel are uniform, namely, sampling rates of channels are same. In this paper we consider a multi-channel sampling with asymmetric sampling rates in shift invariant spaces. We find an expression for the samples as frame coefficients of an appropriate function in L 2 [0, 2π] with respect to some particular frame in L 2 [0, 2π] and present the sufficient and necessary condition under which a sequence of functions of particular form becomes a frame or a Riesz basis for L 2 [0, 2π]. Using isomorphism between a shift invariant space V (φ) and L 2 [0, 2π], we derive sampling theory in V (φ) with some Riesz generator φ and find a formula of reconstruction functions by means of the frame operator. The theory contains both a frame and Riesz basis expansion as sampling formulas.

Asymmetric multi-channel sampling

Assume that φ(t) is everywhere well defined complex valued square integrable function on R throughout the paper. Moreover, let φ(t) be a Riesz generator with C φ (t) < ∞ for any t ∈ R so that V (φ) is an RKHS(see Proposition 2.4 in [START_REF] Kim | Sampling expansion in shift invariant spaces[END_REF]). We now are given a LTI system

{L j [•]} N j=1 whose impulse response is {l j (t) : l j ∈ L 2 (R), j = 1, 2, • • • , N }. The aim of this paper is to recover any f (t) ∈ V (φ) via discrete samples from {L j [f ]} N j=1 as f (t) = N j=1 n∈Z L j [f ](σ j + r j n)s j,n (t), (1) 
where {s j,n (t) : j = 1, • • • , N and n ∈ Z} is a frame or a Riesz bases of V (φ) and 0 ≤ σ j < r j with a positive integer r j for j ∈ {1, 2, • • • , N }.

An expression for the samples

Define an isomorphism J from L 2 [0, 2π] onto V (φ) by

JF (t) = 1 2π n∈π F (ξ), e -inξ φ(t-n), F (ξ) ∈ L 2 [0, 2π].
By the isomorphism J : L 2 [0, 2π] → V (φ), the reconstruction formula (1) is equivalent to the following one:

F (ξ) = N j=1 n∈Z L j [f ](σ j +r j n)S j,n (ξ), F (ξ) ∈ L 2 [0, 2π],
(2) where f (t) = JF (t) and s j,n (t) = JS j,n (t). Notice further that L j f (σ j + r j n) is represented by an inner product of F (ξ) and some function in

L 2 [0, 2π]. Lemma 2.1.1 Let L[•] be a LTI system with an impulse response l(t) ∈ L 2 (R) and ψ(t) = L[φ](t) = (φ * l)(t). (a) L is a bounded operator from L 2 (R) into L ∞ (R), f * l ∞ ≤ f 2 l 2 and Lf (t) ∈ C o ∞ (R), (b) sup R C ψ (t) < ∞, (c) (cf. Lemma 2 in [3]) for any f (t) = (c * φ)(t) with c ∈ ℓ 2 in V (φ), L[f ](t) = (c * ψ)(t)
converges absolutely and uniformly on R. For any

f (t) = JF (t) ∈ V (φ) with F (ξ) ∈ L 2 [0, 2π], L[f ](t) = F (ξ), 1 2π Z ψ (t, ξ) L 2 [0,2π] .
In particular,

L[f ](σ j +r j n) = F (ξ), 1 2π Z ψ (σ j , ξ)e -irj nξ L 2 [0,2π] . (3) 

The sampling theorem

For a given LTI system 3), the expansion ( 2) is equivalent to

{L j [•]} N j=1 , let L j φ(t) = ψ j (t), 1 ≤ j ≤ N . Using equation (
F (ξ) = N j=1 n∈Z F (ξ), 1 2π Z ψj (σ j , ξ)e -irj nξ L 2 [0,2π] •S j,n (ξ), F (ξ) ∈ L 2 [0, 2π],
where f (t) = JF (t) and s j,n (t) = JS j,n (t).

