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On the distribution of colors in natural images

A. Buades∗, J.L Lisani †and J.M. Morel‡

1 Introduction

When analyzing the RGB distribution of colors in natural images we notice
that they are organized into spatial structures. This observation is not new,
quoting Omer and Werman in [5]: “... when looking at the RGB histogram of
real world images, two important facts can clearly be observed; The histogram
is very sparse, and it is structured.[...] This is because the colors of almost any
given scene create very specific structures in the histogram”. Omer and Werman
observed that colors were distributed along elongated clusters and proposed a
linear approximation to model these structures (the color lines).

The use of a linear model for the distribution of colors agrees with the com-
mon assumption that the scenes are composed of lambertian objects, for which
the emitted surface color depends on the intensity of the illuminant, the re-
flectance coefficient and the relative orientation of the surface with respect to
the light source (but not with respect to the viewer). In this case the R/G/B
ratio at each point of the same object is constant and the colors form a straight
line. The non-linearities introduced by the acquisition process (sensor and quan-
tization noise, white balance, gamma-correction, etc.) distort these lines and
produce the elongated clusters described in [5].

The basic Lambertian model for matte objects can be improved by incorpo-
rating the possibility of specular reflections. Klinker, Shafer and Kanade ([3])
introduced the dichromatic reflection model to account for the distribution of
colors of matte objects with highlights under controlled illumination conditions.
Both the color of the matte object and the highlight are modeled by straight
lines that intersect at some point: “The combined spectral cluster of matte and
highlight points looks like a skewed T.”. After the acquisition process these
lines are distorted but they still conserve their 1D structure.

So far it seems that the linear model is good enough to account for the
distribution of colors in natural images. But, is this true in general? As already
pointed out in [3]: “A color cluster from an object in an unconstrained scene
will generally not be a skewed T composed of linear subclusters because the
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illumination color may vary on different parts on the object surface, and the
reflection properties of the object may also change, due to illumination changes
and to pigment variations in the material body.”. Moreover: “... we need to
consider objects with very rough surfaces such that every pixel in the image area
has both a significant body and a surface reflection component. The color cluster
may then fill out the entire dichromatic plane.” This last sentence suggests that
a planar (or 2D) model might be better than the linear model in some cases.

Another hint on the usefulness of a 2D model for the distribution of colors
in natural images comes from the work of Chapeau-Blondeau et al. [1], who
analized the fractal structure of the three-dimensional color histogram of RGB
images. They showed that the fractal dimension of such histograms for several
natural images was in the range [1.3, 2.3], which suggests that, in some images,
colors are better described by a 2D manifold than by a 1D curve.

Following this line of thought we analyze the distribution of colors of several
natural images and discuss the validity of both 1D and 2D models. We propose
a dimension reduction algorithm that reveals the underlying 1D or 2D structure
of the color clusters and we conclude that, in general, the 2D model fits better
the observed distributions.

The paper is organized as follows ...

2 Color representation for dimensionality anal-

ysis

Throughout this paper color is represented in RGB space. We shall call RGB

cube the three dimensional representation of colors in RGB space, which is
different from the RGB histogram used by other authors (e.g. [5]). Each point
will be plotted with the color itself, instead of with a value representing the
number of pixels in the image having this color value.

It can be objected that the use of RGB coordinates is arbitrary since many
other representations are possible (HSI, La*b*, YUV, etc., to name just a few)
some of them presenting interesting properties such as perceptual uniformity.
It is however important to remark that the dimensionality of the color clouds
(that is, their 1D or 2D character) is independent from this representation. The
linear or non-linear conversion formulas between color spaces modify the shape
of the color distributions, but not their inherent dimensionality. Since any color
space would fit our purposes we chose RGB because it is directly available for
most digital images and no color conversion formulas are needed. Moreover, the
rest of color spaces introduce strong distortions that increase the image noise.

The same argument can be invoked to justify why JPEG compressed images
are used to illustrate the paper, instead of using a non-compressed format or
even RAW images (free of white balance and gamma correction). Again, the
non-linear processing inside the digital camera modifies the shape of the color
distribution but not its dimensionality.

In order to display the RGB cube we show its principal views, that is the
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projections of the cube onto the planes defined by the eigenvectors obtained from
Principal Components Analysis (PCA) of the color points: the first principal
view is given by the first two vectors, the second view by the first and third
vectors and the third view by the second and third vectors. Fig. 1 displays an
example of a digital image and two views of its RGB cube.

Figure 1: Left, original image and two principal views of its RGB cube.

