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Abstract

We consider the problem of estimating the number of components and

the relevant variables in a multivariate multinomial mixture. This kind of

models arise in particular when dealing with multilocus genotypic data.

A new penalized maximum likelihood criterion is proposed, and a non-

asymptotic oracle inequality is obtained. Further, under weak assump-

tions on the true probability underlying the observations, the selected

model is asymptotically consistent. On a practical aspect, the shape of

our proposed penalty function is defined up to a multiplicative param-

eter which is calibrated thanks to the slope heuristics, in an automatic

data-driven procedure. Using simulated data, we found that this proce-

dure improves the performances of the selection procedure with respect

to classical criteria such as BIC and AIC. The new criterion gives an

answer to the question “Which criterion for which sample size?”.

Keywords: Biostatistics; Latent class model; Multilocus genotypic data; Multi-
variate multinomial mixture; Penalized Likelihood; Population genetics; Slope
heuristics; Variables selection

1 Introduction

This article is concerned with the unsupervised classification on categorical mul-
tivariate data. The model-based clustering, which uses finite mixture models,
is an intuitive and rigorous framework for the unsupervised classification. How-
ever there is no clear consensus on the way to gather individuals in general: on
the basis of well separated clusters, or on the basis of the components of the
mixture distribution? We refer to Baudry [2009] for a general discussion on this
topic. Finite mixture models are specially adapted when each class is supposed
to be characterized by a set of parameters, for instance in population genetics:
in this case the populations that the biologists look for are characterized by their
allelic frequencies and a genetic equilibrium; this corresponds to the notion of
population as a reproduction unit, or a group of individuals sharing the same
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genetic structure. Finite mixture models are also known in the literature as the
latent class models.

The observations are n independent realizations of a random vector, whose
number L of coordinates (variables) may be large. The individuals of the sample
are clustered into a certain unknown numberK of populations on the basis of the
frequencies of apparition of the possible states of each variable. It may happen
that only a subset S of the variables are relevant for clustering purposes, and
the others are just noise. Thus, in addition to the number K of populations
and the frequencies of the different states, we are also interested in the subset
S, which may have significance in the interpretation of the results.

A number of clustering methods for categorical multivariate data have been
proposed in recent years in the context of genomics (see [Chen et al., 2006,
Corander et al., 2008, Pritchard et al., 2000]). But the problem of variable selec-
tion for clustering using such data was first addressed in [Toussile and Gassiat,
2009], where the question is regarded as a model selection problem in a density
estimation framework. First the components of a finite mixture distribution are
identified, then the individuals are clustered into these components using the
Maximum A Posteriori (MAP) method.
Using simulated data, that article shows that the variable selection procedure
based on the Bayesian Information Criterion (BIC) significantly improves clus-
tering and prediction capacities in our framework. It also gives a theoreti-
cal consistency result: when the true density P0 underlying the observations
belongs to one of the competing models, then there exists a smallest model
M(K0, S0) containing P0; further, the BIC type criteria selectM(K0, S0) with
probability tending to one as the sample size n goes to infinity. This consis-
tency approach requires large sample sizes which may be difficult to obtain.
However the knowledge of the true model, aside the frequencies of the states, is
an important information for the interpretation of the results.

In the present paper we adopt an oracle approach. We do not aim at choosing
the true model underlying the data, even if our procedure performs well also
for that. The criteria are rather designed to minimize some risk function of
the estimated density with respect to the true density. In this context simpler
models can be preferred toM(K0, S0), in which too many parameters can entail
estimators which overfit the data. Actually there is no need to assume that P0

belongs to one of the competing modelsM(K,S).
BIC relies on a strong asymptotic assumption, and can thus require large

sample sizes to reach its asymptotic behavior; practically BIC is known to
overpenalize, and therefore selects too small models for small or medium values
of n (see [Nadif and Govaert, 1998]). On the contrary Akaike’s Information
Criterion (AIC) is known to underpenalize, and selects too large models for
large and medium values of n. We would like a criterion which gathers the
virtues of both AIC and BIC, and performs well for different values of n.

In this article, we propose a non asymptotic penalized criterion based on the
metric entropy theory of Massart (in particular [Massart, 2007]). It leads to a
non asymptotic oracle inequality, which compares the risk of the selected esti-
mator to the risk of the estimator associated with the unknown best model (see
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Theorem 1 below). There exists a large literature on model selection via penal-
ization from a non asymptotic perspective. This literature is still in development
with the appearance of sophisticated tools of probability such as concentration
and deviations inequalities (see [Massart, 2007] and the references therein). In
mixture models the non asymptotic approach is very recent, the first related
work being [Maugis and Michel, 2009] for the Gaussian mixture model.

However, the obtained penalty function presents drawbacks: it depends on
a multiplicative constant for which sharp upper bounds are not available, and
it leads in practice to an overpenalization — even worse than BIC. Therefore
our theoretical result mainly suggests the shape of the penalty function:

penn (m) = λDm/n,

where Dm is the dimension of model m, and λ an unknown parameter de-
pending on the sample size and the complexity of the collection of models un-
der competition, which has to be calibrated. A calibration of λ with the so-
called slope heuristics has been proposed in [Birgé and Massart, 2007] in such
a case. We propose a modified version based on a sliding window of this cal-
ibration method. The resulting criterion does not require an ad-hoc choice of
the penalty parameters and adapts automatically to the data. Although the
full theoretical validation of slope heuristics is provided only in the Gaussian
homoscedastic and heteroscedastic regression frameworks [Arlot and Massart,
2009, Birgé and Massart, 2007], they have been implemented in several other
frameworks (see [Lebarbier, 2002, Maugis and Michel, 2008, Verzelen, 2009,
Villers, 2007] for applications in density estimation, genomics, etc.). The sim-
ulations performed in Subsection 4.3 illustrate that our criterion behaves well
with respect to more classical criteria as BIC and AIC, both to estimate the
density, even when n is relatively small, and to retrieve the true model. It can
be seen as a representative of the family of the General Information Criteria
(see for instance [Bai et al., 1999] whose criterion is less intuitive but presents
some analogy with the slope heuristics).

The paper is organized as follows. Section 2 is devoted to the presentation
of the mixture models framework and to the model selection paradigm. In
Section 3 we state and prove our main result, the oracle inequality. Section 4 is
devoted to the practical aspect of our procedure which has been implemented
in the stand alone software MixMoGenD (Mixture Model using Genotypic Data)
(see [Toussile and Gassiat, 2009]). Results on simulated experiments are also
presented: we compare our proposed criterion to classical BIC and AIC, in
both points of view of the selection of the true model and of density estimation.
Eventually, the Appendices contain several technical results used in the main
analysis.
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2 Model and methods

2.1 Framework

We suppose we deal with independent and identically distributed (iid) realiza-
tions of a multivariate random vector X = (X l)1≤l≤L. We consider two main
settings:

1. Each X l is a multinomial variable taking values in {1, . . . , Al}.
2. Each X l consists in a (non ordered) set

{
X l,1, X l,2

}
of two (that may be

equal) qualitative variables taking their values in the same set {1, . . . , Al}.
All along this article, these two settings will be referred to as Case 1 and Case 2.
In both cases, the numbers Al of allowed states are supposed to be known, and
to verify Al ≥ 2.