For convenience, we introduce a few more notations. Let g j (ξ) ∈ L 2 [0, 2π] for 1 ≤ j ≤ N , g j,mj (ξ) := g j (ξ)e irj (mj -1)ξ for 1 ≤ m j ≤ r rj and

G(ξ) = [Dg 1,1 (ξ), Dg 1,2 (ξ), • • • , Dg 1, r r 1 (ξ), Dg 2,1 (ξ), • • • , Dg N, r r N (ξ)] T ,
where D is an unitary operator from L 2 [0, 2π] onto L 2 (I) r defined by (DF

)(ξ) = [F (ξ), F (ξ + 2π r ), • • • , F (ξ + (r -1) 2π r )] T , F (ξ) ∈ L 2 [0, 2π]. Note that G(ξ) is the N j=1 r rj × r matrix whose entries are in L 2 [0, 2π r ].
And define λ M (ξ)(resp. λ m (ξ)) as the largest(resp. the smallest) eigenvalue of r × r matrix G(ξ) * G(ξ), β G as λ M (ξ) ∞ and α G as λ m 0 . Lemma 2.2.1 Let g j ∈ L 2 [0, 2π] and r j be a positive integer for 1 ≤ j ≤ N . Define r as the least common multiplier of {r j } N j=1 . Then {g j (ξ)e -irj nξ : 1

≤ j ≤ N, n ∈ Z } is a (a) Bessel sequence in L 2 [0, 2π] if and only if λ M (ξ) ∞ < ∞ if and only if g j ∈ L ∞ [0, 2π] for 1 ≤ j ≤ N . In this case, optimal bound is 2π r λ M (ξ) ∞ ; (b) frame of L 2 [0, 2π] if and only if 0 < λ m (ξ) 0 ≤ λ M (ξ) ∞ < ∞ so that r ≤ N j=1 r rj and optimal bounds are 2π r λ m (ξ) 0 ≤ 2π r λ M (ξ) ∞ ; (c) Riesz basis of L 2 [0, 2π] if and only if frame of L 2 [0, 2π] and r = N j=1 r rj , i.e., 1 = N j=1 1 rj if and only if g j (ξ) ∈ L ∞ [0, 2π] for 1 ≤ j ≤ N , 1 = N j=1 1 rj and | det G(ξ)| ≥ ∃α > 0 a.e..

Appealing to the setting g

j (ξ) = 1 2π Z ψj (σ j , ξ) for 1 ≤ j ≤ N , we have Theorem 2.2.2 Let φ(t) be a Riesz generator with C φ (t) < ∞, t ∈ R and {L j [•]} N j=1 be LTI systems with an impulse response {l j (t)} N j=1 ∈ L 2 (R) . Let {ψ j (t) = (φ * l j )(t)} N j=1 , r j ≥ 1 an integer and 0 ≤ σ j < r j . (a) If 0 < α G ≤ β G < ∞, i.e., 0 < α G and Z ψj (σ j , ξ) ∈ L ∞ [0, 2π], 1 ≤ j ≤ N , then there is a frame {s j,n (t) : 1 ≤ j ≤ N, n ∈ Z } of V (φ)
for which

f (t) = N j=1 n∈Z L j f (σ j +r j n)s j,n (t), f (t) ∈ V (φ). ( 4 
) (b) Assume that Z ψj (σ j , ξ) ∈ L ∞ [0, 2π], 1 ≤ j ≤ N .
Then there is a frame {s j,n (t) :

1 ≤ j ≤ N, n ∈ Z } of V (φ) for which (4) holds if and only if 0 < α G . (c) Assume that Z ψj (σ j , ξ) ∈ L ∞ [0, 2π], 1 ≤ j ≤ N .
Then there is a Riesz basis {s j,n (t) : j=1,mj =1 , where lj,mj (t) = l j (r j (m j -1) + t).

1 ≤ j ≤ N, n ∈ Z } of V (φ)

Reconstruction functions

Let S be a frame operator with frame {g j (ξ)e -irj nξ } j,n . For any Remark 2.3.1 One sufficient condition under which {s j,n } j,n is translates of a single function in L 2 [0, 2π] is that r divides r j for all 1 ≤ j ≤ N . Since r is the least common multiplier of {r j } N j=1 , the condition holds if and only if r = r j for all 1 ≤ j ≤ N .

F (ξ) ∈ L 2 [0, 2π], SF (ξ) = N j=1 r r j mj =1 g j (ξ)e -irj

  (mj -1)ξ • 2π r g j,m (ξ) T DF (ξ) so that DSF (ξ) = 2π r G * G(ξ)DF (ξ).Then, from Lemma 2.2.1 (b), there exists (G * G) -1 (ξ) a.e. such thatD(S -1 (g j (ξ)e -irj nξ )) = r 2π (G * G) -1 (ξ)D(g j (ξ)e -irj nξ )for 1 ≤ j ≤ N and n ∈ Z . Hence,{s j,n } j,n = { r 2π JD -1 [(G * G) -1(ξ)D(g j (ξ)e -irj nξ )]} j,n .

  for which (4) holds if and only if 0 < α G and 1 =

	N j=1	1 rj .
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