3 Analysis of the dimensionality of color in nat-

ural images

Fig. 2-center displays a typical distribution of colors in RGB space, correspond-
ing to the image patch in Fig. 2-left (patch A). Colors are distributed along
an elongated cluster with varying levels of intensity and almost constant hue
and saturation. The constancy in hue and saturation is explained by the fact
that all the pixels in the patch exhibit a similar color and therefore have similar
chromatic components. In fact, if only the intensity component of the colors is
modified (as in the shadow region in patch B) the resulting cluster is more elon-
gated (it presents a wider range of intensity variation) but hue and saturation
remain (almost) unchanged (see Fig. 2-right).

It is interesting to analyze how these 1D clusters combine to form 2D man-
ifolds. We display two examples that illustrate how the geometry of the illu-
minated objects affects to the distribution of their colors. In the first example
(Fig. 3) the RGB distributions of two sides of the same object are compared.
When both sides of the object are considered together (patch B) two elongated
clusters are visible in RGB space (Fig. 3 right), each one corresponding to a
different side of the object. These clusters differ in illumination and saturation,
but they exhibit approximately the same hue. As a consequence of the change
in orientation the color cluster of the object can be described as a 2D surface
(a plane of constant hue) composed by two elongated 1D clusters.

If the change in orientation is smooth, as in the picture of a sphere (patches
A and B in Fig. 4) colors are also distributed over a 2D surface of (approxi-
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Figure 2: Left, two patches of the same object (grass) under daylight and
shadow. Center and right, principal view of the RGB cube of patches A (center)
and B (right).

Figure 3: Pyramid example. Left, original image with selected patches. Center
and right, principal view of the RGB cube for patches A (center) and B (right).

mately) constant hue and high saturation variance, but in this case the colors
are uniformly distributed and not organized along 1D subclusters (see Fig. 4).

Figure 4: Ball example. Left, detail of image in Fig. 1-left with selected patches.
Center and right, principal views of the RGB cube of patch A (bottom part of
the sphere, center) and patch B (full sphere, right).
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It is interesting to remark that in this example a highlight was cast on the top
of the sphere. In order to avoid the effect of the highlight on the analysis of the
color distribution in terms of surface orientation only the bottom of the sphere
has been shown in Fig. 4-center. However, when considering the whole sphere
(including highlight) we observe how the obtained color distribution (Fig. 4-
right) agrees with the dichromatic reflection model proposed by Klinker, Shafer
and Kanade in ([3]). According to this model the colors at the highlight can
be modelled by a straight line in the direction of the illuminant color. This
line is clearly visible in Fig. 4-right. This is an example of a color cluster with
non-homogeneus dimensionality where some parts are better modeled by a 2D
surface and other parts by a straight line. Anyway, a 2D model can be used for
the whole cluster, since 1D ⊂ 2D.

It is important to remark that the changes in geometry that create these
2D structures in RGB space also explain the distribution of colors of “rough”
surfaces. As already remarked in [6] most matte objects can not simply be
modeled as having a Lambertian surface. A more accurate model [7] describes
the surfaces as composed of V-cavities (see Fig. 5), each of them consisting of
two planar facets, and each facet assumed to be Lambertian in reflectance. The
“roughness” of the surface depends on the distribution of facets slopes. As in
the pyramid example, the colors of each facet of the surface are distributed along
1D clusters, but, since there are so many facets at several different orientations
the resulting distribution exhibits a 2D structure.

Figure 5: Surface modeled as a collection of V-cavities (source [6]).

The following figures (Fig. 6-left) display several patches of different objects
with increasing level of “roughness”. The principal view of the RGB cube is dis-
played for each one of the patches (Fig. 6-center) together with their densities1

(Fig. 6-right). In can be observed that, as expected, the dimensionality of the
color distributions increases with the “roughness” of the patches. Moreover, the

1The density of a color point is defined as the number of neighbors at a fixed distance in
RGB space (we use 5 in all our examples). Color densities are displayed onto the principal
views of the RGB cube in such a way that each point in the projection accumulates the
density of the RGB points projected onto it. Higher values of cumulated density are displayed
as brighter points in this representation.
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density of the 2D color clusters is uniform and not composed of distinguishable
1D subclusters.

The “roughness” of the patches is quantified by measuring the root mean
square of intensity gradients over the image patch (RMSG)

2 . As an additional
information the standard deviation of the hue gradients over the image patch
(σH) is also computed to show that all the color clusters lie on a (approximately)
constant hue plane.

To end this section we show how the interaction between colors affects the
dimensionality of the color distributions. Along edges and blurred regions each
pixel combines colors from different objects. This can be observed in the two
examples in Fig. 8 and 9.