The first case is a usual latent class model with various applications (psy-
chomatrics, marketing, credit scoring, genomics, etc.), while the last one is
more specific to genotypic data. In this context X = (X l)1≤l≤L represents the
genotype of an individual at L loci of its DNA. Case 1 corresponds to haploid
organisms, with a single representative of each chromosome; at any locus l a
single allele X l is measured. Case 2 corresponds to diploid organisms, with two
representatives of each chromosome; at any locus l, two alleles X l,1 and X l,2

are observed together.
We consider a model-based clustering, which means that the sample is a

finite mixture of an unknown number K of populations (clusters), each being
characterized by a set of frequencies of the states. Let denote by Z the (unob-
served) population an individual comes from. Variable Z takes its values in the
set {1, . . . , K} of the labels of the different clusters. Its distribution is given
by the vector π = (πk)1≤k≤K , where πk = P (Z = k). Conditionally to Z, the
variables X1, . . . , XL are supposed to be independent. In Case 2, the states
X l,1 and X l,2 for the lth variable are also supposed to be independent condition-
ally to Z. The preceding two assumptions are what biologists respectively call
Linkage Equilibrium (LE) and Hardy-Weinberg Equilibrium (HWE). According
to these assumptions, the probability distribution of a genotype x =

(
xl
)
1≤l≤L

in a population k is given in the following equations

P (x| Z = k) =

L∏

l=1

P
(
xl|Z = k

)

Case 1: P
(
xl|Z = k

)
= αk,l,xl

Case 2: P
(
xl|Z = k

)
= (2− 1xl,1=xl,2)αk,l,xl,1αk,l,xl,2 (1)

where αk,l,j is the probability of state j associated to variable X l in population
k. The mixing proportions πk and the probabilities αk,l,j will be treated as
parameters.

In the context of genomics, Hardy-Weinberg and linkage equilibria are based
on several simplifying assumptions that can seem unrealistic; however they have
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still proven to be useful in describing many population genetic attributes and
serve as a base model in the development of more realistic models of microevo-
lution. Further, the choice of estimators derived from the maximum likelihood
estimator (MLE) responds to the wish of biologists to group the sample into clus-
ters minimizing the Hardy-Weinberg and linkage desequilibria, and this brings
some robustness to our modeling (see [Latch et al., 2006] and references therein).

Going deeper, the oracle approach emphasizes that we should often prefer
simplified and misspecified models. This introduces a modeling bias in order
to get more robust estimators and classifiers, and at the end we get a smaller
estimation error. This legitimizes also the following simplification.

It may happen that the structure of interest is contained in only a subset S
of the L available variables, the others been useless or even harmful to detect a
reasonable clustering into statistically different populations. For the variables
in S, the frequencies of the states in at least two populations are different:
we will call them clustering variables. For the other variables, the states are
supposed to be equally distributed across the clusters. This approximation is
theoretically justified by the oracle heuristics, which is able to take advantage of
the misspecification; the simulations performed in [Toussile and Gassiat, 2009]
illustrate its benefits.
We denote by βl,j the frequency of state j associated to variable X l in the whole
population:

βl,j = α1,l,j = · · · = αk,l,j · · · = αK,l,j for any l /∈ S and 1 ≤ j ≤ Al.

Obviously, S = ∅ if K = 1, otherwise S belongs to P∗(L), the set of all non
empty subsets of {1, . . . , L}.

Summarizing all these assumptions, we can write down the likelihood of an
observation x =

(
xl
)
1≤l≤L

:

Case 1: P(K,S,θ)(x) =

[
K∑

k=1

πk

∏

l∈S

αk,l,xl

]
×
∏

l/∈S

βl,xl

Case 2: P(K,S,θ)(x) =

[
K∑

k=1

πk

∏

l∈S

(2− 1xl,1=xl,2)αk,l,xl,1 × αk,l,xl,2

]

×
∏

l/∈S

(2− 1xl,1=xl,2) βl,xl,1βl,xl,2

(2)

where θ = (π, α, β) is a multidimensional parameter, with

α = (αk,l,j)1≤k≤K; l∈S; 1≤j≤Al

β = (βl,j)l/∈S; 1≤j≤Al
.

For a given K and S, θ = θ(K,S) ranges in the set

Θ(K,S) = SK−1 ×
[∏

l∈S

SAl−1

]K
×
∏

l/∈S

SAl−1, (3)
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where Sr−1 =
{
p = (p1, p2, . . . , pr) ∈ [0, 1]r :

∑r
j=1 pj = 1

}
is the (r − 1)-

dimensional simplex.
Then we consider the collection of all parametric models

M(K,S) =
{
P(K,S,θ) : θ ∈ Θ(K,S)

}
(4)

with (K,S) ∈ M := {(1, ∅)} ∪ (N\{0, 1}) × P∗(L). To alleviate notations, we
will often use the single index m ∈M instead of (K,S).

Each modelM(K,S) corresponds to a particular structure situation with K
clusters and a subset S of clustering variables. Inferring K and S becomes a
model selection problem in a density estimation framework. It also leads to a
data clustering, via the estimation θ̂ of the parameter θ(K,S) and the prediction
of the class z of an observation x by the MAP method:

ẑ = argmax
1≤k≤K

P(K,S,θ̂) (Z = k|X = x) .

2.2 Model selection via penalization

A common method to solve model selection problems consists in the minimiza-
tion of a penalized maximum likelihood criterion. In each modelM(K,S), con-

sider the maximum likelihood estimator (MLE) P̂(K,S) = P(K,S,θ̂), which mini-

mizes the log-likelihood contrast

γn (P ) = − 1

n

n∑

i=1

lnP (Xi) (5)

where Xi describes the individual i in the sample. Then a data driven selected

model M(K̂n,Ŝn) is chosen, where
(
K̂n, Ŝn

)
minimizes a penalized maximum

likelihood criterion of the form

crit(K,S) = γn
(
P̂(K,S)

)
+ penn(K,S),

where penn : M → R+ is the penalty function. Eventually the selected esti-

mator is P̂(K̂n, Ŝn)
.

