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Abstract

We consider the problem of estimating the number of components and the rel-
evant variables in a mixture model for multilocus genotypic data. A new pe-
nalized maximum likelihood criterion is proposed, and a non-asymptotic oracle
inequality is obtained. Further, under weak assumptions on the true probabil-
ity underlying the observations, the selected model is asymptotically consistent.
On a practical aspect, the shape of our proposed penalty function is defined up
to a multiplicative constant which is calibrated thanks to the slope heuristics, in
an automatic data-driven procedure. Using simulated data, we found that this
procedure improves the performances of the selection procedure with respect to
classical criteria such as BIC and AIC. The new criterion gives an answer to
the question “Which criterion for which sample size?”.

Keywords: Variables selection, Penalized Likelihood, Slope heuristics,
Mixture multinomial models, Population genetics.

1. Introduction

This article is concerned with a problem of variable selection and estimation
of the number of populations for unsupervised classification. We deal with mul-
tilocus genotypic data from n diploid individuals for which there is no knowledge
about the population they come from. The data consist of a sample of genotypes
at a certain number L of loci (variables) that may be large. The individuals
of the sample are clustered into a certain unknown number K of genetically
homogeneous populations on the basis of their genotypes. It may happen that
only a subset S of variables are relevant for clustering purposes, and the others
are just noise. Thus, in addition to the number K of populations and the allelic
frequencies, we are also interested in the subset S, which may have significance
for biologists.

A number of clustering methods using multilocus data have been proposed
in recent years (see [1, 2, 3]). But the problem of variable selection for cluster-
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ing using such data was first addressed in [4], where the question is regarded
as a model selection problem in a density estimation framework. Using sim-
ulated data, that article shows that the variable selection procedure based on
the Bayesian Information Criterion (BIC) significantly improves clustering and
prediction capacities in our framework. It also gives a theoretical consistency
result: when the true density P0 underlying the observations belongs to one of
the competing models, then there exists a smallest modelM(K0, S0) containing
P0; further, the BIC type criteria select M(K0, S0) with probability tending
to one as the sample size n goes to infinity. This consistency approach may
requires large sample sizes which may be difficult to obtain. The knowledge of
the “optimal” model, aside the allelic frequencies, is an important information
for biologists.

In the present paper we focus on density estimation. The approach we
follow does not aim at choosing the true model underlying the data, even if our
procedure performs well also for that. The resulting criteria are rather designed
to minimize some risk function of the estimated density with respect to the true
density. In this context simpler models can be preferred toM(K0, S0), in which
too many parameters can entail estimators with a too big variance. Further, in
this approach there is no need to assume that P0 belongs to one of the competing
modelsM(K,S).

BIC, as well as Akaike Information Criterion (AIC), relies on a strong
asymptotic assumption, and can thus be inappropriate for small sample sizes. In
this article, we propose a non asymptotic penalized criterion based on the metric
entropy theory of Massart [5]. It leads to a non asymptotic oracle inequality,
which compares the risk of the selected estimator to the risk of the estimator
associated with the unknown best model (see Theorem 1). There exists a large
literature on model selection via penalization from a non asymptotic perspective.
This literature is still in development with the appearance of sophisticated tools
of probability such as concentration and deviations inequalities (see [5] and the
references therein).

However, our proposed penalty function presents a drawback: it is defined
up to an unknown multiplicative constant, and is not directly usable in practice.
In fact, our main result mainly suggests the shape of the penalty function:

penn (m) = λDm/n,

where Dm is the dimension of model m, and λ an unknown constant depending
on the sample size and the complexity of the collection of models under com-
petition, which has to be calibrated. A calibration of λ with the so-called slope
heuristics has been proposed in [6] for the calibration of a multiplicative con-
stant in such a case. We propose a modified version based on a sliding window of
this calibration method. The resulting criterion does not require ad-hoc choice
of the penalty parameters and adapts automatically to the data. Although the
full theoretical validation of slope heuristics is provided only in the Gaussian
homoscedastic and heteroscedastic regression frameworks [6, 7], they have been
implemented in several other frameworks (see [8, 9, 10, 11] for applications in
density estimation, genomic, etc.). The simulations performed in Subsection 4.3
illustrate that our criterion behaves well with respect to more classical criteria
as BIC and AIC, both to estimate the density, even when n is relatively small,
and to retrieve the true model.
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The paper is organized as follows. Section 2 is devoted to the presentation
of the mixture models framework and to the model selection paradigm. In Sec-
tion 3 we state and prove our main result, the oracle inequality. Section 4 is
devoted to the practical aspect of our procedure which has been implemented
in the stand alone software MixMoGenD (Mixture Model using Genotypic Data)
(see [4]). Results on simulated experiments are also presented: we compare our
proposed criterion to classical BIC and AIC, in both points of view of the se-
lection of the true model and of density estimation. Eventually, the Appendices
contain several technical results used in the main analysis.

2. Model and methods

2.1. Framework

We suppose we deal with independent and identically distributed (iid) re-
alizations of a random vector X = (X l)1≤l≤L, representing the genotype of
an individual at L loci. Each genotype X l consists in a (non ordered) set{
X l,1, X l,2

}
of two (that may be equal) alleles taking their values in the same

set {1, . . . , Al}. The numbers Al of alleles are supposed to be known, and to
verify Al ≥ 2: a locus with a single allele state is useless for clustering purposes.

