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Fast cartoon + texture image filters∗

Antoni Buades†, Triet M. Le‡, Jean-Michel Morel§, and Luminita A. Vese¶

Abstract

Can images be decomposed into the sum of a geometric part and a textural part?
In a theoretical breakthrough, Yves Meyer [28] proposed variational models that
force the geometric part into the space of functions with bounded variation, and the
textural part into a space of oscillatory distributions. Meyer’s models are simple
minimization problems extending the famous total variation model. However, their
numerical solution has proved challenging. It is the object of a literature rich in
variants and numerical attempts. This paper starts with the linear model, which
reduces to a low-pass/high-pass filter pair. A simple conversion of the linear filter
pair into a non-linear filter pair involving the total variation is introduced. This
new-proposed nonlinear filter pair retains both the essential features of Meyer’s
models and the simplicity and rapidity of the linear model. It depends on only one
transparent parameter: the texture scale, measured in pixel mesh. Comparative
experiments show a better and faster separation of cartoon from texture. One
application is illustrated: edge detection.
Note to the editor in charge and the referees. The algorithm proposed in this paper
is tested in the web site
http: // mw. cmla.ens-cachan.fr/ megawave/algo/cartoon_texture/

showing many more experiments. An on line demo
http: // mw. cmla.ens-cachan.fr/ megawave/demo/cartoon_texture/

permits to test arbitrary images.

1 Introduction to the cartoon + texture problem and

prior work

A grey level or color image will be denoted by f : (x, y) ∈ Ω → IR (respectively IR3)
where Ω is an open subset of IR2, typically a rectangle or a square. An image f is
defined on a continuous domain by interpolating a digital image defined on a finite set
of pixels. We are interested in decomposing f into two components f = u + v, such
that u represents a cartoon or geometric (piecewise-smooth) component of f , while v
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represents the oscillatory or textured component of f . The oscillatory part v should
contain essentially the noise and the texture.

The general variational framework for decomposing f into u+ v is given in Meyer’s
models as an energy minimization problem

inf
(u,v)∈X1×X2

{F1(u) + λF2(v) : f = u+ v} , (1)

where F1, F2 ≥ 0 are functionals and X1, X2 are spaces of functions or distributions
such that F1(u) < ∞ and F2(v) < ∞ if and only if (u, v) ∈ X1 × X2. The constant
λ > 0 is a tuning parameter. A good model for (1) is given by a choice of X1 and X2

so that if u is cartoon and if v is texture, then F1(u) << F2(u) and F1(v) >> F2(v)
(such conditions would insure a clear cartoon+texture separation; in other words, if u
is only cartoon, without texture, then texture components must be penalized by F1,
but not by F2, and vice-versa).

The long story of this problem can be summarized in a list of proposed choices
for both spaces X1 and X2, and both functionals F1(u) and F2(v). In fact the choice
for F1(u) has quickly converged to the total variation of u, that excludes strong os-
cillations but permits sharp edges. The main point under discussion has been what
space X2 would model the oscillatory part. Since the discussion is complex, we refer to
Table 1 and its legend, which present the main models. This table extends the model
classification outlined in [11], and adopts the same terminology.

One of the first nonlinear cartoon+texture models is the Mumford and Shah model
[30], [31] for image segmentation, where f ∈ L2(Ω) is decomposed into u ∈ SBV (Ω)
([12], [2], [29], [3]), a piecewise-smooth function with its discontinuity set Ju included
in a union of curves whose overall length is finite, and v = f − u ∈ L2(Ω) represents
the noise or the texture. The minimization problem is

inf
(u,v)∈SBV (Ω)×L2(Ω)

{

∫

Ω\Ju

|Du|2dx+H1(Ju) + λ‖v‖2L2(Ω), f = u+ v
}

, (2)

where H1 denotes the 1-dimensional Hausdorff measure (the length if Ju is sufficiently
smooth), and λ > 0 is a tuning parameter. With the above notations, X1 = SBV (Ω)
is the De Giorgi space of special functions with bounded variation. F1 is composed of
the first two terms in the energy from (2), while the third term is F2(v) =

∫

v2, the
quadratic norm. It is difficult to solve this model in practice, because of its non-convex
nature coming from F1(u).