Fig. 8-top-left displays an image patch containing two objects of different
color. The patch is an extract of the image in Fig. 7. In order to show how the
colors of both objects interact, we have removed the pixels whose hue has a high
gradient value (in practice we use |∇H| > 3, provided that the saturation value
is above 10). These pixels correspond to the boundary between both objects
(see Fig. 8-top-center). The removed pixels are shown in Fig. 8-top-right. The
RGB distributions of these images are displayed in the bottom row of Fig. 8.

We observe that the image of pixels with a low gradient of hue displays the
kind of color clusters described in previous examples, corresponding to indi-
vidual objects of uniform color. However, the RGB values of the pixels in the
boundary between the objects are a mixture of both colors and form a surface
that extends between the two original elongated clusters. The same effect is
observed when analyzing the interaction between three or more colors (Fig. 9).

As the number of colors in the scene increases the structures in RGB space
become more and more complex, as can be observed in Fig. 1.

These structures, resulting from the interaction of several colors in the im-
ages, can no longer be modeled as simple 1D clusters and the use of a 2D model
becomes unavoidable.

4 Quantifying the dimensionality of a color clus-

ter

In the previous section the 1D or 2D character (dimensionality) of a color dis-
tribution have been assessed by visual inspection of its representation on RGB
space. In this section we propose two methods to quantify this dimensionality.

2The gradient at pixel (i, j) of the intensity image I is defined as ~G = (Gx, Gy), where

Gx = ∂I
∂x

and Gy = ∂I
∂y

, which are computed by standard finite differences over four pixels.

The root mean square of the gradient magnitude is RMSG =
√

|G|2/N , where N is the
number of pixels.
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RMSG = 7.81, σH = 3.98o

RMSG = 16.48, σH = 3.43o

RMSG = 61.49, σH = 4.96o

Figure 6: Left: examples of textured image patches. For each patch RMSG
assess its “roughness” and σH measures the dispersion of hue values within
the color cluster. Center: corresponding principal view of the RGB cube for
each image. Observe how the 2D character of the color clusters becomes more
obvious as the “roughness” of the patches increases. Right: color densities.

4.1 Fractal dimension

The dimension D of a fractal structure [4] is a statistical quantity that measures
how completely the fractal fills the space. The fractal dimension extends the
classical concept of dimension in Euclidean space and permits fractal values of
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Figure 7: Original image and the selected patches for the study of color inter-
action

Figure 8: Top row: left, original patch A (from Fig. 7), low hue gradient
pixels (center) and high hue gradient pixels (right). Bottom row: corresponding
principal view of the RGB cube for each image.

D. If a set of points in 3D space (e.g. the color points in RGB space) are
uniformly distributed along a line or curve then D = 1, if they are distributed
over a plane or surface D = 2 and if they are distributed over the whole 3D
space D = 3. Fractional values of D account for intermediate distributions.

The fractal dimension may be computed with the method described in [1] by
computing the average number of neighbors M(r) within a distance r of a point
in RGB space. The slope of the straight line fitting the values of the log-log
plot of M(r) versus r gives an approximation of D.

The obtained value of D depends on the size of the image and on the set
of r values used for computing M(r). If r is small D tends to 3 since at finer
scales all the color distributions are three-dimensional, due to the image noise.
If r is bigger than the size of the color cluster M(r) will remain constant as
r increases, thus decreasing the value of the estimated D. Moreover, bigger
images may produce bigger color clusters, with higher dimension.
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Figure 9: Top row: left, original patch B (from Fig. 7), low hue gradient
pixels (center) and high hue gradient pixels (right). Bottom row: corresponding
principal view of the RGB cube for each image.

In order to avoid the problems related to the size of the image patches
and the set of values of r in the computation of the fractal dimension, in our
tests we use always the same set of r values r = {6, 12, 18, 24, 30} and all the
image patches contain approximately the same number of pixels. Therefore, the
obtained values of D give an accurate relative measure of the fractal dimension
of the color clusters.

It must be remarked that the fractal dimension gives a global average of
the dimension of a cloud of points. Fractional values between 1 and 2 not
only account for the presence of a two dimensional aspect but also include a
slight thickness or three dimensional effect. We have observed for example
when highlights are present (see Fig. 4-right) that both and well differentiated
one and two dimensions can arise in the same color cluster.

4.2 Dimension reduction algorithm

Wemeasure how well a color distribution can be modeled by a 1D or 2D manifold
by building such a model and then measuring the difference between the original
and the modeled RGB values.