We consider a model-based clustering, which means that the sample is a fi-
nite mixture of an unknown numberK of populations (clusters) characterized by
their allelic frequencies. Let denote by Z the (unobserved) population an indi-
vidual comes from. Variable Z takes its values in the set {1, . . . , K} of the labels
of the different clusters. Its distribution is given by the vector π = (πk)1≤k≤K ,
where πk = P (Z = k). Conditionally to Z, the loci X1, . . . , XL are sup-
posed to be independent, and the alleles X l,1 and X l,2 at any locus l are also
supposed to be independent. The preceding two assumptions are what biolo-
gists call Linkage Equilibrium (LE) and Hardy-Weinberg Equilibrium (HWE)
respectively. According to these assumptions, the probability distribution of a
genotype x =

(
xl
)
1≤l≤L

in a population k is given in the following equations

P (x| Z = k) =
L∏

l=1

P
(
xl|Z = k

)
(1)

P
(
xl|Z = k

)
= (2− 1xl,1=xl,2)αk,l,xl,1αk,l,xl,2 , (2)

where αk,l,j := P
(
X l,1 = j| Z = k

)
= P

(
X l,2 = j| Z = k

)
is the probability of

allele j at locus l in population k. The mixing proportions πk and the allelic
probabilities αk,l,j will be treated as parameters.

Although Hardy-Weinberg and linkage equilibria models are based on several
simplifying assumptions that can seem unrealistic, they have still proven to be
useful in describing many population genetics attributes and serve as a base
model in the development of more realistic models of microevolution. The choice
of estimators derived from the maximum likelihood estimator (MLE) responds
to the wish of biologists to group the sample into clusters minimizing the Hardy-
Weinberg and linkage desequilibria, and this brings some robustness to our
modeling (see [12] and references therein).

It may happen that the structure of interest is contained in only a subset
S of the L available loci, the others been useless or even harmful to detect a
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reasonable clustering into statistically different populations. For the loci in S,
the allelic frequencies of at least two populations are different: we will call them
clustering loci. For the other loci, the alleles are equally distributed across the
clusters. We denote by βl,j the allelic frequency of allele j at locus l in the whole
population:

βl,j = α1,l,j = · · · = αk,l,j · · · = αK,l,j for any l /∈ S and 1 ≤ j ≤ Al. (3)

Obviously, S = ∅ if K = 1, otherwise S belongs to P∗(L), the set of all non
empty subsets of {1, . . . , L}.

Summarizing all these assumptions, we can write down the likelihood of a
genotype x =

(
xl
)
1≤l≤L

:

P(K,S)(x|θ) =
[

K∑

k=1

πk

∏

l∈S

(2− 1xl,1=xl,2)αk,l,xl,1 × αk,l,xl,2

]

×
∏

l/∈S

(2− 1xl,1=xl,2)βl,xl,1βl,xl,2

(4)

where θ = (π, α, β) is a multidimensional parameter, with

α = (αk,l,j)1≤k≤K; l∈S; 1≤j≤Al

β = (βl,j)l/∈S; 1≤j≤Al
.

For a given K and S, θ = θ(K,S) ranges in the set

Θ(K,S) = SK−1 ×
[∏

l∈S

SAl−1

]K
×
∏

l/∈S

SAl−1, (5)

where Sr−1 =
{
p = (p1, p2, . . . , pr) ∈ [0, 1]

r
:
∑r

j=1 pj = 1
}

is the (r − 1)-

dimensional simplex.
Then we consider the collection of all parametric models

M(K,S) =
{
P(K,S)

(
·|θ(K,S)

)
; θ(K,S) ∈ Θ(K,S)

}
(6)

with (K,S) ∈ M := {(1, ∅)} ∪ (N\{0, 1}) × P∗(L). To alleviate notations, we
will often use the single index m ∈M instead of (K,S).

Each modelM(K,S) corresponds to a particular structure situation with K
clusters and a clustering relevant variable subset S. Thus the choice of a model
(K,S) among the collection M includes an estimate of the subset of clustering
variables and the number of clusters. Inferring K and S becomes a model
selection problem in a density estimation framework. It also leads to a data
clustering, via the estimation of the parameter θ(K,S) and the prediction of the
zi’s, which can be performed by the Maximum A Posteriori (MAP) method.

2.2. Model selection via penalization

A common method to solve model selection problems consists in the mini-
mization of a penalized maximum likelihood criterion. In each model M(K,S),
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consider the maximum likelihood estimator (MLE) P̂(K,S) = P(K,S)

(
· |θ̂
)
, which

minimizes the log-likelihood contrast

γn (P ) = − 1

n

n∑

i=1

lnP (Xi) (7)

where Xi =
(
X l

i

)
1≤l≤L

denotes the multilocus genotype of individual i. Then

a data driven selected modelM(K̂n,Ŝn) is chosen, where
(
K̂n, Ŝn

)
minimizes a

penalized maximum likelihood criterion of the form

crit(K,S) = γn
(
P̂(K,S)

)
+ penn(K,S), (8)

where penn : M → R+ is the penalty function. Eventually the selected esti-

mator is P̂(K̂n, Ŝn)
.

The penalty function is designed to avoid overfit problems. Classical penal-
ties, such as the ones used in AIC and BIC criteria, are based on the dimension
of the model. In the following, we will refer to the number of free parameters

D(K,S) = K − 1 +K
∑

l∈S

(Al − 1) +
∑

l/∈S

(Al − 1) (9)

as the dimension of the modelM(K,S).

Our work is centered on the MLE estimator P̂(K, S), but this last one presents
a drawback. For the sake of density estimation, we would like to use the
Kullback-Leibler divergence KL as a risk function to measure the quality of
an estimator. Unfortunately, when an allele is not present in the sample, the
MLE estimator assigns to it a zero probability. As a consequence, the Kullback

risk EP0

[
KL

(
P0, P̂(K, S)

)]
is infinite.

The Hellinger distance offers an alternative to the Kullback-Leibler diver-
gence. Let us consider two probability distribution P and Q, admitting respec-
tively s and t as density functions with respect to a common σ-finite measure
µ. We call Hellinger distance between P and Q the quantity h(P,Q) defined by

h(P,Q)2 =

∫ (√
s(x) −

√
t(x)

)2
dµ(x). (10)

Let (K∗, S∗) a minimizer in (K, S) of the Hellinger risk of the MLE esti-
mator

R(K, S) = EP0

[
h2
(
P0, P̂(K, S)

)]
. (11)

The density P̂(K∗, S∗) is called oracle for the Hellinger risk. It is not an es-
timator, since it depends on the true density P0. However it can be used as
a benchmark to quantify the quality of our model selection procedure: in the
simulation performed in paragraph 4.3.2, we compare the Hellinger risk of the
selected estimator P̂(K̂n, Ŝn)

to the oracle risk.