An easier decomposition can be obtained by the Rudin, Osher, and Fatemi (ROF)
total variation (TV) minimization model [37] for image denoising. Their functional is
convex and therefore more amenable to efficient minimization. The variational model
is

inf
(u,v)∈BV (Ω)×L2(Ω)

{

∫

Ω
|Du|+ λ‖v‖2L2(Ω), f = u+ v

}

, (3)

where
∫

Ω
|Du| = sup

{

∫

Ω
udiv~φdx, ~φ ∈ C1

0 (Ω, IR
2), ‖~φ‖∞ ≤ 1

}

denotes the total variation of u in Ω, also denoted by TV (u) or by |u|BV (Ω). The

component u belongs to the space of functions of bounded variation BV (Ω) =
{

u ∈
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L1(Ω) :
∫

Ω |Du| < ∞
}

. This space penalizes oscillations (such as noise or texture),

but allows for piecewise-smooth functions, made of homogeneous regions with sharp
boundaries. Since almost all level lines (or isolines) of a BV function have finite length,
the BV space is considered adequate to model images containing shapes. These shapes
can actually be extracted by edge detection or by image binarization and morphology
[38]).

The bibliography on algorithms minimizing the ROF functional and its multi-scale
variants [41, 43] is rich [6, 44, 21, 33]. Convex dual numerical methods have been tested
in [15, 32]. Hybrid models with wavelets are described in [27, 26]. Models where the
L2 norm is replaced by the L1 norm are now classical [16].

In [17] strong mathematical geometric arguments are put forward in favor of the
TV -L1 model: explicit solutions can be computed for simple geometric objects. These
examples demonstrate that, based on the perimeter/area ratio, shapes are unambigu-
ously put either in the TV part or in the L1 part. This study connects the TV -L1

model with the classical morphological granulometry [38]. Accurate regularity results
for the level set boundaries of minimizers of the TV −L1 model are also given, in any di-
mension, in [1]. Probably the most popular TV minimization algorithm is Chambolle’s
projection algorithm [14]. Recent years have, however, shown a trend to abandon the
BV norm and replace it by a so-called “non-local” norm [34] inspired from [13].

Yet, as pointed out in [28], TV −L2 or TV −L1 do not characterize the oscillatory
components. Indeed, these components do not have small norms in Lp(Ω), p ≥ 1, [4].
To overcome this drawback, Y. Meyer [28] proposed in his seminal book weaker norms
to replace ‖ · ‖2

L2 in the ROF model, that would better model oscillatory components
with zero mean. The Meyer model is

inf
(u,v)∈(BV (Ω)×G,F or E),f=u+v

{

∫

Ω
|Du|+ λ‖v‖∗

}

, (4)

where ‖ · ‖∗ is the norm in one of the following spaces, denoted by G, F or E (defined
here for Ω = IR2).

Definition 1 A distribution v belongs to G if and only if v = div(~g) for some ~g ∈
(L∞)2 in the distributional sense. The endowed norm is

‖v‖∗ = ‖v‖G = inf
~g∈L∞,v=div~g

‖~g‖L∞ .

The space F is defined as G, but the condition ~g ∈ (L∞)2 is substituted by the weaker
condition ~g ∈ BMO2 (thus if ~g = (g1, g2), then gi are functions with bounded mean
oscillation). Finally, the space E is the Besov space E = Ḃ−1

∞,∞, dual to the space Ḃ1
1,1.