The 1D/2D model of a color distribution is built by using a dimensionality
reduction algorithm. It is based on the local analysis of the distribution of
RGB points by using PCA (Principal Components Analysis). This method of
analysis is not new and was already used by Klinker et al. in [3]. The novelty
of the approach is that the information provided by the PCA is used to reduce
the dimensionality of the cluster, by projecting the points either to a line or a
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plane. The algorithm was proposed by Huo and Chen [2] in the context of high
dimension data filtering and it is described next.

LLP algorithm

The main idea behind the algorithm is that colors are locally distributed
over 1D or 2D dimensional structures contaminated by an additive zero-mean
noise that increases the dimensionality of the color distribution. The goal of the
algorithm is to extract the local low-dimensional structures.

for each RGB color yi, i = 1, 2, . . . , N do

Find the K neighbors whose distance to yi is smaller than a given threshold
T . The neighboring colors are denoted ỹ1, ỹ2, . . . , ỹK .
Compute the principal components of the set ỹ1, ỹ2, . . . , ỹK .
Let k (k = 1 or k = 2) be the assumed dimension of the embedded manifold,
then project yi into the linear subspace spanned by the first k principal
components.

end for

The algorithm can be iterated to obtain a better estimation of the low-
dimensional structures. When k = 2 the algorithm reveals the surfaces under-
lying the distribution of colors. When k = 1 the result of the algorithm are 1D
structures.

The algorithm depends on parameter T , which is used to define a neighbor-
hood around each color point. The valued is fixed in all the tests to T = 10. If
no color points are found in this neighborhood or the number of found points is
too small to perform PCA analysis (a minimum number of 10 different points
is requested) then the color point cannot be projected and it retains its initial
value.

Fig. 10 shows an example of the application of the LLP algorithm to the
image patch in Fig. 6 right. The resulting images are visually indistinguishable
from the original so only their RGB cubes are shown. The approximation error
of each model is measured as the mean square distance in RGB space between
the original and the projected color values. ε1D denotes the error of the 1D
projection and ε2D of the 2D projection. It can be observed as the 1D model
is unable to correctly represent the color distribution, which is mainly 2D. By
using larger values of T (see Fig. 11-left) single curves are obtained at the
expense of increasing the approximation error. If k = 2 is used for increasing
values of T all the results look very similar (see Fig. 11-right), which means that
the results are stable with respect to T when using the 2D model. This example
illustrates that if the underlying low dimensional structure does not live in the
projecting dimension then the projection is unstable and depends extremely on
the projection parameter. However this is not the case when we project into the
correct dimension. These results reinforce the perception that the 2D model is
better suited than the 1D model for representing color distributions.

A second example that shows the limitations of the 1D model is displayed in

10



Figure 10: Two principal views of the RGB cube for image patch in Fig. 6 right.
Original (left) and after projection with LLP algorithm with k = 1 (center) and
k = 2 (right). The respective projection errors are 9.11 and 2.87.

Fig. 12 and 13. In this case the brownish colors of the stones and the greenish
tones of the vegetation become gray when projecting to 1D.

Table 14 summarizes the results of computing the fractal dimension and the
approximation errors to the 1D and 2D models of the image patches in Fig. 6.

We observe a clear correlation between the fractal dimension D, the approx-
imation errors ε1D and ε2D and the degree of “roughness” of the image patch.
D and ε1D increase with roughness, indicating that the 1D model is unable to
account for the color distribution. On the other hand ε2D is always small, since
the 2D model is well adapted both for 2D and 1D color distributions. These
results agree with the observations of the RGB cube described in the previous
section. The 2D error also slightly increases with the fractal dimension since
even if the dimension is in between one and two it reflects a slight thickness of
the clouds which is removed by the 2D projection. This error also includes the
quantization error since distance is computed for 8 bit quantized values.

Finally, let us remark that projection of the colors to a 2D manifold using
LLP permits a convenient visualization of color densities: each point in the RGB
cube may be represented by a brightness value proportional to the density of the
color point. Therefore color densities may be represented in 3D space without
the visibility limitations inherent to the representation of 3D point clouds, in
which the values of the external points of the cloud hide the values of the internal
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Figure 11: Principal views of the RGB cube for image patch in Fig. 6 right.
after projection with LLP algorithm with k = 1 and increasing values of T

(T = 5, 10, 20 )(top) and k = 2 (bottom). Observe that the result of 2D
projection is stable with respect to T .

Figure 12: Left, original image. Result of LLP algorithm (T = 20): center,
1D model; right, 2D model. Observe that in the first case the brownish tones
of the stones and the greenish colors of the vegetation become gray. Their
corresponding RGB cubes are shown in Fig. 13.

points.
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