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Introduction

The Korteweg-de Vries (KdV) equation was first derived as a model for the propagation of small amplitude long water waves along a channel [START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF][START_REF] Jager | On the origin of the Korteweg-de Vries equation[END_REF][START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF]. It has been intensively studied from various aspects for both mathematics and physics since the 1960s when solitons were discovered through solving the KdV equation, and the inverse scattering method, a so-called nonlinear Fourier transform, was invented to seek solitons [START_REF] Gardner | Method for solving the Kortewegde Vries equation[END_REF][START_REF] Miura | The Korteweg-de Vries equation: A survey of results[END_REF]. It is now well known that the KdV equation is not only a good model for water waves but also a very useful approximation model in nonlinear studies whenever one wishes to include and balance weak nonlinear and dispersive effects.

The initial boundary value problems (IBVP) arise naturally in modeling small-amplitude long waves in a channel with a wavemaker mounted at one end [START_REF] Bona | The Korteweg-de Vries equation,posed in a quarter-plane[END_REF][START_REF] Bona | An evaluation of a model equation for water waves[END_REF][START_REF] Bona | A mathematical model for long waves generated by wavemakers in non-linear dispersive systems[END_REF][START_REF] Rosier | Control of the surface of a fluid by a wavemaker[END_REF]. Such mathematical formulations have received considerable attention in the past, and a satisfactory theory of global wellposedness is available for initial and boundary conditions satisfying physically relevant smoothness and consistency assumptions (see e.g. [START_REF] Bona | The Korteweg-de Vries equation,posed in a quarter-plane[END_REF][START_REF] Bona | A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane[END_REF][START_REF] Bona | Boundary smoothing properties of the Korteweg-de Vries equation in a quarter plane and applications[END_REF][START_REF] Bona | Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane[END_REF][START_REF] Colliander | The generalized Korteweg-de Vries equation on the half line[END_REF][START_REF] Faminskii | A mixed problem in a semistrip for the Korteweg-de Vries equation and its generalizations[END_REF][START_REF] Faminskii | An initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in fractional-order Sobolev spaces[END_REF] and the references therein).

The analysis of the long-time behavior of IBVP on the quarter-plane for KdV has also received considerable attention over recent years, and a review of some of the results related to the issues we address here can be found in [START_REF] Bona | A forced oscillations of a damped Korteweg-de Vries equation in a quarter plane[END_REF][START_REF] Bona | Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane[END_REF][START_REF] Leach | The large-time development of the solution to an initial-value problem for the Korteweg-de Vries equation. I. Initial data has a discontinuous expansive step[END_REF]. For stabilization and controllability issues on the half line, we refer the reader to [START_REF] Linares | Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane[END_REF] and [START_REF] Rosier | Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line[END_REF][START_REF] Rosier | A fundamental solution supported in a strip for a dispersive equation[END_REF], respectively.

In this work, we are concerned with the asymptotic behavior of the solutions of the IBVP for the KdV equation posed on the positive half line under the presence of a localized damping represented by the function a; that is, (1)      u t + u x + u xxx + uu x + a(x)u = 0, x, t ∈ R + , u(0, t) = 0, t > 0, u(x, 0) = u 0 (x), x > 0.

1 Assuming a(x) ≥ 0 a.e. and that u(., t) ∈ H 3 (R + ), it follows from a simple computation that

dE dt = - ∞ 0 a(x)|u(x, t)| 2 dx - 1 2 |u x (0, t)| 2 (2)
where

E(t) = 1 2 ∞ 0 |u(x, t)| 2 dx (3)
is the total energy associated with [START_REF] Bona | The Korteweg-de Vries equation,posed in a quarter-plane[END_REF]. Then, we see that the term a(x)u plays the role of a feedback damping mechanism and, consequently, it is natural to wonder whether the solutions of (1) tend to zero as t → ∞ and under what rate they decay. When a(x) > a 0 > 0 almost everywhere in R + , it is very simple to prove that E(t) converges to zero as t tends to infinity. The problem of stabilization when the damping is effective only in a subset of the domain is much more subtle. The following result was obtained in [START_REF] Linares | Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane[END_REF].