The introduction of the spaces G, F and E is motivated by the fact that highly
oscillatory signals or images have small norms in G, F or E. For instance, || cosnx||G =
1
n
. The presence of a non-BV part in images is corroborated by the experimental-

numerical study [20]. However, the three norms proposed by Meyer are not expressed
as integrals and are therefore difficult to compute. It is also difficult to set up the right
value of λ for real images. This problem is addressed in [42] and [10]. The numerical
experiments have shown promising results and justified further inquiries.
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Minimized energy or filters Name Reference
∫

|Du|2 +H1(Ju) +
∫

|v|2 SBV − L2 (MS) [30]
∫

|Du|+
∫

|v|2 TV − L2 (ROF) [37]
∫

|Du|+
∫

|v| TV − L1 [16]
∫

|Du|+ inf~g∈L∞,v=div~g ‖~g‖L∞ TV − div(L∞) [28]
∫

|Du|+ ||v||H−1 TV-H−1 [36]
∫

|Du|+ inf~g∈BMO,v=div~g ‖~g‖L∞ TV-div(BMO) [28, 23, 18]
∫

|Du|+ ||v||Ḃ−1
∞,∞

TV-Besov [28, 19, 9]
∫

|Du|+
∫

|K ∗ v|2 TV-Hilbert [11]
∫

|Du|2 + ||v||2
H−1 H1-H−1 Here and [39]

u = wLσ ∗ f + (1− w)f nonlinear filter pair Here

Table 1: Table of all f = u+v = cartoon+ texture models in approximate chronological order.
These models are divided in five groups. The first group contains the classic BV or SBV+noise
models. The second group starting with Meyer’s model introduces a key new feature: The norm
of the oscillatory part v decreases when v oscillates more. This is obtained by putting a norm
on v that is actually a norm on a primitive of v. The TV-H−1, TV-div(BMO) and TV-Besov
models follow the same pattern. The third group simplifies the panorama by pointing out that
the norm of a primitive of v is much easier to compute by convolution with a filter K (in fact
the TV-H−1 model also belongs to that group). But here, the main fact is that the second
model in the third group, H1 −H−1, boils down to the decomposition into a classic low-pass
and high-pass decomposition. As will be shown in Sect. 4 such linear decompositions do give
competitive results. The last row is the proposed nonlinear filter, which takes the best of each
worlds by using BV , but relying mainly on a previous pair of linear high-pass and low-pass
filters.

There has been an extensive line of papers (starting with [46]) modifying and inter-
preting Meyer’s models, and proposing minimization schemes: [7, 40, 9, 47, 24, 45, 22].
An extensive mathematical analysis of Meyer’s model in a bounded domain is per-
formed in [5]. For many formal properties of the G-norm the reader can refer to [35].
In [36] the G-norm is replaced by the H−1 norm. This approach using Sobolev spaces
with negative exponents was extended in [25] and [18]. The F = div(BMO) variant
was numerically studied in [23] and [18]. There have also been extensions intending to
decompose u into three components, namely BV , texture, and a residual (e.g., noise).
In the model [46] (where the space G = Ẇ−1,∞ is approximated by Gp = Ẇ−1,p for
large p), this is done by solving

inf

∫

Ω
|Du|+ λ||f − u− v||2L2(Ω) + α||v||Gp

.

In [46] the norm ||v||G of v = div~g is approximated by ||
√

g21 + g22 ||p, p ≥ 1 which is of
course far from the real problem with p = ∞. Aujol et al. [8] addressed the original
Meyer problem and proposed an alternate method to minimize

inf

∫

Ω
|Du|+ λ||f − u− v||2L2(Ω)

subject to the constraint ||v||G ≤ µ.
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The 2006 paper [11] presents a sort of review where the above mentioned variants
and others are summarized. Following this paper’s terminology, the funding models that
inspired this line of research are TV −L2 (ROF) and the original Meyer models TV −
div(L∞), TV −div(BMO) (numerically tried in [23], [18]), and TV -Besov (numerically
tried in [19], [9]). A simpler variant is TV − H−1, since also the H−1 norm is small
on oscillatory signals. The hierarchy of the spaces used for the oscillatory part is
complex: div(L∞) and div(BMO) are distributional first derivatives of vector fields
in L∞ and BMO respectively. The Besov model takes the oscillatory part v into
Ḃ−1

∞,∞ := ∆(Ḃ1
∞,∞) which is a space of second derivatives of functions satisfying a

Zygmund regularity condition. Since this condition is close to assuming a Lipschitz
bound on the functions, it is fair to say that the Besov model defines distributions that
are second derivatives of functions that have (almost) bounded gradients.