3. New criteria and non asymptotic risk bounds

3.1. Main result

Our main theorem provides an oracle inequality. It links the Hellinger risk
of the selected estimator to the Kullback-Leibler divergence KL between the
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true density and each model in the models collection. Unlike KL which is
not a metric, the Hellinger distance h permits to take advantage of the metric
properties (metric entropy) of the models.

Theorem 1. We consider the collection M of models defined above, and a
corresponding collection of ρ-MLEs

(
P̂(K,S)

)
(K,S)∈M

, which means that for every

(K,S) ∈M

γn
(
P̂(K,S)

)
≤ inf

Q∈M(K,S)

γn(Q) + ρ.

Let M = sup1≤l≤LAl and ξ = 4
√
ML

2(1+3
√
2)

L−1
. Assume that ξ < 1 or n > ξ2K.

There exists absolute constants κ and C such that whenever

penn(K,S) ≥ κ

(
5 +

√
max

(
1

2
lnn+

1

2
lnL,

ln 2

2
+ lnL

))2

D(K,S)

n
(12)

for every (K,S) ∈ M, then the modelM(K̂n,Ŝn) where
(
K̂n, Ŝn

)
minimizes

crit(K,S) = γn
(
P̂(K,S)

)
+ penn(K,S)

over M exists and moreover, whatever the underlying probability P0,

EP0

[
h2
(
P0, P̂(K̂n,Ŝn)

)]

≤ C

(
inf

(K,S)∈M

(
KL(P0,M(K,S)) + penn(K,S)

)
+ ρ+

(3/4)L

n

)

where, for every (K,S) ∈ M, KL
(
P0,M(K,S)

)
= infQ∈M(K,S)

KL(P0, Q).

The condition ξ < 1 is used in the proof to avoid more complicated calcula-
tions. In practice, ξ is very likely to be smaller than 1 for L not too small.

Note that as soon as n ≥ 2L, (12) is simplified in the following way

penn(K,S) ≥ κ

(
5 +

√
1

2
lnn+

1

2
lnL

)2
D(K,S)

n
.

The leading term for large n is
lnn

2

D(K,S)

n
, which is the penalty function of

BIC. As a consequence, we can apply Theorem 2 from [4]: when the underlying
distribution P0 belongs to one of the competing models, the smallest model
(K0, S0) containing P0 is selected with probability tending to 1 as n goes to
infinity.

Such a penalty is not surprising in our context: it is in fact very similar to
the one obtained in [8] in a Gaussian mixture framework.

Sharp estimates of κ are not available. Further, Theorem 1 is too conserva-
tive in practice, and leads to an over-penalized criterion which is outperformed
by smaller penalties. So it is mainly used to suggest the shape of the penalty
function

penn(K,S) = λ
D(K,S)

n
(13)
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where λ is a parameter to be chosen depending on n and the collection M —
but not on (K,S). Slope heuristics [6, 7] can be used in practice to calibrate λ:
this is done in Section 4, where we use change-point detection [9] in relation to
slope heuristics.

Since h2 is upper bounded by 2, the non-asymptotic feature of Theorem 1 is
interesting when n is large enough with respect to D(K,S). However, even with
small values of n, the simulations performed in Subsection 4.3 show that the
penalized criterion calibrated using the slope heuristics keep good behaviors.

3.2. A general tool for model selection

Theorem 1 is obtained from [5, Theorem 7.11]. This last result deals with
model selection problems by proposing penalty functions related to geometrical
properties of the models, namely metric entropy with bracketing for Hellinger
distance.

The framework here is the following. We consider some measurable space
(A,A), and µ a σ-finite positive measure on A. A collection of models (Mm)m∈M

is given, where each modelMm is a set of probability density functions s with
respect to µ. The following relation permits us to extend the definition of h to
positive functions s or t whose integral is finite but not necessary 1. Denoting√
s the function defined by

√
s(x) =

√
s(x), and by ‖ · ‖2 the usual norm in

L2(µ), then
h(s, t) = ‖√s−

√
t‖2.

Let us now recall the definition of metric entropy with bracketing. Consider
some collection F of measurable functions on A, and d one of the following
metrics on F : h, ‖·‖1, or ‖·‖2. A bracket [l, u] is the collection of all measurable
functions f such that l ≤ f ≤ u. Its d-diameter is the distance d(u, l). Then,
for every positive number ε, we denote by N[·](ε, F, d) the minimal number of
brackets with d-diameter not larger than ε which are needed to cover F . The
d-entropy with bracketing of F is defined as the logarithm of N[·](ε, F, d), and
is denoted by H[·](ε, F, d).

We assume that for each model Mm the square entropy with bracketing√
H[·](ε,Mm,h) is integrable at 0. Let us consider some function φm on R+

with the following properties

(I). φm is nondecreasing, x 7→ φm(x)/x is non-increasing on (0,+∞) and for
every σ ∈ R+ and every u ∈Mm

∫ σ

0

√
H[·] (x, Sm(u, σ),h)dx ≤ φm(σ),

where Sm(u, σ) =
{
t ∈ Mm : ‖

√
t−√u‖2 ≤ σ

}
.

(I) is verified in particular with φm(σ) =
∫ σ

0

√
H[·] (x,Mm,h)dx.

In order to avoid measurability problems, we suppose that for each m ∈ M,
the following separability condition is verified forMm:

(M). There exists some countable subset M′
m of Mm and a set A′ ⊂ A with

µ(A′) = µ(A) such that for every t ∈ Mm, there exists some sequence
(tk)k≥1 of elements ofM′

m such that for every x ∈ A′, ln(tk(x)) tends to
ln(t(x)) as k tends to infinity.
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Theorem 2. Let X1, . . . , Xn be iid random variables with unknown density
s with respect to some positive measure µ. Let {Mm}m∈M be some at most
countable collection of models, each fulfilling (M). We consider a corresponding
collection of ρ-MLEs (ŝm)m∈M. Let {xm}m∈M be some family of nonnegative
numbers such that ∑

m∈M

e−xm = Σ <∞,

and for every m ∈M considering φm with property (i) define σm as the unique
positive solution of the equation

φm(σ) =
√
nσ2. (14)

Let penn : M→ R+ and consider the penalized log-likelihood criterion

crit(m) = γn (ŝm) + penn(m).