Theorem 1.1 Assume that the function a = a(x) satisfies the following property [START_REF] Bona | A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane[END_REF] a ∈ L ∞ (R + ), a ≥ 0 a.e. in R + and a(x) ≥ a 0 > 0 a.e. in (x 0 , +∞)

for some numbers a 0 , x 0 > 0. Then for all R > 0 there exist two numbers C > 0 and ν > 0 such that for all u 0 ∈ L 2 (R + ) with ||u 0 || L 2 (R + ) ≤ R, the solution u of (1) satisfies

(5) ||u(t)|| L 2 (R + ) ≤ Ce -νt ||u 0 || L 2 (R + ) •
Actually, Theorem 1.1 was proved in [START_REF] Linares | Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane[END_REF] under the additional hypothesis that (6) a(x) ≥ a 0 a.e. in (0, δ)

for some δ > 0, but (6) may be dropped by replacing the unique continuation property [START_REF] Linares | Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane[END_REF]Lemma 2.4] by [START_REF] Rosier | Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain[END_REF]Theorem 1.6]. The exponential decay of E(t) is obtained following the methods in [START_REF] Pazoto | Unique continuation and decay for the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF][START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] which combine multiplier techniques and compactness arguments to reduce the problem to some unique continuation property for weak solutions of KdV.

Along this work we assume that the real-valued function a = a(x) satisfies the condition (4) for some given positive numbers a 0 , x 0 . In this paper we investigate the stability properties of [START_REF] Bona | The Korteweg-de Vries equation,posed in a quarter-plane[END_REF] in the weighted spaces introduced by Kato in [START_REF] Kato | On the Cauchy problem for the (Generalized) Korteweg-de Vries Equation[END_REF]. More precisely, for b > 0 and m ∈ N, we prove that the solution u exponentially decays to 0 in L 2 b and L 2 (x+1) m dx (if u(0) belongs to one of these spaces), where

L 2 b = {u : R + → R; ∞ 0 |u(x)| 2 e 2bx dx < ∞}, L 2 (x+1) m dx = {u : R + → R; ∞ 0 |u(x)| 2 (x + 1) m dx < ∞}.
The following weighted Sobolev spaces

H s b = {u : R + → R; ∂ i x u ∈ L 2 b for 0 ≤ i ≤ s; u(0) = 0 if s ≥ 1} and H s (x+1) m dx = {u : R + → R; ∂ i x u ∈ L 2 (x+1) m-i dx for 0 ≤ i ≤ s; u(0) = 0 if s ≥ 1},
endowed with their usual inner products, will be used thereafter. Note that

H 0 b = L 2 b and that H 0 (x+1) m dx = L 2 (x+1) m dx .
The exponential decay in L is small enough. In the situation (ii), we first establish a similar estimate for the linearized system and next apply the contraction mapping principle in a space of functions fulfilling the exponential decay. Note that [START_REF] Bona | Nonhomogeneous problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane[END_REF] combines the (global) Kato smoothing effect to the exponential decay. The exponential decay in L 2 b is established for any initial data u 0 ∈ L 2 b under the additional assumption that 4b 3 + b < a 0 . Next, we can derive estimates of the form

||u(t)|| H s b ≤ C e -µt t s/2 ||u 0 || L 2 b
for any s ≥ 1, revealing that u(t) decays exponentially to 0 in strong norms.

It would be interesting to see if such results are still true when the function a has a smaller support. It seems reasonable to conjecture that similar positive results can be derived when the support of a contains a set of the form ∪ k≥1 [ka 0 , ka 0 + b 0 ] where 0 < b 0 < a 0 , while a negative result probably holds when the support of a is a finite interval, as the L 2 norm of a soliton-like initial data may not be sufficiently dissipated over time. Such issues will be discussed elsewhere.

The plan of this paper is as follows. Section 2 is devoted to global well-posedness results in the weighted spaces L 2 b and L 2 (x+1) 2 dx . In section 3, we prove the exponential decay in L 2 (x+1) m dx and L 2 b , and establish the exponential decay of the derivatives as well.