In conclusion (as also pointed out by Y. Meyer [28]), the four spaces G = div(L∞),
H−1 = ∆(H1), F = div(BMO) and ∆(Ḃ1

∞,∞) (Besov) can be considered as variants
of each other, since they all appear as first derivatives of (bounded-like) functions.
Experimental evidence does not favor one of them.

Generalizing TV − H−1, a generic TV -Hilbert model [11] can be defined using a
smoothing kernel K. The associated Meyer energy is

inf
u∈BV

{

J (u) =

∫

|Du|+ λ‖K ∗ (f − u)‖2L2

}

. (5)

This model has also been proposed in [19]. The L2 norm of K ∗ (f − u) can be
substituted by an Lp norm, p ≥ 1. One obtains slightly better results with p = 1 [18].
Our numerical trials yield no significant difference between TV -Hilbert and the other
mentioned TV −X models. Because of its simplicity, we shall retain this version (5) in
the experiments after fixing adequately the kernel K. This is precisely the object of the
next section. The main goal of the manuscript is to propose here a simpler and faster
model than the variational model (5), while better separating cartoon from texture.

We wish to recall here the function spaces notations used in the next sections.
H0 = L2 denotes the space of square-integrable functions. The Sobolev space H1 is
defined by H1 = {u ∈ L2, Du ∈ L2 × L2}, or in the Fourier domain by H1 = {u :
∫

[1 + (2π|ξ|)2]|û(ξ)|2dξ < ∞}. We will also make use of the space H−1 (dual to the
homogeneous version of H1), defined in the Fourier domain by the set of functions
and distributions H−1 = {u :

∫

[1 + (2π|ξ|)2]−1|û(ξ)|2dξ < ∞} (the corresponding
homogeneous versions, used in the next sections, are obtained by dropping the constant
1).

The rest of the paper is organized as follows: in Section 2 we formulate the linear
cartoon + textureH1−H−1 model inspired from Y. Meyer [28], which can be easily and
rapidly solved in the Fourier domain in one step. Since this model introduces blurring in
the cartoon component u, we propose in Section 3 a novel nonlinear cartoon + texture
model that retains the simplicity and efficiency of the linear one, while the cartoon
component u is piecewise-smooth and with sharp edges. Section 4 illustrates numerical
comparisons between the linear model, the nonlinear minimization model (5) and the
proposed fast nonlinear model; an application to edge detection is also shown, together
with a discussion on the local texture scale.
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2 Linear version of Meyer’s model

In view of the multiplicity and complexity of nonlinear models, it seems reasonable to
first fix as a reference the best linear model. Separation of scales in images is classically
obtained by applying a complementary pair of low-pass and high-pass filters to the data
f , namely u = LPF (f), and then v = f − u = HPF (f). The TV −H1 model is easily
linearized by replacing the total variation

∫

|Du| by the Dirichlet integral
∫

|Du|2. Then
the most natural variational linear model associated with Meyer’s ideas is H1 −H−1.
Indeed, H−1 is dual to H1, in the same way as G is dual to BV . The low pass filter
f → u is obtained by the minimization

min
u

{

σ4

∫

|Du|2 + ||f − u||2H−1

}

. (6)

The meaning of σ4 will be shortly explained. This model can be compared with the
classical Tikhonov quadratic H1 − L2 minimization

min
u

{

σ2

∫

|Du|2 +

∫

(f − u)2
}

, (7)

which is equivalent in the Fourier domain to the low-pass filter û = 1
1+(2πσ|ξ|)2

f̂ . This

Wiener filter is known to remove high-frequency components due to the edges of f , and
not only those due to oscillations (See Fig. 1).