The penalty function is designed to avoid overfit problems. Classical penal-
ties, such as the ones used in AIC and BIC criteria, are based on the dimension
of the model. In the following, we will refer to the number of free parameters

D(K,S) = K − 1 +K
∑

l∈S

(Al − 1) +
∑

l/∈S

(Al − 1) (6)

as the dimension of the modelM(K,S). The penalty functions of AIC and BIC

are respectively defined by

penAIC (m) =
1

n
·Dm;

penBIC (m) =
lnn

2n
·Dm.

(7)
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Our work is centered on the MLE estimator P̂(K, S), but this last one presents
a drawback. For the sake of density estimation, we would like to use the
Kullback-Leibler divergence KL as a risk function to measure the quality of
an estimator. Unfortunately, when an state is not present in the sample, the
MLE estimator assigns to it a zero probability. As a consequence, the Kullback

risk EP0

[
KL

(
P0, P̂(K, S)

)]
is infinite.

The Hellinger distance offers an alternative to the Kullback-Leibler diver-
gence. Let us consider two probability distribution P and Q, admitting respec-
tively s and t as density functions with respect to a common σ-finite measure
µ. We call Hellinger distance between P and Q the quantity h(P,Q) defined by

h(P,Q)2 =

∫ (√
s(x) −

√
t(x)

)2
dµ(x). (8)

Let (K∗, S∗) be a minimizer in (K, S) of the Hellinger risk of the MLE
estimator

R(K, S) = EP0

[
h2
(
P0, P̂(K, S)

)]
. (9)

The density P̂(K∗, S∗) is called oracle for the Hellinger risk. It is not an es-
timator, since it depends on the true density P0. However it can be used as
a benchmark to quantify the quality of our model selection procedure: in the
simulation performed in paragraph 4.3.2, we compare the Hellinger risk of the
selected estimator P̂(K̂n, Ŝn)

to the oracle risk.

3 New criteria and non asymptotic risk bounds

3.1 Main result

Our main theorem provides an oracle inequality for both Case 1 and Case 2. It
links the Hellinger risk of the selected estimator to the Kullback-Leibler diver-
gence KL between the true density and each model in the models collection.
Unlike KL which is not a metric, the Hellinger distance h permits to take
advantage of the metric properties (metric entropy) of the models.

Theorem 1. We consider the collection M of models defined above, and a
corresponding collection of ρ-MLEs

(
P̂(K,S)

)
(K,S)∈M

, which means that for every

(K,S) ∈M

γn
(
P̂(K,S)

)
≤ inf

Q∈M(K,S)

γn(Q) + ρ.

Let Amax = sup1≤l≤L Al, and let ξ be defined by ξ =
4
√
Amax

√
L

2L+1 − 1
in Case 1 and

ξ =
4
√
Amax

√
L

2(1 + 3
√
2)L − 1

in Case 2. Assume that ξ < 1 or n > ξ2K.

There exists absolute constants κ and C such that whenever

penn(K,S) ≥ κ

(
5 +

√
max

(
1

2
lnn+

1

2
lnL,

ln 2

2
+ lnL

))2

D(K,S)

n
(10)
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for every (K,S) ∈M, then the model M(K̂n,Ŝn) where
(
K̂n, Ŝn

)
minimizes

crit(K,S) = γn
(
P̂(K,S)

)
+ penn(K,S)

over M exists and moreover, whatever the underlying probability P0,

EP0

[
h2
(
P0, P̂(K̂n,Ŝn)

)]

≤ C

(
inf

(K,S)∈M

(
KL

(
P0,M(K,S)

)
+ penn(K,S)

)
+ ρ+

(3/4)L

n

)

where, for every (K,S) ∈M, KL
(
P0,M(K,S)

)
= infQ∈M(K,S)

KL(P0, Q).

The condition ξ < 1 is used in the proof to avoid more complicated calcula-
tions. In practice, ξ is very likely to be smaller than 1 for L not too small.

Note that as soon as n ≥ 2L, (10) is simplified in the following way

penn(K,S) ≥ κ

(
5 +

√
1

2
lnn+

1

2
lnL

)2
D(K,S)

n
.

The leading term for large n is κ
lnn

2

D(K,S)

n
, which is a multiple of the penalty

function ofBIC. As a consequence, we can apply Theorem 2 from [Toussile and Gassiat,
2009]: when the underlying distribution P0 belongs to one of the competing
models, the smallest model (K0, S0) containing P0 is selected with probability
tending to 1 as n goes to infinity.

Such a penalty is not surprising in our context: it is in fact very similar to the
one obtained in [Maugis and Michel, 2009] in a Gaussian mixture framework.

Sharp estimates of κ are not available. Theorem 1 is too conservative in
practice, and leads to an over-penalized criterion which is outperformed by
smaller penalties. So it is mainly used to suggest the shape of the penalty
function

penn(K,S) = λ
D(K,S)

n
(11)

where λ is a parameter to be chosen depending on n and the collection M — but
not on (K,S). Slope heuristics [Arlot and Massart, 2009, Birgé and Massart,
2007] can be used in practice to calibrate λ: this is done in Section 4, where we
use change-point detection [Lebarbier, 2002] in relation to slope heuristics.

Since h2 is upper bounded by 2, the non-asymptotic feature of Theorem 1 is
interesting when n is large enough with respect to D(K,S). However, even with
small values of n, the simulations performed in Subsection 4.3 show that the
penalized criterion calibrated using the slope heuristics keep good behaviors.

3.2 A general tool for model selection

Theorem 1 is obtained from [Massart, 2007, Theorem 7.11]. This last result
deals with model selection problems by proposing penalty functions related to
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geometrical properties of the models, namely metric entropy with bracketing for
Hellinger distance.

The framework here is the following. We consider some measurable space
(A,A), and µ a σ-finite positive measure on A. A collection of models (Mm)m∈M

is given, where each modelMm is a set of probability density functions s with
respect to µ. The following relation permits us to extend the definition of h to
positive functions s or t whose integral is finite but not necessary 1. Denoting√
s the function defined by

√
s(x) =

√
s(x), and by ‖ · ‖2 the usual norm in

L2(µ), then
h(s, t) = ‖√s−

√
t‖2.

Let us now recall the definition of metric entropy with bracketing. Consider
some collection F of measurable functions on A, and d one of the following
metrics on F : h, ‖·‖1, or ‖·‖2. A bracket [l, u] is the collection of all measurable
functions f such that l ≤ f ≤ u. Its d-diameter is the distance d(u, l). Then,
for every positive number ε, we denote by N[·](ε, F, d) the minimal number of
brackets with d-diameter not larger than ε which are needed to cover F . The
d-entropy with bracketing of F is defined as the logarithm of N[·](ε, F, d), and
is denoted by H[·](ε, F, d).