2 Global well-posedness Fix any b > 0. To begin with, we apply the classical semigroup theory to the linearized system (8)

     u t + u x + u xxx + a(x)u = 0, x, t ∈ R + , u(0, t) = 0, t > 0, u(x, 0) = u 0 (x), x > 0.
Let us consider the operator

A : D(A) ⊂ L 2 b → L 2 b with domain D(A) = {u ∈ L 2 b ; ∂ i x u ∈ L 2 b for 1 ≤ i ≤ 3 and u(0) = 0} defined by Au = -u xxx -u x -a(x)u.
Then, the following result holds.

Lemma 2.1

The operator A defined above generates a continuous semigroup of operators (S(t)) t≥0 in L 2 b .

Proof. We first introduce the new variable v = e bx u and consider the following (IBVP)

     v t + (∂ x -b)v + (∂ x -b) 3 v + a(x)v = 0, x, t ∈ R + , v(0, t) = 0, t > 0, v(x, 0) = v 0 (x) = e bx u 0 (x), x > 0. (9) 
Clearly, the operator B :

D(B) ⊂ L 2 (R + ) → L 2 (R + ) with domain D(B) = {u ∈ H 3 (R + ); u(0) = 0} defined by Bv = -(∂ x -b)v -(∂ x -b) 3 v -a(x)v
is densely defined and closed. So, we are done if we prove that for some real number λ the operator B -λ and its adjoint B * -λ are both dissipative in L 2 (R + ). It is readily seen that

B * : D(B * ) ⊂ L 2 (R + ) → L 2 (R + ) is given by B * v = (∂ x + b)v + (∂ x + b) 3 v -a(x)v with domain D(B * ) = {v ∈ H 3 (R + ); v(0) = v ′ (0) = 0}.
Pick any v ∈ D(B). After some integration by parts, we obtain that

(Bv, v) L 2 = - 1 2 v 2 x (0) -3b ∞ 0 v 2 x dx + (b + b 3 ) ∞ 0 v 2 dx - ∞ 0 a(x)v 2 dx, that is, ([B -(b 3 + b)]v, v) L 2 ≤ 0.
Analogously, we deduce that for any v ∈ D(B * )

(v, [B * -(b 3 + b)]v) L 2 ≤ 0
which completes the proof.

The following linear estimates will be needed.

Lemma 2.2 Let u 0 ∈ L 2 b and u = S(•)u 0 . Then, for any T > 0

(10) 1 2 ∞ 0 |u(x, T )| 2 dx - 1 2 ∞ 0 |u 0 (x)| 2 dx + T 0 ∞ 0 a(x)|u| 2 dxdt + 1 2 T 0 u 2 x (0, t)dt = 0 (11) 1 2 ∞ 0 |u(x, T )| 2 e 2bx dx - 1 2 ∞ 0 |u 0 (x)| 2 e 2bx dx + 3b T 0 ∞ 0 u 2 x e 2bx dxdt -(4b 3 + b) T 0 ∞ 0 u 2 e 2bx dxdt + T 0 ∞ 0 a(x)|u| 2 e 2bx dxdt + 1 2 T 0 u 2 x (0, t)dt = 0.
As a consequence,

(12) ||u|| L ∞ (0,T ;L 2 b ) + ||u x || L 2 (0,T ;L 2 b ) ≤ C ||u 0 || L 2 b , where C = C(T ) is a positive constant.
Proof. Pick any u 0 ∈ D(A). Multiplying the equation in (1) by u and integrating over (0, +∞) × (0, T ), we obtain [START_REF] Cerpa | Rapid exponential stabilization for a linear Korteweg-de Vries equation[END_REF]. Then, the identity may be extended to any initial state u 0 ∈ L 2 b by a density argument. To derive [START_REF] Colliander | The generalized Korteweg-de Vries equation on the half line[END_REF] we first multiply the equation by (e 2bx -1)u and integrate by parts over (0, +∞) × (0, T ) to deduce that