Using the Fourier transform in (6), theH1 semi-norm of u is
∫

|Du|2 =
∫

(2π|ξ|)2|û(ξ)|2

and the H−1 semi-norm of v is
∫ |v̂(ξ)|2

(2π|ξ|)2
. This implies in particular that u − f = v

has zero mean, since feasible solutions satisfy v̂(0) = 0. Minimizing this quadratic
functional (6) in u yields in Fourier the unique solution û = L̂σf̂ , where

L̂σ(ξ) :=
1

1 + (2πσ|ξ|)4
. (8)

The meaning of the parameter σ is now easily explained: if the frequency ξ is signif-
icantly smaller than 1

2πσ , then the ξ frequency is kept in u, while if ξ is significantly
larger than 1

2πσ , then the frequency ξ is considered a textural frequency and attributed
to v. Thus, the solution (u, v) = (Lσ ∗ f, (Id − Lσ) ∗ f) is nothing but a pair of com-
plementary low pass and high pass filters. Note that as σ → 0, Lσ → Id. We will
also consider the filter Kσ, where K̂σ(ξ) = e−(2πσ|ξ|)4 , which behaves still more like the
characteristic function of the ball centered at zero with radius 1

2πσ .
It is worth mentioning that related linear and nonlinear three-term decompositions

f = u+ v + w based on the H1 −H−1 duality were introduced in [39]: the linear case
is the (H1,H0,H−1) decomposition, while the nonlinear decomposition uses piecewise
(H1,H0,H−1) (where piecewise H1 is the SBV space for the cartoon, combined with
piecewise H−1 for the texture).

3 Proposed fast cartoon+texture non-linear filters

The observed efficiency of the linear pair (Lσ, Id−Lσ) (see Figure 3) leads to consider
nonlinear versions that would retain its main feature, namely the excellent extraction
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Figure 1: Fourier transform of the low pass filter obtained with the H1−L2 functional
(7) (dotted line), the filter Lσ (8) associated with the H1−H−1 model (6) (dashed line)
and the filter Kσ (solid line) for σ = 1. Among the three filters, Kσ behaves more like
the sharpest possible low-pass filter, namely the characteristic function of [−2πσ, 2πσ].

of the texture by a high pass filter Id−Lσ. On the other hand, the non-oscillatory parts
of the initial image f should be kept unaltered even if they have sharp edges. This is of
course impossible with a linear filter. Thus, a local indicator must be built to decide at
each point x whether it belongs to a textural region or to a cartoon region. The main
characteristics of a cartoon region is that its total variation does not decrease by low
pass filtering. The main characteristics of a textured region is its high total variation
due to its oscillations. This total variation decreases very fast under low pass filtering.
Formalizing these remarks leads to define the local total variation (LTV) at x,

LTVσ(f)(x) := Lσ ∗ |Df |(x)

(note that Lσ can be substituted by Kσ). The relative reduction rate of LTV is defined
by a function x 7→ λσ(x), given by

λσ(x) :=
LTVσ(f)(x)− LTVσ(Lσ ∗ f)(x)

LTVσ(f)(x)

which gives us the local oscillatory behavior of the function f . If λσ is close to 0, we
have

LTVσ(f)− LTVσ(Lσ ∗ f)

LTVσ(f)
≤ λσ ⇔ LTVσ(Lσ ∗ f) ≥ (1− λσ)LTVσ(f),

which means that there is little relative reduction of the local total variation by the low
pass filter. If instead λσ is close to 1, the reduction is important, which means that
the considered point belongs to a textured region. Thus, a fast nonlinear low pass and
high pass filter pair can be computed by weighted averages of f and Lσ ∗ f depending
on the relative reduction of LTV . We can set

u(x) = w(λσ(x))(Lσ ∗ f)(x) + (1− w(λσ(x)))f(x), v(x) = f(x)− u(x) (9)
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where w(x) : [0, 1] → [0, 1] is an increasing function that is constant and equal to zero
near zero and constant and equal to 1 near 1. In all experiments the soft threshold
function w is defined by

w(x) =







0 x ≤ a1
(x− a1)/(a2 − a1) a1 ≤ x ≤ a2
1 x ≥ a2

(10)

where the parameters a1 and a2 have been respectively fixed to 0.25 and 0.5. If λσ(x)
is small, the function f is non-oscillatory around x and therefore the function is BV
(or cartoon) around x. Thus u(x) = f(x) is the right choice. If instead λσ(x) is large,
the function f is locally oscillatory around x and locally replaced by (Lσ ∗ f)(x). The
choice of λσ = 1

2 as underlying hard threshold is conservative: it permits to keep all
step edges on the cartoon side, but puts all fine structures on the texture side, as soon
as they oscillate more than once. Of course changes in the parameters a1 or a2 would
slightly modify the separation results.