We assume that for each model Mm the square entropy with bracketing√
H[·](ε,Mm,h) is integrable at 0. Let us consider some function φm on R+

with the following properties

(I). φm is nondecreasing, x 7→ φm(x)/x is non-increasing on (0,+∞) and for
every σ ∈ R+ and every u ∈Mm

∫ σ

0

√
H[·] (x, Sm(u, σ),h)dx ≤ φm(σ),

where Sm(u, σ) =
{
t ∈Mm : ‖

√
t−√u‖2 ≤ σ

}
.

(I) is verified in particular with φm(σ) =
∫ σ

0

√
H[·] (x,Mm,h)dx.

In order to avoid measurability problems, we suppose that for each m ∈ M,
the following separability condition is verified forMm:

(M). There exists some countable subset M′
m of Mm and a set A′ ⊂ A with

µ(A′) = µ(A) such that for every t ∈ Mm, there exists some sequence
(tk)k≥1 of elements ofM′

m such that for every x ∈ A′, ln(tk(x)) tends to
ln(t(x)) as k tends to infinity.

Theorem 2. Let X1, . . . , Xn be iid random variables with unknown density
s with respect to some positive measure µ. Let {Mm}m∈M be some at most
countable collection of models, each fulfilling (M). We consider a corresponding
collection of ρ-MLEs (ŝm)m∈M. Let {xm}m∈M be some family of nonnegative
numbers such that ∑

m∈M

e−xm = Σ <∞,
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and for every m ∈ M considering φm with property (i) define σm as the unique
positive solution of the equation

φm(σ) =
√
nσ2. (12)

Let penn : M→ R+ and consider the penalized log-likelihood criterion

crit(m) = γn (ŝm) + penn(m).

Then, there exists some absolute constants κ and C such that whenever

penn(m) ≥ κ
(
σ2
m +

xm

n

)
for every m ∈ M,

some random variable m̂ minimizing crit over M exists and moreover, whatever
the density s

Es

[
h
2 (s, ŝm̂)

]
≤ C

(
inf
m∈M

(KL (s,Mm) + penn(m)) + ρ+
Σ

n

)
.

In Theorem 2, σ2
m has the role of a variance term of ŝm, while the weights

xm take into account the number of models m having the same dimension.

3.3 Proof of Theorem 1

In order to apply Theorem 2, we need to compute the metric entropy with
bracketing of each modelM(K,S). This is done in the following result, which is
proved in Appendix A.

Proposition 1 (Bracketing entropy of a model). Let η : R+ → R+ be the
increasing convex function defined by

Case 1: η(ε) = (1 + ε)L+1 − 1,

Case 2: η(ε) = (1 + ε) (1 +
√
2 ε (2 + ε))L − 1.

For any choice of K and S,M(K,S) fulfills (M). For any ε ∈ (0, 1),

H[·]

(
η(ε),M(K,S),h

)
≤ D(K,S) ln

(
1

ε

)
+ C(K,S),

where

C(K,S) =
1

2

(
ln(2πe)D(K,S) + ln(4πe) (1K≥2 + L+ (K − 1)|S|)

+ 1K≥2 ln(K + 1) +

L∑

l=1

ln(Al + 1) + (K − 1)
∑

l∈S

ln(Al + 1).

) (13)

C(K,S) is a technical quantity measuring the complexity of a modelM(K,S).
In the next step we establish an expression for φm. All following results are

proved in Appendix B.
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Proposition 2. For any choice of m = (K,S), the function φm defined on
(0, η(1)] by

φm(σ) =
(
2
√
ln 2

√
D(K,S) +

√
C(K,S) −D(K,S) ln η−1(σ)

)
σ

fulfills (I).

We do not define φm for σ bigger than η(1), to avoid more complicated
expressions. This is why a condition on ξ appears in the following lemma:

Lemma 1. Let Amax = sup
1≤l≤L

Al, ξ =
4
√
Amax

√
L

2L+1 − 1
in Case 1, and ξ =

4
√
Amax

√
L

2(1 + 3
√
2)L − 1

in Case 2. Then, for all n ≥ 1 if ξ < 1, and for n > ξ2K

otherwise, the solution σm of (12) verifies σm < η(1).

From Proposition 2 we can deduce an upper bound for σm, with a similar
reasoning to [Maugis and Michel, 2009]. First, σm ≤ η(1) entails η−1 (σm) ≤ 1,
and we obtain the lower bound σm ≥ σ̃m, where

σ̃m =
1√
n

(
2
√
ln 2

√
Dm +

√
Cm

)
. (14)

This can be used to get an upper bound

σm ≤
1√
n

(
2
√
ln 2

√
Dm +

√
Cm −Dm ln η−1 (σ̃m)

)
. (15)

Let us now choose the weights xm. If we take something bigger than nσ2
m,

this will change the shape of the penalty in Theorem 2. We define

xm = (ln 2)Dm.

The following Lemma shows that this choice is suitable.

Lemma 2. For any modelMm, with m ∈M as above, let us set xm = (ln 2)Dm.
Then ∑

m∈M

e−xm ≤ (3/4)L.

To express the penalty function we have to lower bound η−1 (σ̃m). This is
done in the following Lemma.

Lemma 3. Using the preceding notations,

σ2
m +

xm

n
≤ D(K,S)

n

(
5 +

√
max

(
1

2
lnn+

1

2
lnL,

ln 2

2
+ lnL

))2

.

This ends the proof of Theorem 1.
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4 In practice

In real datasets the numbers Al of possible states at each variable X l are not
necessarily known. The numbers Âl of observed states can be used instead. In
fact, the MLE estimator select a density with null weight on non-observed states.
Then, in each modelM(K,S), an approximated MLE estimator can be computed
thanks to the Expectation-Maximization (EM) algorithm (see [Dempster et al.,
1977]).

The other two points that have to be done before reaching the final estimator
P̂(K̂n, Ŝn)

are the choice of the penalty function, and the sub-collection of models

on which the EM algorithm will be used. These two points are discussed in
Subsections 4.1 and 4.2. Then simulations are presented in Subsection 4.3.

4.1 Slope heuristics and Dimension jump

Theorem 1 suggests to take a penalty function of the shape (11), defined mod-
ulo a multiplicative parameter λ which has to be calibrated. Slope heuris-
tics, as presented in [Arlot and Massart, 2009, Birgé and Massart, 2007], pro-
vide a practical method to find an optimal penalty penopt(m) = λoptDm/n.
These heuristics are based on the conjecture that there exists a minimal penalty
penmin(m) = λminDm/n required for the model selection procedure to work:
when the penalty is smaller that penmin, the selected model is one of the most
complex models, and the risk of the selected estimator is large. On the contrary,
when the penalty is larger than penmin, the complexity of the selected model is
much smaller. Then the optimal penalty is close to twice the minimal penalty:

penopt (m) ≈ 2λminDm/n.