1 2 ∞ 0 |u(x, T )| 2 (e 2bx -1)dx - 1 2 ∞ 0 |u 0 (x)| 2 (e 2bx -1)dx + +3b T 0 ∞ 0 u 2 x e 2bx dxdt -(4b 3 + b) T 0 ∞ 0 u 2 e 2bx dxdt + + T 0 ∞ 0 a(x)|u| 2 (e 2bx -1)dxdt = 0.
Adding the above equality and (10) hand to hand, we obtain (11) using the same density argument. Then, Gronwall inequality, ( 4) and [START_REF] Colliander | The generalized Korteweg-de Vries equation on the half line[END_REF] imply that

||u|| L ∞ (0,T ;L 2 b ) ≤ C ||u 0 || L 2 b , with C = C(T ) > 0.
This estimate together with [START_REF] Colliander | The generalized Korteweg-de Vries equation on the half line[END_REF] gives us

||u x || L 2 (0,T ;L 2 b ) ≤ C ||u 0 || L 2 b , where C = C(T ) is a positive constant.
The global well-posedness result reads as follows:

Theorem 2.3 For any u 0 ∈ L 2 b and any T > 0, there exists a unique solution

u ∈ C([0, T ]; L 2 b ) ∩ L 2 (0, T ; H 1 b ) of (1).
Proof. By computations similar to those performed in the proof of Lemma 2.2, we obtain that for any f ∈ C 1 ([0, T ]; L 2 b ) and any u 0 ∈ D(A), the solution u of the system   

u t + u x + u xxx + a(x)u = f, x ∈ R + , t ∈ (0, T ), u(0, t) = 0, t ∈ (0, T ), u(x, 0) = u 0 (x), x ∈ R + , fulfills (13) sup 0≤t≤T ||u(t)|| L 2 b + ( T 0 ∞ 0 |u x | 2 e 2bx dxdt) 1 2 ≤ C ||u 0 || L 2 b + T 0 ||f || L 2 b dt for some constant C = C(T ) nondecreasing in T . A density argument yields that u ∈ C([0, T ]; L 2 b ) when f ∈ L 1 (0, T ; L 2 b ) and u 0 ∈ L 2 b . Let u 0 ∈ L 2
b be given. To prove the existence of a solution of (1) we introduce the map Γ defined by

(Γu)(t) = S(t)u 0 + t 0 S(t -s)N (u(s)) ds
where N (u) = -uu x , and the space

F = C([0, T ]; L 2 b ) ∩ L 2 (0, T ; H 1 b )
endowed with its natural norm. We shall prove that Γ has a fixed-point in some ball B R (0) of F . We need the following

Claim 1. If u ∈ H 1 b then ||u 2 e 2bx || L ∞ (R + ) ≤ (2 + 2b) ||u|| L 2 b ||u|| H 1 b .
From Cauchy-Schwarz inequality, we get for any

x ∈ R + u 2 (x)e 2bx = x 0 [u 2 e 2bx ] x dx = x 0 [2uu x e 2bx + 2bu 2 e 2bx ]dx ≤ 2( ∞ 0 u 2 e 2bx dx) 1 2 ( ∞ 0 u 2 x e 2bx dx) 1 2 + 2b ∞ 0 u 2 e 2bx dx ≤ (2 + 2b)||u|| L 2 b ||u|| H 1 b
which guarantees that Claim 1 holds. Claim 2. There exists a constant K > 0 such that for 0 < T ≤ 1

||Γ(u) -Γ(v)|| F ≤ KT 1 4 (||u|| F + ||v|| F )||u -v|| F , ∀ u, v ∈ F.
According to the previous analysis,

||Γ(u) -Γ(v)|| F ≤ C||uu x -vv x || L 1 (0,T ;L 2 b )
. So, applying triangular inequality and Hölder inequality, we have

||Γ(u) -Γ(v)|| F ≤ C{||u -v|| L 2 (0,T ;L ∞ (0,∞)) ||u|| L 2 (0,T ;H 1 b ) + +||v|| L 2 (0,T ;L ∞ (0,∞)) ||u -v|| L 2 (0,T ;H 1 b ) }. ( 14 
)
Now, by Claim 1, we have [START_REF] Kato | On the Cauchy problem for the (Generalized) Korteweg-de Vries Equation[END_REF] ||u||