Then, there exists some absolute constants κ and C such that whenever

penn(m) ≥ κ
(
σ2
m +

xm

n

)
for every m ∈M,

some random variable m̂ minimizing crit over M exists and moreover, whatever
the density s

Es

[
h2 (s, ŝm̂)

]
≤ C

(
inf
m∈M

(KL (s,Mm) + penn(m)) + ρ+
Σ

n

)
.

In Theorem 2, σ2
m has the role of a variance term of ŝm, while the weights

xm take into account the number of models m having the same dimension.

3.3. Proof of Theorem 1

In order to apply Theorem 2, we need to compute metric entropy with
bracketing of each modelM(K,S). This is done in the following result, which is
proved in AppendixA.

Proposition 1 (Bracketing entropy of a model). Let η : R+ → R+ be the
increasing convex function defined by

η(ε) = (1 + ε) (1 +
√
2 ε (2 + ε))L − 1. (15)

For any choice of K and S,M(K,S) fulfills (M). For any ε ∈ (0, 1),

H[·]
(
η(ε),M(K,S),h

)
≤ D(K,S) ln

(
1

ε

)
+ C(K,S),

where

C(K,S) =
1

2

(
ln(2πe)D(K,S) + ln(4πe) (1 + L+ (K − 1)|S|)

+ ln(K + 1) +

L∑

l=1

ln(Al + 1) + (K − 1)
∑

l∈S

ln(Al + 1).

) (16)
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C(K,S) is a technical quantity measuring the complexity of a modelM(K,S).
In the next step we establish an expression for φm. All following results are

proved in AppendixB.

Proposition 2. For any choice of m = (K,S), the function φm defined on
(0, η(1)] by

φm(σ) =
(
2
√
ln 2

√
D(K,S) +

√
C(K,S) −D(K,S) ln η−1(σ)

)
σ

fulfills (I).

We do not define φm for σ bigger than η(1) = 2(1+3
√
2)L−1, to avoid more

complicated expressions. This is why a condition on ξ appears in the following
lemma:

Lemma 1. Let M = sup
1≤l≤L

Al, and ξ =
4
√
M
√
L

2(1 + 3
√
2)L − 1

. Then, for all n ≥ 1

if ξ < 1, and for n > ξ2K otherwise, the solution σm of (14) verifies σm < η(1).

From Proposition 2 we can deduce an upper bound for σm, with a similar
reasoning to [8]. First, σm ≤ η(1) entails η−1 (σm) ≤ 1, and we obtain the lower
bound σm ≥ σ̃m, where

σ̃m =
1√
n

(
2
√
ln 2

√
Dm +

√
Cm

)
. (17)

This can be used to get an upper bound

σm ≤
1√
n

(
2
√
ln 2

√
Dm +

√
Cm −Dm ln η−1 (σ̃m)

)
. (18)

Let us now choose the weights xm. If we take something bigger than nσ2
m,

this will change the shape of the penalty in Theorem 2. We define

xm = (ln 2)Dm.

The following Lemma shows that this choice is suitable.

Lemma 2. For any modelMm, with m ∈M as above, let us set xm = (ln 2)Dm.
Then ∑

m∈M

e−xm ≤ (3/4)L.

To express the penalty function we have to lower bound η−1 (σ̃m). This is
done in following Lemma.

Lemma 3. Using the preceding notations,

σ2
m +

xm

n
≤ D(K,S)

n

(
5 +

√
max

(
1

2
lnn+

1

2
lnL,

ln 2

2
+ lnL

))2

.

This ends the proof of Theorem 1. Let us now introduce a complementary
argument.
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4. In practice

In real datasets the numbers Al of possible alleles at each locus l are not
necessarily known. The numbers Âl of observed alleles can be used instead.
In fact, the MLE estimator select a density with null weight on non-observed
alleles. Then, in each model M(K,S), an approximated MLE estimator can be
computed thanks to the Expectation-Maximization (EM) algorithm (see [13]).

The other two points that have to be done before reaching the final estimator
P̂(K̂n, Ŝn)

are the choice of the penalty function, and the sub-collection of models

on which the EM algorithm will be used. These two points are discussed in
Subsections 4.1 and 4.2. Then simulations are presented in Subsection 4.3.

4.1. Slope heuristics and Dimension jump

Theorem 1 suggests to take a penalty function of the shape (13), defined
modulo a multiplicative constant λ which has to be calibrated. Slope heuristics,
as presented in [6, 7], provide a practical method to find an optimal penalty
penopt(m) = λoptDm/n. These heuristics are based on the conjecture that
there exists a minimal penalty penmin(m) = λminDm/n required for the model
selection procedure to work: when the penalty is smaller that penmin, the
selected model is one of the most complex models, and the risk of the selected
estimator is large. On the contrary, when the penalty is larger than penmin, the
complexity of the selected model is much smaller. Then the optimal penalty is
close to twice the minimal penalty:

penopt (m) ≈ 2λminDm/n.

The name “slope heuristics” comes from λmin being the slope of the linear

regression γn

(
P̂m

)
∼ Dm/n for a certain sub-collection of the most competing

models m. For example, on the left panel of Figure 1 below, a slope is visible
for the models containing the true modelM(K0, S0).