The name “slope heuristics” comes from λmin being the slope of the linear

regression γn

(
P̂m

)
∼ Dm/n for a certain sub-collection of the most competing

models m. For example, on the left panel of Figure 1 below, a slope is visible
for the models containing the true model M(K0, S0). Even if this example is
favorable and mainly here for illustration purposes, it shows that the slope
heuristics are sensible with the modelings of the present work.

Instead of estimating λmin by linear regression, another method is jump de-
tection. Suppose we have at hand a reasonable grid λ1 < . . . < λr of candidate
values of λmin, and a sub-collection Mexplored of the most competitive models.
Each λi leads to a selected model m̂i with dimension Dm̂i

. If you plot Dm̂i
as

a function of λi, λmin is expected to lie at the position of the biggest jump.
However, the right panel of Figure 1 illustrates an important point: in that ex-
ample the biggest jump is at λ ≈ 5.1, but λmin is around 0.9, which corresponds
to several successive jumps. We propose an improved version of the dimension
jump method of [Arlot and Massart, 2009], based on a sliding window: we con-
sider at a time all jumps in an window of h ≥ 1 following intervals in the grid.
Algorithm 1 below describes the procedure.

12
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Figure 1: Two ways to compute the slope, on a simulated sample of 1000 indi-
viduals, with 8 clustering variables among 10, and 5 populations. Models have
been explored via the modified backward-stepwise described in subsection 4.2,
the number K of clusters varying from 1 to 10. The size of the sliding window
is 0.15.

4.2 Sub-collection of models for calibration

For a given maximum value Kmax of the number of clusters, the number of
models under competition is equal to 1 + (Kmax − 1) ∗

(
2L − 1

)
. Since this

number is huge in most situations, it is very painful to consider all compet-
ing models for calibration of the parameter λ. On the other hand, we need
enough models to ensure that there is a clear jump in the sequence of selected
dimension. We consider the modified backward-stepwise algorithm proposed in
[Toussile and Gassiat, 2009], which explores of cardinalities of S. It enables to
gather the most competitive models among all possible S for a given number K
of clusters and a given penalty function penn. It gives also the choice to add a
complementary exploration step based on a similarly modified forward strategy.
We will refer to this algorithm as explorer (K, penn).

Since we do not know the final penalty during the exploration step, we
consider a reasonable grid 1/2 = λ1 < . . . < λr = lnn containing both penalty
functions associated to AIC and BIC (7). To each value λi of the grid is
associated a penalty function penλi

. We launch explorer
(
K, penλi

)
for all

values of K in {1, . . . , Kmax} and for all values of λi of the above grid, and we
gather the explored models in Mexplored. This sub-collection seemly contains
the most competitive models and it is then used to calibrate λ.
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Algorithm 1 Calibration of Penalty
(
Mexplored, (λi)i=1,...,r , h

)

for i = 1 to nλ do

m̂i ← argmin
m∈Mexplored

{
γn
(
P̂m

)
+ λiDm/n

}

end for

iend ← min argmax
i∈{h+1,...,r}

{
Dm̂i−h

−Dm̂i

}

iinit ← max
{
j ∈ [iend − h, iend − 1] , Dm̂j

−Dm̂iend
= Dm̂iend−h

−Dm̂iend

}

λ̂min ←
λiinit

+ λiend

2
return λ̂min

4.3 Numerical experiments

Our proposed procedure with a data-driven calibration of the penalty function
has been implemented for Case 2 in the software MixMoGenD (Mixture Model
using Genotypic Data), which already proposed a selection procedure based on
asymptotic criteria BIC and AIC (see [Toussile and Gassiat, 2009]). Here, we
conduct numerical experiments on simulated datasets for performances assess-
ment of the new non asymptotic criterion with respect to BIC and AIC.

We present two experiments, both in Case 2. The first one considers the
consistency of the selected model: we study how the procedure retrieves the
main features of the true model as the number of individuals in the datasets
increases. In the second one, we are rather interested in a validation of the model
selection procedure from the oracle point of view: we compare the Hellinger risk
of the selected estimator to the oracle risk.

4.3.1 Consistency performances

In this experiment we consider a setting with L = 10 variables of 10 states
each. We chose a parameter with K0 = 5 populations of equal probability. The
frequencies of the states have been chosen such that the genetic differentiation
between the populations is decreasing with the variables rank. In the first 6
variables, the populations are more separated. In the following 2 variables, the
populations are very poorly differentiated. In the last 2 variables, the states
follow the same uniform distribution in all populations. The whole parameter
is available at http://www.math.u-psud.fr/~toussile/.

We considered different values n of the sample size in [50, 900] and for each
of them, 10 datasets have been simulated. The results are summarized in Figure
2. The left panel gives the proportion of selecting the subset Ŝn of clustering
variables containing the first 6 variables, which are the most genetically differ-
entiated variables. The right panel gives the proportion of selected models with
K̂n = K0.

In this experiment, AIC seems to be the best criterion for variable selection;

14

http://www.math.u-psud.fr/~toussile/


0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample size n

P
ro

po
rt

io
n 

of
 S

 c
on

ta
in

in
g 

th
e 

lo
ci

 1
, 2

, 3
, 4

, 5
 a

nd
 6

Cte * dim
BIC
AIC

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample size n

P
ro

po
rt

io
n 

of
 K

_0

Cte * dim
BIC
AIC

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: The figure in the left panel gives the proportion of selected models
with Ŝn ⊇ {1, . . . , 6}, and the one in the right gives the proportion of selected

models with K̂n = K0, versus the sample size.

however the different between AIC and the new criterion is not significant.
It also appears that AIC estimates the number of clusters better than the
other criteria for small sample sizes (around n = 100 and n = 200), but it
overestimates this number from n = 500. On the contrary, the new criterion
perfectly estimates the number of clusters for sample sizes ≥ 300. BIC performs
poorly for both variables selection and classification on datasets with small
sizes. As expected, the data-driven calibration of the penalty function improves
globally the performances of the selection procedure, and it gives thus an answer
to the question “Which penalty for which sample size?”.

It may happen that the results obtained on small sample sizes change a
little from one run to another. In fact, the EM algorithm can miss the global
maximum on such sample sizes, in particular in models of higher dimension. In
our experiments, it is probably the case with some datasets of size n ≤ 300,
when the number of free parameters in the simulated model is ≥ 310.

4.3.2 Oracle performances of the estimator

Since the new criterion is designed in an oracle perspective, it is interesting to
compare the associated estimator to the oracle for Hellinger risk. Recall that
the oracle is the estimator associated to the model indexed by the minimizer

(K∗, S∗) of the risk E

[
h
2
(
P0, P̂(K, S)

)]
over the collection of models M.