Since it is desirable to have a one-parameter method, it seems advisable to fix the
threshold function w once and for all, as has been done in all experiments. In that
way the method keeps the scale σ of the texture as the only method parameter. That
this last parameter cannot be avoided is obvious: textural details become shapes when
their sizes grow, and therefore should be moved from the texture to the BV side. This
is apparent in the experiments of Figs. 6 and 7.

4 Comparing results

In this section the results of three main representative models will be compared. First,
the simplest linear Meyer model, namely the linear H1 −H−1 model, second the stan-
dard TV −Hilbert model (5), and finally the fast nonlinear filter defined in Section 3.
Implementing the TV −Hilbert model amounts to minimize the energy

inf
u∈BV (Ω)

∫

Ω
|Du|+

λ

2

∫

Ω
|Lσ ∗ (f − u)(x)|2dx, (11)

where the smoothing kernel Lσ will be the same as for the linear and the nonlinear
filter pairs, to permit fair comparisons. By gradient descent, u must formally solve

∂u

∂t
= div

( ∇u

|∇u|

)

+ λLσ ∗ Lσ ∗ (f − u).

This numerical method is actually slower than the smart methods for minimizing the
total variation mentioned in the introduction, but gives essentially the same results.

Figure 3 compares cartoon and texture components for the linear filter, the TV -
Hilbert formulation, and the proposed non-linear filter pair. Clearly the edges are
better preserved in the cartoon part with the proposed non-linear filter, and much less
apparent in the texture part. TheH1−H−1 Meyer linear filter pair gives strikingly good
results, but blurs slightly out edges in the cartoon part, as expected. As a consequence,
ghosts of the edges appear in the textural part. A careful comparison of H1−H−1 with
TV -Hilbert confirms the slight improvement of the nonlinear variational model on the

8



Figure 2: Test images Barbara and patio. We will also use the gray level version of
Barbara image.

linear one. Figure 4 displays the plots of λσ(x) for several pixels in the Barbara image
and different σ. This figure illustrates how λσ(x) increases with σ for high frequency
textural patterns and gets quickly close to one. On contours and flat zones λσ(x)
increases very slowly tending to values much lower than 0.5, thus explaining the chosen
values of a1 and a2 in equation (10).

Figure 5 illustrates the efficiency of the separation of texture from the BV part by
applying a Canny filter to the cartoon part u (right) obtained by the proposed nonlinear
filter. The edges between textural regions are indeed detected on the cartoon part. If
applied directly on the original image (left), these edges are mixed up with numerous
texture edges.

A serious advantage of the proposed nonlinear filter is that the Lagrange parameter
λ in the original Meyer model is now interpreted as a scale σ. Thus, it is easy to fix
σ in the low pass filter to put (or not) this texture in the textural part: it is enough
to evaluate the wave-length (in pixels) of the texture and to fix σ accordingly. In Fig.
6, the transparent choice of σ is shown on the classical textured image Barbara. The
micro-textures are put in the oscillatory part for σ = 4, and the larger textures for
σ = 6. Eventually, for σ = 8, the oscillations of the books and chair go into the texture
part. The function λσ(x) used for these decompositions is displayed in Fig. 8.

The sharper kernel Kσ instead of Lσ was also tested in the nonlinear filter, as shown
in Fig. 7. Kσ behaving more like a characteristic function, the oscillations on the scarf,
the chair and the books are slightly better separated than in the results from Figure
6 using Lσ. But this comparison also shows that the choice of the low-pass filter is
not crucial. A final decomposition experiment is displayed in Figure 9. This figure
corroborates the efficiency of the separation of texture from the BV part. Notice how
the contours of columns and arcades remain sharp in the BV parts. However, the thin
columns seen at a distance pass into texture for σ = 4.
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Figure 3. Edges caused by the textures are eliminated.
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