L 2 (0,T ;L ∞ (0,∞)) ≤ C T 1 4 ||u|| 1 2 L ∞ (0,T ;L 2 b ) ||u|| 1 2
L 2 (0,T ;H 1 b ) . Then, combining ( 14) and ( 15), we deduce that ( 16)

||Γ(u) -Γ(v)|| F ≤ C T 1 4 { ||u|| F + ||v|| F }||u -v|| F .
Let T > 0, R > 0 be numbers whose values will be specified later, and let u ∈ B R (0) ⊂ F be given. Then, by Claim 2 and Lemma 2.2, Γu ∈ F and

||Γu|| F ≤ C ( ||u 0 || L 2 b + T 1 4 ||u|| 2 F ). Consequently, for R = 2C||u 0 || L 2 b
and T > 0 small enough, Γ maps B R (0) into itself. Moreover, we infer from ( 16) that this mapping contracts if T is small enough. Then, by the contraction mapping theorem, there exists a unique solution u ∈ B R (0) ⊂ F to the problem (1) for T small enough.

In order to prove that this solution is global, we need some a priori estimates. So, we proceed as in the proof of Lemma 2.2 to obtain for the solution u of (1)

(17) 1 2 ∞ 0 |u(x, T )| 2 dx - 1 2 ∞ 0 |u 0 (x)| 2 dx + T 0 ∞ 0 a(x)|u| 2 dxdt + 1 2 T 0 u 2 x (0, t)dt = 0 and 1 2 ∞ 0 |u(x, T )| 2 e 2bx dx - 1 2 ∞ 0 |u 0 (x)| 2 e 2bx dx + 1 2 T 0 u 2 x (0, t)dt + 3b T 0 ∞ 0 u 2 x e 2bx dxdt -(4b 3 + b) T 0 ∞ 0 u 2 e 2bx dxdt + T 0 ∞ 0 a(x)|u| 2 e 2bx dxdt - 2b 3 T 0 ∞ 0 u 3 e 2bx dxdt = 0. (18) First, observe that | ∞ 0 u 2 e 2bx dx| = | - 1 b ∞ 0 uu x e 2bx dx| ≤ 1 b ( ∞ 0 u 2 e 2bx dx) 1 2 ( ∞ 0 u 2 x e 2bx dx) 1 2 , therefore, ∞ 0 u 2 e 2bx dx ≤ 1 b 2 ∞ 0 u 2 x e 2bx dx.
Combined to Claim 1, this yields

||u(x)e bx || L ∞ (R + ) ≤ C||u x || L 2 b .
On the other hand, it follows from [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF] that

||u(t)|| L 2 (R + ) ≤ ||u 0 || L 2 (R + ) , hence T 0 ∞ 0 |u| 3 e 2bx dxdt ≤ T 0 ||ue bx || L ∞ (R + ) ( ∞ 0 |u| 2 e bx dx)dt ≤ C T 0 ||u x || L 2 b ||u|| L 2 b ||u|| L 2 dt ≤ δ||u x || 2 L 2 (0,T ;L 2 b ) + C δ ||u|| 2 L 2 (0,T ;L 2 b ) ,
where δ > 0 is arbitrarily chosen and

C = C(b, δ, ||u 0 || L 2 (R + )
) is a positive constant. Combining this inequality (with δ < 9/2) to ( 18) results in

||u(T )|| 2 L 2 b ≤ ||u 0 || 2 L 2 b + C T 0 ||u|| 2 L 2 b dt where C = C(b, ||u 0 || L 2 (R + ) ) does not depend on T . It follows from Gronwall lemma that ||u(T )|| 2 L 2 b ≤ ||u 0 || 2 L 2 b e CT
for all T > 0, which gives the global well-posedness.

Global well-posedness in

L 2 (x+1) 2 dx Definition 2.4 For u 0 ∈ L 2 (x+1) 2 dx
and T > 0, we denote by a mild solution of (1)

any function u ∈ C([0, T ]; L 2 (x+1) 2 dx ) ∩ L 2 (0, T ; H 1 (x+1) 2 dx
) which solves [START_REF] Bona | The Korteweg-de Vries equation,posed in a quarter-plane[END_REF], and such that for some b > 0 and some sequence {u n,0 } ⊂ L 2 b we have

u n,0 → u 0 strongly in L 2 (x+1) 2 dx , u n → u weakly * in L ∞ (0, T ; L 2 (x+1) 2 dx ), u n → u weakly in L 2 (0, T ; H 1 (x+1) 2 dx ),
u n denoting the solution of (1) emanating from u n,0 at t = 0.