Instead of estimating λmin by linear regression, another method is jump
detection. Suppose we have at hand a reasonable grid λ1 < . . . < λr of candidate
estimates of λmin, and a sub-collectionMex of most competitive models. Each λi

leads to a selected model m̂i with dimension Dm̂i
. If you plot Dm̂i

as a function
of λi, λmin is expected to lie at the locus of the biggest jump. However, the
right panel of Figure 1 illustrates an important point: in that example the
biggest jump is at λ ≈ 5.1, but the optimal value of λmin is around 0.9, which
corresponds to several successive jumps. We propose an improved version of the
dimension jump method of [7], based on a sliding window: we consider at a time
all jumps in an window of h ≥ 1 following intervals in the grid. Algorithm 1
below describes the procedure.

4.2. Sub-collection of models for calibration

For a given maximum value Kmax of the number of clusters, the number
of models under competition is equal to 1 + (Kmax − 1) ∗

(
2L − 1

)
. Since this

number is huge in most situations, it is very painful to consider all competing
models for calibration of the constant λ. On the other hand, we need enough
models to ensure that there is a clear jump in the sequence of selected dimension.
We consider the modified backward-stepwise algorithm proposed in [4], which

10
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Figure 1: Two ways to compute the slope, on a simulated sample of 1000 individuals, with
8 clustering loci among 10, and 5 populations. Models have been explored via the modified
backward-stepwise described in subsection 4.2, the number K of clusters varying from 1 to
10. The size of the sliding window is 0.15.

Algorithm 1 Calibration of Penalty
(
Mex, (λi)i=1,...,r , h

)

for i = 1 to nλ do

m̂i ← argmin
m∈Mex

{
Pn

(
− ln P̂m

)
+ λiDm

}

end for

ijump ← min argmax
i∈{h+1,...,r}

{
Dm̂i−h

−Dm̂i

}

iinit ← max
{
j ∈ [ijump − h, ijump − 1] , Dm̂j

− Dm̂ijump
= Dm̂ijump−h

−
Dm̂ijump

}

λ̂min ←
αiinit

+ αijump

2
return λ̂min

enables to gather the most competitive models among all possible S for a given
number K of clusters and a given penalty function penn. It gives also the choice
to add a complementary exploration step based on a similarly modified forward
strategy. We will refer to this algorithm as explorer (K, penn).

Since we do not know the final penalty during the exploration step, we
consider a reasonable grid 1

2n = λ1 < . . . < λr = lnn
n containing both penalty

functions associated to AIC and BIC. To each value λi of the grid is associated
a penalty function penλi

. We launch explorer
(
K, penλi

)
for all values of K

in {1, . . . , Kmax} and for all values of λi of the above grid, and we gather the
explored models inMex. This sub-collection seemly contains the most competive
models and it is then used to calibrate λ.

11



4.3. Numerical experiments

Our proposed procedure with a data-driven calibration of the penalty func-
tion has been implemented in the software MixMoGenD (Mixture Model using
Genotypic Data), which already proposed a selection procedure based on asymp-
totic criteria BIC and AIC (see [4]). Here, we conduct numerical experiments
on simulated datasets for performances assessment of the new non asymptotic
criterion with respect to BIC and AIC. The penalty functions of these last
criteria are respectively defined by

penBIC (m) =
lnn

2n
·Dm;

penAIC (m) =
1

n
·Dm.

We present two experiments. The first one considers the consistency of the
selected model: we study how the procedure retrieves the main features of the
true model as the number of individuals in the datasets increases. In the second
one, we are rather interested in the density estimation: we compare the risk of
the selected estimator to the oracle risk.

4.3.1. Consistency performances

In this experiment we consider a setting with L = 10 loci of 10 alleles
each. We chose a parameter with K0 = 5 populations of equal probability.
The allelic frequencies have been chosen such that the genetic differentiation
between the populations is decreasing with the locus number. In the first 6
loci, the populations are more separated. In the following 2 loci, the popula-
tions are poorly differentiated. In the last 2 loci, the alleles follow the same
uniform distribution in all populations. The whole parameter is available at
http://www.math.u-psud.fr/~toussile/.

We considered different values n of the sample size in [50, 900] and for each
of them, 10 datasets have been simulated. The results are summarized in Figure
2. The left panel gives the proportion of selecting the subset Ŝn of clustering
variables containing the first 6 variables, which are the most genetically differ-
entiated variables. The right panel gives the proportion of selected models with
K̂n = K0.

In this experiment, the AIC seems to be the best criterion for variable selec-
tion; however the different between AIC and the new criterion is not significant.
It also appears that AIC estimates the number of clusters better than the other
criteria for small sample sizes (around n = 100 and n = 200), but it overesti-
mates this number from n = 500. On the contrary, the new criterion perfectly
estimates the number of clusters for sample sizes ≥ 300. BIC performs poorly
for both variables selection and classification on datasets with small sizes. As
expected, the data-driven calibration of the penalty function improves globally
the performances of the selection procedure, and it gives thus an answer to the
question “Which penalty for which sample size?”.

It may happen that the results obtained on small sample sizes change a
little from one run to another. In fact, the EM algorithm can miss the global
maximum on such sample sizes, in particular in models of higher dimension. In
our experiments, it is probably the case with some datasets of size n ≤ 300,
when the number of free parameters in the simulated model is ≥ 310.

12
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Figure 2: The figure in the left panel gives the proportion of selected models with Ŝn ⊇
{1, . . . , 6}, and the one in the right gives the proportion of selected models with K̂n = K0,
versus the sample size.

4.3.2. Oracle performances of the estimator

Since the new criterion is designed for density estimation, it is interesting to
compare the associated estimator to the oracle for Hellinger risk. Recall that
the oracle is the estimator associated to the model indexed by the minimizer

(K∗, S∗) of the risk E

[
h2
(
P0, P̂(K, S)

)]
over the collection of models M.

In this experiment, we consider simulated datasets with reduced variability
in order to reduce the computation time. The parameter underlying the data
admits L = 6 loci, 3 alleles for each locus, and K0 = 3 populations with equal
probability. The allelic frequencies have been chosen in such a way that the
genetic differentiation between the population is significant on the first 3 loci,
very small on the 4th and 5th loci, while the alleles of the 6th locus follow
the uniform distribution in all populations. Thus the true model is defined
by K0 = 3 and S0 = {1, 2, 3, 4, 5}. The whole parameter is available at
http://www.math.u-psud.fr/~toussile/.