In this experiment, we consider simulated datasets with reduced variability
in order to reduce the computation time. The parameter underlying the data
admits L = 6 variables, 3 states for each variable, and K0 = 3 populations
with equal probability. The frequencies of the states have been chosen in such a
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way that the genetic differentiation between the population is significant on the
first 3 variables, very small on the 4th and 5th variables, while the states of the
6th variable follow the uniform distribution in all populations. Thus the true
model is defined by K0 = 3 and S0 = {1, 2, 3, 4, 5}. The whole parameter is
available at http://www.math.u-psud.fr/~toussile/.

We estimated the oracle using a Monte Carlo procedure on 100 simulated
datasets of size 500 each, and got K̂∗ = 3 and Ŝ∗ = {1, 2, 3, 4}. The results
we obtained are summarized in Figure 3 and Table 1.
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Figure 3: The left panel gives the boxplots, means and their 95% confident

intervals, for
h

2
(
P0, P̂

(K̂n, Ŝn)

)

h2
(
P0, P̂

(K̂∗, Ŝ∗)

) ; the right panel gives the percentages of selection

of the estimated oracle
(
K̂∗, Ŝ∗

)
; three criteria have been used: AIC, BIC,

and Cte*Dim which denotes the new criterion with data-driven calibration of
the penalty function.

AIC BIC

AIC - < 5.40e− 05
Cte*Dim < 2.02e− 05 < 2.20e− 16

Table 1: The p-values of pairwise student tests comparing the means of

the h2
(
P0, P̂(K̂n, Ŝn)

)
. The alternative hypothesis is that the mean of the

Hellinger distance associated to the criterion in the first column is less than the
one associated to the criterion in the first line.

The worst behavior comes from BIC and it is not a surprise for two main
reasons. First BIC is designed to find the true model which is different to the
oracle in our experiments. Second, it is based on asymptotic approximation and
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therefore requires large samples. In contrary, compared to AIC and BIC, the
new criterion with data-driven calibration of the penalty function is significantly
the best in the sense of Hellinger risk and the capacity of selecting the oracle.
Recall that both AIC and the new criterion are designed to find the oracle (see
Table 1). But like BIC, AIC is based on asymptotic approximations. So the
advantage of the new criterion over AIC is probably that it is designed in a non
asymptotic perspective.

5 Conclusion

In this paper, we have considered a model selection via penalization, which
performs simultaneously a variables selection and a detection of the number
of populations, in the specific framework of multivariate multinomial mixture.
This leads to a clustering in a second time. Our main result provides an oracle
inequality, under the condition of some lower bound on the penalty function.
The weakness of such a result is that the associated penalized criterion is not
directly usable. Nevertheless, it suggests a shape of the penalty function which
is of the form penn(m) = λDm/n, where λ = λ (n, M) is a parameter which
depends on the data and the collection of the competing models. In practice λ
is calibrated via the slope heuristics.

In the simulated experiments we conducted, the new criterion with penalty
calibration shows good behaviors for density estimation as well as for the selec-
tion of the true model. It also performs well both when the number of individuals
is large and when it is reasonnably small. This gives an answer to the question
“Which criterion for with sample size?”

In the modeling we considered, the model dimension grows rapidly. In real
experiments the number of individuals can be small, so other modeling with
reduced dimension may be needed. We currently work on models which cluster
the populations differently for each variable, as well as models which allocate
the same probability to several states.
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A Metric entropy with bracketing

We first state several results about the entropy with bracketing, which will be
used to prove Proposition 1. They are mainly adapted from [Genoveve and Wasserman,
2000], but several are improved or writen here in a more general form. These
lemmas can be seen as a toolbox to calculate the metric entropy with bracketing
of complex models from the metric entropy of simpler elements.

We consider a measurable space (A,A), and µ a σ-finite positive measure on
A. We consider a modelM, which is a set of probability density functions with
respect to µ. All functions considered in the following will be positive functions
in L1(µ).

Lemma 4. Let ε > 0. Let [l, u] be a bracket in L1(µ), with h-diameter less
than ε, and containing s, a probability density function with respect to µ. Then

∫
l dµ ≤ 1 ≤

∫
u dµ ≤ (1 + ε)2.

Proof. First two inequalities are immediate, from l ≤ s ≤ u. For the last one,
we use triangle inequality in L2(µ), and the definition of h:

∫
u dµ =

∫ (√
l +
(√

u−
√
l
))2

dµ

≤
(√∫

l dµ+ h(u, l)

)2

≤ (1 + ε)2.

Lemma 5 (Bracketing entropy of product densities). Let n ≥ 2, and consider
a collection (Ai,Ai, µi)1≤i≤n of measured space. For any 1 ≤ i ≤ n, let Mi be
a collection of probability density functions on Ai fulfilling (M). Consider the
product model

M = {s = ⊗n
i=1si; ∀1 ≤ i ≤ n, si ∈ Mi} .

M contains density functions on A =
∏n

i=1 Ai with respect to µ = ⊗n
i=1µi.

M fulfills (M) and, for any sequence of positive numbers (δi)1≤i≤n, if ε ≥∏n
i=1(1 + δi)− 1 then

H[·] (ε,M,h) ≤
n∑

i=1

H[·] (δi,Mi,h) .

Proof. Let us consider some s = ⊗n
i=1si in M. For 1 ≤ i ≤ n, letM′

i, A
′
i and

a sequence (ti,k)k≥1 be such as needed for Mi to verify (M). Then, with the
choice tk = ⊗n

i=1ti,k and A′ =
∏n

i=1 A
′
i, (M) is true forM too.
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Let δ > 0. For any 1 ≤ i ≤ n, let [li, ui] a bracket containing si, with
h-diameter less than δi. Let us set l = ⊗n

i=1li, and u = ⊗n
i=1ui. Then s belongs

to bracket [l, u]. We can compute its h-diameter:

h(l, u) =

√√√√
∫

A

( n∑

j=1

( j−1∏

i=1

√
li

n∏

i=j

√
ui −

j∏

i=1

√
li

n∏

i=j+1

√
ui

))2

dµ

≤
n∑

j=1

j−1∏

i=1

√∫

Ai

li dµi

n∏

i=j+1

√∫

Ai

ui dµi h(lj , uj)

≤
n∑

j=1

δj

n∏

i=j+1

(1 + δi) =

n∏

j=1

(1 + δj)− 1

thanks to triangle inequality and Lemma 4 (empty products equal 1).
Let ε ≥∏n

i=1(1 + δi)− 1. For any 1 ≤ i ≤ n consider a minimal covering of
Mi with brackets of h-diameter less than δi. With the previous process we can
build a covering ofM with brackets of h-diameter less than ε. So the minimal
cardinality of such a covering verifies

N[·] (ε,M,h) ≤
n∏

i=1

N[·] (δi,Mi,h) .