Theorem 2.5 For any u 0 ∈ L 2 (x+1) 2 dx and any T > 0, there exists a unique mild solution

u ∈ C([0, T ]; L 2 (x+1) 2 dx ) ∩ L 2 (0, T ; H 1 (x+1) 2 dx ) of (1).
Proof. We prove the existence and the uniqueness in two steps.

Step 1. Existence Since the embedding

L 2 b ⊂ L 2 (x+1) 2 dx is dense, for any given u 0 ∈ L 2 (x+1) 2 dx we may construct a sequence {u n,0 } ⊂ L 2 b such that u n,0 → u 0 in L 2 (x+1) 2 dx as n → ∞.
For each n, let u n denote the solution of (1) emanating from u n,0 at t = 0, which is given by Theorem 2.3. Then

u n ∈ C([0, T ]; L 2 b ) ∩ L 2 (0, T ; H 1 b ) and it solves u n,t + u n,x + u n,xxx + u n u n,x + a(x)u n = 0, (19) 
u n (0, t) = 0 [START_REF] Linares | Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane[END_REF] u n (x, 0) = u n,0 (x). ( 21) Multiplying ( 19) by (x + 1) 2 u n and integrating by parts, we obtain

1 2 ∞ 0 (x + 1) 2 |u n (x, T )| 2 dx + 3 T 0 ∞ 0 (x + 1)|u n,x | 2 dxdt + 1 2 T 0 |u n,x (0, t)| 2 dt - T 0 ∞ 0 (x + 1)|u n | 2 dxdt - 2 3 T 0 ∞ 0 (x + 1)u 3 n dxdt + T 0 ∞ 0 (x + 1) 2 u 2 n a(x)dx = 1 2 ∞ 0 (x + 1) 2 |u n,0 (x)| 2 dx. ( 22 
)
Scaling in [START_REF] Leach | The large-time development of the solution to an initial-value problem for the Korteweg-de Vries equation. I. Initial data has a discontinuous expansive step[END_REF] by

u n gives 1 2 ∞ 0 |u n (x, T )| 2 dx + 1 2 T 0 |u n,x (0, t)| 2 dt + T 0 ∞ 0 a(x)|u n (x, t)| 2 dxdt = 1 2 ∞ 0 |u n,0 (x)| 2 dx, hence (23) ||u n || L 2 (R + ) ≤ ||u n,0 || L 2 (R + ) ≤ C where C = C(||u 0 || L 2 (R + ) ). It follows that 2 3 ∞ 0 (x + 1)|u n | 3 dx ≤ 2 √ 2 3 ||u n,x || 1 2 L 2 (R + ) ||u n || 3 2 L 2 (R + ) ||(x + 1)u n || L 2 (R + ) ≤ ∞ 0 (x + 1)|u n,x | 2 dx + C ∞ 0 (x + 1) 2 |u n | 2 dx (24)
which, combined to [START_REF] Miura | The Korteweg-de Vries equation: A survey of results[END_REF], gives

1 2 ∞ 0 (x + 1) 2 |u n (x, T )| 2 dx + 2 T 0 ∞ 0 (x + 1)|u n,x | 2 dxdt + 1 2 T 0 |u n,x (0, t)| 2 dt ≤ 1 2 ∞ 0 (x + 1) 2 |u n,0 (x)| 2 dx + C T 0 ∞ 0 (x + 1) 2 |u n (x, t)| 2 dxdt.
An application of Gronwall's lemma yields

||u n || L ∞ (0,T ;L 2 (x+1) 2 dx ) ≤ C(T, ||u n,0 || L 2 (x+1) 2 dx
),

||u n,x || L 2 (0,T ;H 1 (x+1) 2 dx ) ≤ C(T, ||u n,0 || L 2 (x+1) 2 dx
),

||u n,x (0, .)|| L 2 (0,T ) ≤ C(T, ||u n,0 || L 2 (x+1) 2 dx
).