We estimated the oracle using a Monte Carlo procedure on 100 simulated
datasets of size 500 each, and got K̂∗ = 3 and Ŝ∗ = {1, 2, 3, 4}. The results
we obtained are summarized in Figure 3 and Table 1.

AIC BIC

BIC < 4.4e− 08 -
Cte*Dim < 1.1e− 05 < 2e− 16

Table 1: Pairwise student tests comparing the means of the h
2

(
P0, P̂(K̂n, Ŝn)

)
.

The worst behavior comes from BIC and it is not a surprise for two main
reasons. First BIC is designed to find the true model which is different to the
oracle in our experiments. Second, it is based on asymptotic approximation and
then may requires large samples. In contrary, compared to AIC and BIC, the
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Figure 3: The left panel gives the boxplots, means and their 95% confident intervals, for

h
2

(
P0, P̂(K̂n, Ŝn)

)
; the right panel gives the percentages of selection of the estimated oracle

(
K̂∗, Ŝ∗

)
; three criteria have been used: AIC, BIC, and Cte*Dim which denotes the new

criterion with data-driven calibration of the penalty function.

new criterion with data-driven calibration of the penalty function is significantly
the best in the sense of Hellinger risk and the capacity of selecting the oracle.
Recall that both AIC and the new criterion are designed to find the oracle (see
Table 1). But like BIC, AIC is based on asymptotic approximations. So the
advantage of the new criterion over AIC is probably that it is designed in a non
asymptotic perspective.

5. Conclusion

In this paper, we have considered a model selection via penalization, which
performs simultaneously a variables selection and a detection of the number of
populations, in the specific framework of multilocus genotypic data. Our main
result provides an oracle inquality, under the condition of some lower bound
on the penalty function. The weakness of such a result is that the associated
penalized criterion is not directly usable. Nevertheless, it suggests a shape of the
penalty function which is of the form penn(m) = λDm/n, where λ = λ (n, M)
is a parameter which depends on the data and the collection of the competing
models. In practice λ is calibrated via the slope heuristics.

In the simulated experiments we conducted, the new criterion with penalty
calibration shows good behaviors for density estimation as well as for the selec-
tion of the true model. It also performs well both when the number of individ-
uals is large and when it is small. This gives an answer to the question “Which
criterion for with sample size?”

In the modeling we considered, the model dimension grows rapidly. In real
experiments the number of individuals can be small, so other modeling with
reduced dimension may be needed. We currently work on models which cluster
the populations differently at each locus, as well as models which allocate the
same probability to several alleles.
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AppendixA. Metric entropy with bracketing

Let us state several results about entropy with bracketing, which will be
used as tools to prove Proposition 1. They are mainly adapted from [14].

We consider a measurable space (A,A), and µ a σ-finite positive measure on
A. We consider a modelM, which is a set of probability density functions with
respect to µ. All functions considered in the following will be positive functions
in L1(µ).

Lemma 4. Let ε > 0. Let [l, u] be a bracket in L1(µ), with h-diameter less
than ε, and containing s, a probability density function with respect to µ. Then

∫
l dµ ≤ 1 ≤

∫
u dµ ≤ (1 + ε)2.

Proof. First two inequalities are immediate, from l ≤ s ≤ u. For the last one,
we use triangle inequality in L2(µ), and the definition of h:

∫
u dµ =

∫ (√
l +
(√

u−
√
l
))2

dµ

≤
(√∫

l dµ+ h(u, l)

)2

≤ (1 + ε)2.

Lemma 5 (Bracketing entropy of product densities). Let n ≥ 2, and consider
a collection (Ai,Ai, µi)1≤i≤n of measured space. For any 1 ≤ i ≤ n, let Mi be
a collection of probability density functions on Ai fulfilling (M). Consider the
product model

M = {s = ⊗n
i=1si; ∀1 ≤ i ≤ n, si ∈Mi} .

M contains density functions on A =
∏n

i=1 Ai with respect to µ = ⊗n
i=1µi.

M fulfills (M) and, for any δ > 0, if ε ≥ (1 + δ)n − 1 then

H[·] (ε,M,h) ≤
n∑

i=1

H[·] (δ,Mi,h) .

Proof. Let us consider some s = ⊗n
i=1si in M. For 1 ≤ i ≤ n, letM′

i, A
′
i and

a sequence (ti,k)k≥1 be such as needed for Mi to verify (M). Then, with the
choice tk = ⊗n

i=1ti,k and A′ =
∏n

i=1 A
′
i, (M) is true forM too.

Let δ > 0. For any 1 ≤ i ≤ n, let [li, ui] a bracket containing si, with
h-diameter less than δ. Let us set l = ⊗n

i=1li, and u = ⊗n
i=1ui. Then s belongs

to bracket [l, u]. We can compute its h-diameter:

h(l, u) =

√√√√
∫

A

( n∑

j=1

( j−1∏

i=1

√
li

n∏

i=j

√
ui −

j∏

i=1

√
li

n∏

i=j+1

√
ui

))2

dµ

≤
n∑

j=1

j−1∏

i=1

√∫

Ai

li dµi

n∏

i=j+1

√∫

Ai

ui dµi h(lj , uj)

≤
n∑

j=1

δ (1 + δ)n−j = (1 + δ)n − 1
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thanks to triangle inequality and Lemma 4 (empty products equal 1).
Let ε ≥ (1 + δ)n − 1. For any 1 ≤ i ≤ n consider a minimal covering of

Mi with brackets of h-diameter less than δ. With the previous process we can
build a covering ofM with brackets of h-diameter less than ε. So the minimal
cardinality of such a covering verifies

N[·] (ε,M,h) ≤
n∏

i=1

N[·] (δ,Mi,h) .