Lemma 6 (Bracketing entropy of mixture densities). Let n ≥ 2, and for any
1 ≤ i ≤ n, let Mi be a set of probability density functions, all on the same
measured space (A,A, µ) and fulfilling (M). Let us consider the set of all mixture
densities

M =

{
n∑

i=1

πisi : π = (πi)1≤i≤n ∈ Sn−1; ∀1 ≤ i ≤ n, si ∈ Mi

}
.

Then M fulfills (M), and for any δ > 0, η > 0, and ε ≥ δ + η + δη,

H[·] (ε,M,h) ≤ H[·] (δ, Sn−1,h) +

n∑

i=1

H[·] (η,Mi,h) .

Proof. First, let us note that Sn−1 is separable for its usual topology. Then,
checking thatM fulfills (M) is easy, and we do not explicit it.

We do not develop either the proof of the last relation, because it is exactly
the same as in [Genoveve and Wasserman, 2000, proof of Theorem 2]. Let us just
say that at the end we get, using our Lemma 4 instead of [Genoveve and Wasserman,
2000, Lemma 3],

h2(l, u) ≤ η2 (1 + δ)2 + δ2 + 2η δ (1 + δ)

≤ ε2.
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Next result is just Lemma 2 from [Genoveve and Wasserman, 2000]:

Lemma 7 (Bracketing entropy of the simplex). Let n ≥ 2 be an integer. Let µ
be the counting measure on {1, . . . , n}. We identify any probability on {1, . . . , n}
with its density s ∈ Sn−1 with respect to µ. Then, if 0 < δ ≤ 1,

H[·] (δ, Sn−1,h) ≤ (n− 1) ln

(
1

δ

)
+

ln 2 + ln(n+ 1) + n ln(2πe)

2
.

To deal with Case 2, we also need the metric entropy of the collection of all
Hardy-Weinberg genotype distributions for a given variable.

Lemma 8 (Bracketing entropy of Hardy-Weinberg genotype distributions).
Suppose that, for some variable l, there exist Al ≥ 2 different states. Let Ωl

be the collection of all genotype distributions following Hardy-Weinberg model
(1). Then Ωl fulfills (M), and for any δ > 0 and ε ≥

√
2 δ (2 + δ),

H[·] (ε,Ωl,h) ≤ H[·] (δ, SAl−1,h) .

Proof. (1) permits to associate a parameter α = (α1, . . . , αAl
) ∈ SAl−1 to any

density in Ωl. More generally, for any α ∈ [0, 1]Al , we define a function

dα(x) = (2− 1x1=x2)αx1αx2

on the set of all genotypes x = {x1, x2} on Al states. Consider some δ > 0 and
dα ∈ Ωl. Let [l, u] be some bracket containing α, with h-diameter less than δ.
Then dα belongs to the bracket [dl, du]. Let us calculate its diameter.

h2(dl, du) =

Al∑

a=1

(ua − la)
2
+

∑

1≤a<b≤Al

(√
2uaub −

√
2lalb

)2

≤ 2

Al∑

a=1

Al∑

b=1

(√
uaub −

√
ualb +

√
ualb −

√
lalb

)2

≤ 2



√√√√

Al∑

a=1

ua

Al∑

b=1

(√
ub −

√
lb

)2
+

√√√√
Al∑

a=1

(√
ua −

√
la

)2 Al∑

b=1

lb




2

≤ 2 ((1 + δ) δ + δ)
2

using Lemma 4. So h(dl, du) ≤
√
2 δ (2 + δ).

Let (α(k))k≥1 a sequence of elements of SAl−1 ∩ QAl , which tends to α for
the usual topology as k tends to infinity. Then, for any genotype x = {x1, x2},
ln dα(k)(x) tends to ln dα(x). Therefore Ωl fulfills (M).

Proof of Proposition 1. We build the proof for Case 2. For Case 1 everything is
similar, with a simplification: we directly have SAl−1 instead of Ωl.

Using (2) we see that a probability P(K,S)

(
· |θ
)
is the product of a mixture

density corresponding to the variables in S, and a product density in
⊗

l/∈S Ωl
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for the other variables. Let us callM the collection of all mixtures ofK densities
in
⊗

l∈S Ωl.
We first deal with the non clustering variables. Using Lemma 5 and Lemma 8,⊗

l/∈S Ωl fulfills (M). For any ε ∈ (0, 1),

H[·]

(
(1 + 2

√
2ε+

√
2ε2)L−|S| − 1,

⊗

l/∈S

Ωl,h

)
≤
∑

l/∈S

H[·]

(
2
√
2ε+

√
2ε2,Ωl,h

)

≤
∑

l/∈S

H[·] (ε, SAl−1,h) .

On the same way

H[·]

(
(1 + 2

√
2ε+

√
2ε2)|S| − 1,

⊗

l∈S

Ωl,h

)
≤
∑

l∈S

H[·] (ε, SAl−1,h) .

We can apply Lemma 6, and get thatM fulfills (M) and

H[·]

(
(1 + 2

√
2ε+

√
2ε2)|S|(1 + ε)− 1,M,h

)

≤ 1K≥2H[·] (ε, SK−1,h) +K
∑

l∈S

H[·] (ε, SAl−1,h) .

Lemma 5 again, applied toM and
⊗

l/∈S Ωl, gives thatM(K,S) fulfills (M),
and for any ε ∈ (0, 1),

H[·]

(
η(ε),M(K,S),h

)

≤ 1K≥2H[·] (ε, SK−1,h) +K
∑

l∈S

H[·] (ε, SAl−1,h) +
∑

l/∈S

H[·] (ε, SAl−1,h) .

At this point, it only remains to use Lemma 7 and to compute the constants.

B Establishing the penalty

First, we need to establish some properties of function η.

Lemma 9 (Properties of function η). We consider the function η defined in
Proposition 1, from R+ into R+. η is nonnegative, increasing and convex.
η(0) = 0, and η′(0) = L+ 1 in Case 1 while η′(0) = 2

√
2L+ 1 in Case 2.

Proof. The proof in Case 1 is immediate, so we develop only Case 2.
Setting u(x) = 1 + 2

√
2 x +

√
2x2, we can write η(x) = (1 + x)u(x)L − 1.