Therefore, there exists a subsequence of {u n }, still denoted by {u n }, such that

       u n ⇀ u weakly * in L ∞ (0, T ; L 2 (x+1) 2 dx ), u n ⇀ u weakly in L 2 (0, T ; H 1 (x+1) 2 dx ), u n,x (0, .) ⇀ u x (0, .) weakly in L 2 (0, T ).
Note that, for all L > 0, {u n } is bounded in L 2 (0, T ; H 1 (0, L)) ∩ H 1 (0, T ; H -2 (0, L)), hence by Aubin's lemma, we have (after extracting a subsequence if needed)

u n → u strongly in L 2 (0, T ; L 2 (0, L)) for all L > 0.
This gives that u n u n,x → uu x in the sense of distributions, hence the limit

u ∈ L ∞ (0, T ; L 2 (x+1) 2 dx )∩ L 2 (0, T ; H 1 (x+1) 2 dx ) is a solution of (1). Let us check that u ∈ C([0, T ]; L 2 (x+1) 2 dx ). Since u ∈ C([0, T ]; H -2 (R + )) ∩ L ∞ (0, T ; L 2 (x+1) 2 dx ), we have that u ∈ C w ([0, T ]; L 2 (x+1) 2 dx ) (see e.g. [21]), where C w ([0, T ]; L 2 (x+1) 2 dx
) denotes the space of sequentially weakly continuous functions from [0, T ] into L 2 (x+1) 2 dx . We claim that u ∈ L 3 (0, T ; L 3 (R + )). Indeed, from Moser estimate (see [START_REF] Taylor | Partial Differential Equations III, Nonlinear Equations[END_REF]) [START_REF] Perla Menzala | Stabilization of the Korteweg-de Vries equation with localized damping[END_REF] ||u||

L ∞ (R + ) ≤ √ 2||u x || 1 2 L 2 (R + ) ||u|| 1 2 L 2 (R + )
and Young inequality we get (26)

∞ 0 |u| 3 dx ≤ ||u|| L ∞ ||u|| 2 L 2 ≤ √ 2||u x || 1 2 L 2 ||u|| 5 2 L 2 ≤ ε||u x || 2 L 2 + c ε ||u|| 10 3 L 2
where ε > 0 is arbitrarily chosen and c ε denotes some positive constant. Since

u ∈ C w ([0, T ]; L 2 (x+1) 2 dx )∩ L 2 (0, T ; H 1 (x+1) 2 dx ), it follows that u ∈ L 3 (0, T ; L 3 (R + )).
On the other hand, u(0, t) = 0 for t ∈ (0, T ) and u x (0, .) ∈ L 2 (0, T ). Scaling in (1) by (x + 1) 2 u yields for all t 1 , t 2 ∈ (0, T )

1 2 ∞ 0 (x + 1) 2 |u(x, t 2 )| 2 dx - 1 2 ∞ 0 (x + 1) 2 |u(x, t 1 )| 2 dx = -3 t 2 t 1 ∞ 0 (x + 1)|u x | 2 dxdt - 1 2 t 2 t 1 |u x (0, t)| 2 dt + t 2 t 1 ∞ 0 (x + 1)|u| 2 dxdt + 2 3 t 2 t 1 ∞ 0 (x + 1)u 3 dxdt - t 2 t 1 ∞ 0 (x + 1) 2 a(x)|u| 2 dxdt. (27) Therefore lim t 1 →t 2 ||u(t 2 )|| 2 L 2 (x+1) 2 dx -||u(t 1 )|| 2 L 2 (x+1) 2 dx = 0. Combined to the fact that u ∈ C w ([0, T ]; L 2 (x+1) 2 dx ), this yields u ∈ C([0, T ], L 2 (x+1) 2 dx ).
Step 2. Uniqueness Here, C will denote a universal constant which may vary from line to line. Pick

u 0 ∈ L 2 (x+1) 2 dx , and let u, v ∈ C([0, T ]; L 2 (x+1) 2 dx ) ∩ L 2 (0, T ; H 1 (x+1) 2 dx ) be two mild solutions of (1). Pick two sequences {u n,0 }, {v n,0 } in L 2 b for some b > 0 such that u n,0 → u 0 strongly in L 2 (x+1) 2 dx , (28) 
u n → u weakly * in L ∞ (0, T ; L 2 (x+1) 2 dx ), ( 29 
)
u n → u weakly in L 2 (0, T ; H 1 (x+1) 2 dx ) (30)
and also