Lemma 6 (Bracketing entropy of mixture densities). Let n ≥ 2, and for any
1 ≤ i ≤ n, let Mi be a set of probability density functions, all on the same
measured space (A,A, µ) and fulfilling (M). Let us consider the set of all mixture
densities

M =

{
n∑

i=1

πisi : π = (πi)1≤i≤n ∈ Sn−1; ∀1 ≤ i ≤ n, si ∈Mi

}
.

Then M fulfills (M), and for any δ > 0, η > 0, and ε ≥ δ + η + δη,

H[·] (ε,M,h) ≤ H[·] (δ, Sn−1,h) +
n∑

i=1

H[·] (η,Mi,h) .

Proof. First, let us note that Sn−1 is separable for its usual topology. Then,
checking thatM fulfills (M) is easy, and we do not explicit it.

We do not develop either the proof of last relation, because it is exactly the
same as in [14, proof of Theorem 2]. Let us just say that at the end we get,
using our Lemma 4 instead of [14, Lemma 3],

h
2(l, u) ≤ η2 (1 + δ)2 + δ2 + 2η δ (1 + δ)

≤ ε2.

Next result is just Lemma 2 from [14]:

Lemma 7 (Bracketing entropy of the simplex). Let n ≥ 2 be an integer. Let µ
be the counting measure on {1, . . . , n}. We identify any probability on {1, . . . , n}
with its density s ∈ Sn−1 with respect to µ. Then, if 0 < δ ≤ 1,

H[·] (δ, Sn−1,h) ≤ (n− 1) ln

(
1

δ

)
+

ln 2 + ln(n+ 1) + n ln(2πe)

2
.

Preceding lemmas can be seen as a toolbox to calculate metric entropy with
bracketing of complex models from the metric entropy of simpler elements. In
our framework such an element is the collection of all Hardy-Weinberg genotype
distributions at a given locus.

Lemma 8 (Bracketing entropy of Hardy-Weinberg genotype distributions).
Suppose that, at some locus l, there exist Al ≥ 2 different alleles. Let Ωl be
the collection of all genotype distributions following Hardy-Weinberg model (2).
Then Ωl fulfills (M), and for any δ > 0 and ε ≥

√
2 δ (2 + δ),

H[·] (ε,Ωl,h) ≤ H[·] (δ, SAl−1,h) .
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Proof. (2) permits to associate a parameter α = (α1, . . . , αAl
) ∈ SAl−1 to any

density in Ωl. More generally, for any α ∈ [0, 1]Al , we define a function

dα(x) = (2− 1x1=x2)αx1αx2

on the set of all genotypes x = {x1, x2} on Al alleles. Consider some δ > 0 and
dα ∈ Ωl. Let [l, u] be some bracket containing α, with h-diameter less than δ.
Then dα belongs to the bracket [dl, du]. Let us calculate its diameter.

h2(dl, du) =

Al∑

a=1

(ua − la)
2
+

∑

1≤a<b≤Al

(√
2uaub −

√
2lalb

)2

≤ 2

Al∑

a=1

Al∑

b=1

(√
uaub −

√
ualb +

√
ualb −

√
lalb

)2

≤ 2



√√√√

Al∑

a=1

ua

Al∑

b=1

(√
ub −

√
lb

)2
+

√√√√
Al∑

a=1

(√
ua −

√
la

)2 Al∑

b=1

lb




2

≤ 2 ((1 + δ) δ + δ)
2

using Lemma 4. So h(dl, du) ≤
√
2 δ (2 + δ).

Let (α(k))k≥1 a sequence of elements of SAl−1 ∩ QAl , which tends to α for
the usual topology as k tends to infinity. Then, for any genotype x = {x1, x2},
ln dα(k)(x) tends to ln dα(x). Therefore Ωl fulfills (M).

Proof of Proposition 1. Using (4) we see that a probability P(K,S)

(
· |θ
)
is the

product of a mixture density corresponding to the loci in S, and a product
density in

⊗
l/∈S Ωl for the other loci. Let us callM the collection of all mixtures

of K densities in
⊗

l∈S Ωl.
We first deal with the non clustering loci. Using Lemma 5 and Lemma 8,⊗

l/∈S Ωl fulfills (M). For any ε ∈ (0, 1),

H[·]

(
(1 + 2

√
2ε+

√
2ε2)L−|S| − 1,

⊗

l/∈S

Ωl,h

)
≤
∑

l/∈S

H[·]
(
2
√
2ε+

√
2ε2,Ωl,h

)

≤
∑

l/∈S

H[·] (ε, SAl−1,h) .

On the same way

H[·]

(
(1 + 2

√
2ε+

√
2ε2)|S| − 1,

⊗

l∈S

Ωl,h

)
≤
∑

l∈S

H[·] (ε, SAl−1,h) .

We can apply Lemma 6, and get thatM fulfills (M) and

H[·]
(
(1 + 2

√
2ε+

√
2ε2)|S|(1 + ε)− 1,M,h

)

≤ H[·] (ε, SK−1,h) +K
∑

l∈S

H[·] (ε, SAl−1,h) .
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Lemma 5 again, applied toM and
⊗

l/∈S Ωl, gives thatM(K,S) fulfills (M),
and for any ε ∈ (0, 1),

H[·]
(
η(ε),M(K,S),h

)

≤ H[·] (ε, SK−1,h) +K
∑

l∈S

H[·] (ε, SAl−1,h) +
∑

l/∈S

H[·] (ε, SAl−1,h) .

At this point, we use Lemma 7:

H[·]
(
η(ε),M(K,S),h

)
≤
(
ln

(
1

ε

)
+

ln(2πe)

2

)
D(K,S)

+
ln(n+ 1) + ln(4πe)

2
(1 +K|S|+ L− |S|) .

AppendixB. Establishing the penalty

First, we need to establish some properties of function η.

Lemma 9 (Properties of function η). We consider the function η defined in
Proposition 1, from R+ into R+. η is nonnegative, increasing and convex.
η(0) = 0 and η′(0) = 2

√
2L+ 1.