Then, calculus gives

η′(x) = (2L+ 1)u(x)L + 2L (
√
2− 1)u(x)L−1.
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Since u is positive on (0,+∞), η is increasing. But η(0) = 0, so η is nonnegative
on R+. We also have η′(0) = 2

√
2L+ 1. Next,

η′′(x) = 2
√
2 (1 + x)

(
(2L2 + L)u(x)L−1 + 2L (L− 1) (

√
2− 1)u(x)L−2

)

which is positive on R+.

Proof of Proposition 2. Let 0 < σ ≤ η(1), and δ = η−1(σ). Then, for any
u ∈ Mm,

∫ σ

0

√
H[·] (x,Mm(u, σ),h)dx

≤
∞∑

j=1

∫ η(2−j+1δ)

η(2−jδ)

√
H[·] (x,Mm,h)dx

≤
∞∑

j=1

(
η
(
2−j+1δ

)
− η

(
2−jδ

))√
Cm −Dm ln δ +Dmj ln 2

≤ η(δ)
√

Cm −Dm ln δ

+
√
Dm ln 2

∞∑

j=1

√
j
(
η
(
2−j+1δ

)
− η

(
2−jδ

))
.

We deal with the last term of this sum in the following way:

∞∑

j=1

√
j
(
η
(
2−j+1δ

)
− η

(
2−jδ

))
≤

∞∑

j=1

j
(
η
(
2−j+1δ

)
− η

(
2−jδ

))

=

∞∑

k=1

η
(
2−k+1δ

)

≤
∞∑

k=1

2−k+1η(δ) = 2σ.

So ∫ σ

0

√
H[·] (x,Mm(u, σ),h)dx ≤ φm(σ).

Since η is increasing, φm(x)/x is decreasing. To check that φm is nondecreasing,
it is enough to prove that function f(x) = x

√
b − ln η−1(x) is nondecreasing on

(0, η(1)], where b = Cm

Dm
. From (13), we get Cm > ln(2πe)

2 Dm > Dm, so b > 1.
Calculus gives

f ′(x) =
√
b− ln η−1(x)− x

2η−1(x) η′ (η−1(x))
√
b− ln η−1(x)

.

Let y ∈ (0, 1]. η is convex on (0, 1], and that entails η(y)
y η′(y) ≤ 1. Thus

√
b− ln y f ′ (η(y)) ≥ b− ln y − 1/2 > 0.
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Proof of Lemma 1. Since φm(x)/x is non-increasing, for any σ > 0 such that
√
nσ2 > φm(σ), σ > σm. So, we look for situations such that

√
n >

φm(η(1))

η2(1)
.

For all 1 ≤ l ≤ L, Al ≥ 2. Since 1
2 ln(1 + x) ≤ x − 1 for x ≥ 2, we get the

following bounds

1 + ln(2π)

2
Dm ≤ Cm ≤

(
2 + ln(2π) +

ln 2

2

)
Dm. (16)

Therefore

φm(η(1))

η2(1)
<

4
√
Dm

η(1)

On the other hand, we have

Dm ≤ K LAmax.

So, since φm(x)/x2 is decreasing, σm < η(1) as soon as n > ξ2K. This is true
when ξ < 1, since K ≤ n: the number of clusters is not bigger than the number
of individuals.

Proof of Lemma 2. We define δ = 1/2, from which e−xm = δDm . If we consider
the collection M, we can discern two cases: K = 1 and S = ∅, or K ≥ 2 and
S 6= ∅. So, using (6),

∑

m∈M

e−xm = δ
∑

L
l=1(Al−1)

(
1 +

∑

S 6=∅

∑

K≥2

(
δ1+

∑
l∈S(Al−1)

)K−1
)

= δ
∑

L
l=1(Al−1)

(
1 +

∑

S 6=∅

δ1+
∑

l∈S
(Al−1)

1− δ1+
∑

l∈S(Al−1)

)

≤ δL

(
1 +

δ

1− δ

∑

S 6=∅

δ|S|

)

= δL(1 + δ)L.

Proof of Lemma 3. η−1 in concave and nondecreasing, η(0) = 0, so for any
0 ≤ x ≤ η(1),

η−1(x) ≥ η−1(2)

2
min(x, 2).

On the other hand (14) and (16) entail

σ̃m ≥ C1

√
Dm

n
≥ C1

√
L

n
(17)
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where C1 = 2
√
ln 2 +

√
1+ln(2π)

2 > 2
√
2. Therefore

− ln η−1 (σ̃m) ≤ − ln

(
η−1(2)

2

)
− ln 2 + max

(
0,

1

2
(lnn− lnL− ln 2)

)
.

Consider Case 1. Since η is a convex function and η′(0) = L+ 1,

η−1(2) ≤ 2

L+ 1
.

Now,

η

(
2

L+ 1

)
=

(
1 +

2

L+ 1

)L+1

− 1 ≤ e2 − 1.

Then
η−1(2)

2
≥ 2/(L+ 1)

η (2/(L+ 1))
≥ 2

(e2 − 1)(L+ 1)
.

Therefore

− ln

(
η−1(2)

2

)
≤ ln(e2 − 1)− ln 2 + lnL+ ln(3/2)

and

− ln η−1 (σ̃m) ≤ ln(e2 − 1)− 7

2
ln 2 + ln 3 + max

(
1

2
lnn+

1

2
lnL,

ln 2

2
+ lnL

)
.

Using now (15), we get

σ2
m +

xm

n
≤ Dm

n


1

2
+

(
2
√
ln 2 +

√
2 + ln(2π) +

ln 2

2
− ln η−1 (σ̃m)

)2



≤ Dm

n

(
1√
2
+ 2
√
ln 2 +

√
2 + ln(2π)− 3 ln 2 + ln 3 + ln(e2 − 1)

+

√
max

(
lnn+ lnL

2
,
ln 2

2
+ lnL

))2

≤ Dm

n

(
5 +

√
max

(
lnn+ lnL

2
,
ln 2

2
+ lnL

))2

.

Next, consider Case 2, and follow the same method. Then

η−1(2) ≤ 1√
2L

and

η

(
1√
2L

)
≤ 2 exp

(
2 +

1√
2

)
.
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This leads to

− ln η−1(x) ≤ 2 +
1√
2
+

3 ln 2

2
+ lnL− lnmin(x, 2)

and

− ln η−1 (σ̃m) ≤ 2 +
1√
2
+ max

(
1

2
lnn+

1

2
lnL,

ln 2

2
+ lnL

)
.

Now we obtain

σ2
m +

xm

n
≤ Dm

n

(
1√
2
+ 2
√
ln 2 +

√

4 + ln(2π) +

√
2 + ln 2

2

+

√
max

(
lnn+ lnL

2
,
ln 2

2
+ lnL

))2

≤ Dm

n

(
5 +

√
max

(
lnn+ lnL

2
,
ln 2

2
+ lnL

))2

.
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