Proof. Setting u(x) = 1+2
√
2x+

√
2x2, we can write η(x) = (1+x)u(x)L− 1.

Then, calculus gives

η′(x) = (2L+ 1)u(x)L + 2L (
√
2− 1)u(x)L−1.

Since u is positive on (0,+∞), η is increasing. But η(0) = 0, so η is nonnegative
on R+. We also have η′(0) = 2

√
2L+ 1. Next,

η′′(x) = 2
√
2 (1 + x)

(
(2L2 + L)u(x)L−1 + 2L (L− 1) (

√
2− 1)u(x)L−2

)

which is positive on R+.

Proof of Proposition 2. Let 0 < σ ≤ η(1), and δ = η−1(σ). Then, for any
u ∈Mm,

∫ σ

0

√
H[·] (x,Mm(u, σ),h)dx

≤
∞∑

j=1

∫ η(2−j+1δ)

η(2−jδ)

√
H[·] (x,Mm,h)dx

≤
∞∑

j=1

(
η
(
2−j+1δ

)
− η

(
2−jδ

))√
Cm −Dm ln δ +Dmj ln 2

≤ η(δ)
√

Cm −Dm ln δ

+
√
Dm ln 2

∞∑

j=1

√
j
(
η
(
2−j+1δ

)
− η

(
2−jδ

))
.
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We deal with the last term of this sum in the following way:

∞∑

j=1

√
j
(
η
(
2−j+1δ

)
− η

(
2−jδ

))
≤

∞∑

j=1

j
(
η
(
2−j+1δ

)
− η

(
2−jδ

))

=

∞∑

k=1

η
(
2−k+1δ

)

≤
∞∑

k=1

2−k+1η(δ) = 2σ.

So ∫ σ

0

√
H[·] (x,Mm(u, σ),h)dx ≤ φm(σ).

Since η is increasing, φm(x)/x is decreasing. To check that φm is nondecreasing,
it is enough to prove that function f(x) = x

√
b− ln η−1(x) is nondecreasing on

(0, η(1)], where b = Cm

Dm
. From (16), we get Cm > ln(2πe)

2 Dm > Dm, so b > 1.
Calculus gives

f ′(x) =
√
b− ln η−1(x)− x

2η−1(x) η′ (η−1(x))
√
b− ln η−1(x)

.

η is convex on (0, 1], and that entails η(x)
x η′(x) ≤ 1. So, for any y ∈ (0, 1],

√
b− ln y f ′ (η(y)) ≥ b− ln y − 1 > 0.

Proof of Lemma 1. (I) entails that, for any σ > 0 such that
√
nσ2 > φm(σ),

σ > σm. So, we look when
√
n >

φm(η(1))

η2(1)
.

For all 1 ≤ l ≤ L, Al ≥ 2. Since 1
2 (ln 2+ ln(1+ x)) ≤ x− 1 for x ≥ 2, we get

the following bounds

1 + ln(2π)

2
Dm ≤ Cm ≤

(
2 + ln(2π) +

ln 2

2

)
Dm. (B.1)

Therefore

φm(η(1))

η2(1)
<

4
√
Dm

2(1 + 3
√
2)L − 1

On another hand, we have
Dm ≤ K LM.

So, since φm(x)/x2 is decreasing, σm < η(1) as soon as n > ξ2K. This is true
when ξ < 1, since K ≤ n: the number of clusters is not bigger than the number
of individuals.

Proof of Lemma 2. We define δ = 1/2, from which e−xm = δDm . If we consider
the collection M, we can discern two cases: K = 1 and S = ∅, or K ≥ 2 and
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S 6= ∅. So, using (9),

∑

m∈M

e−xm = δ
∑L

l=1(Al−1)


1 +

∑

S 6=∅

∑

K≥2

(
δ1+

∑
l∈S

(Al−1)
)K−1




= δ
∑L

l=1(Al−1)


1 +

∑

S 6=∅

δ1+
∑

l∈S(Al−1)

1− δ1+
∑

l∈S
(Al−1)




≤ δL


1 +

δ

1− δ

∑

S 6=∅
δ|S|




= δL(1 + δ)L.

Proof of Lemma 3. Since η is a convex function and η′(0) = 2
√
2L+1, we have

η−1(2) ≤ 2

2
√
2L+ 1

≤ 1√
2L

.

Then

η

(
1√
2L

)
≤ 2

(
1 +

2 + 1/
√
2

L

)L

≤ 2 exp

(
2 +

1√
2

)

and, using again the convexity of η, for any 0 ≤ x ≤ 2,

η−1(2) ≥ 2√
2L

(
η

(
1√
2L

))−1

≥ 1√
2L

exp

{
−
(
2 +

1√
2

)}

η−1(x) ≥ x

2
η−1(2) ≥ x

2
√
2L

exp

{
−
(
2 +

1√
2

)}
.

So for any 0 ≤ x ≤ η(1),

− ln η−1(x) ≤ 2 +
1√
2
+

3 ln 2

2
+ lnL− lnmin(x, 2).

On another hand, (17) and (B.1) entail

σ̃m ≥ C1

√
Dm

n
(B.2)

where C1 = 2
√
ln 2 +

√
1+ln(2π)

2 > 2
√
2. Since Dm ≥ L,

− ln η−1 (σ̃m) ≤ 2 +
1√
2
+ max

(
1

2
lnn+

1

2
lnL,

ln 2

2
+ lnL

)
.
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Therefore, using (18),

σ2
m +

xm

n
≤ Dm

n


1

2
+

(
2
√
ln 2 +

√
2 + ln(2π) +

ln 2

2
− ln η−1 (σ̃m)

)2



≤ Dm

n

(
1√
2
+ 2
√
ln 2 +

√

4 + ln(2π) +

√
2 + ln 2

2

+

√
max

(
lnn+ lnL

2
,
ln 2

2
+ lnL

))2

≤ Dm

n

(
5 +

√
max

(
lnn+ lnL

2
,
ln 2

2
+ lnL

))2

.
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