v n,0 → u 0 strongly in L 2 (x+1) 2 dx , (31) 
v n → v weakly * in L ∞ (0, T ; L 2 (x+1) 2 dx ), (32) v n → v weakly in L 2 (0, T ; H 1 (x+1) 2 dx ). (33)
We shall prove that w = u -v vanishes on R + × [0, T ] by providing some estimate for w n = u n -v n . Note first that w n solves the system

w n,t + w n,x + w n,xxx + aw n = f n = v n v n,x -u n u n,x , (34) 
w n (0, t) = 0, (35)

w n (x, 0) = w n,0 (x) = u n,0 (x) -v n,0 (x). ( 36 
)
Scaling in (34) by (x + 1)w n yields 1 2

∞ 0 (x + 1)|w n (x, t)| 2 dx + 3 2 t 0 ∞ 0 |w n,x | 2 dxdτ - 1 2 t 0 ∞ 0 |w n | 2 dxdτ ≤ 1 2 ∞ 0 (x + 1)|w n,0 | 2 dx + t 0 ( ∞ 0 (x + 1)|w n | 2 dx) 1 2 ( ∞ 0 (x + 1)|f n | 2 dx) 1 2 dτ ≤ 1 2 ∞ 0 (x + 1)|w n,0 | 2 dx + 1 4 sup 0<τ <t ∞ 0 (x + 1)|w n (x, τ )| 2 dx +[ T 0 ( ∞ 0 (x + 1)|f n | 2 dx) 1 2 dτ ] 2 . Since ||w n (t)|| L 2 (R + ) ≤ ||w n (t)|| L 2 (x+1)dx
, this yields for T < 1/10

sup 0<t<T ∞ 0 (x + 1)|w n (x, t)| 2 dx + T 0 ∞ 0 |w n,x | 2 dxdt ≤ C[ ∞ 0 (x + 1)|w n,0 (x)| 2 dx + T 0 ( ∞ 0 (x + 1)|f n | 2 dx) 1 2 dτ 2 ]. (37) It remains to estimate T 0 ( ∞ 0 (x + 1)|f n | 2 dx) 1 2 dt. We split f n into f n = (v n -u n )v n,x + u n (v n,x -u n,x ) = f 1 n + f 2 n .
We have that

T 0 ( ∞ 0 (x + 1)|f 1 n | 2 dx) 1 2 dt = T 0 ( ∞ 0 (x + 1)|w n | 2 |v n,x | 2 dx) 1 2 dt ≤ T 0 ||w n || L ∞ (R + ) ( ∞ 0 (x + 1)|v n,x | 2 dx) 1 2 dt ≤ ( T 0 ||w n || 2 L ∞ (R + ) dt) 1 2 ( T 0 ∞ 0 (x + 1)|v n,x | 2 dxdt) 1 2 
.

By Sobolev embedding, we have that

( T 0 ||w n || 2 L ∞ (R + ) dt) 1 2 ≤ ( T 0 ||w n || 2 H 1 (R + ) dt) 1 2 ≤ √ T sup 0<t<T ||w n || L 2 (R + ) + ||w n,x || L 2 (0,T ;L 2 (R + )) • Thus T 0 ( ∞ 0 (x + 1)|f 1 n | 2 dx) 1 2 dt ≤ ||v n,x || L 2 (0,T ;L 2 (x+1)dx ) √ T sup 0<t<T ||w n || L 2 (R + ) +||w n,x || L 2 (0,T ;L 2 (R + )) (38)
On the other hand, we have that

T 0 ( ∞ 0 (x + 1)|f 2 n | 2 dx) 1 2 dt = T 0 ( ∞ 0 (x + 1)|u n | 2 |w n,x | 2 dx) 1 2 dt ≤ T 0 ||(x + 1) 1 2 u n || L ∞ (R + ) ||w n,x || L 2 (R + ) dt ≤ C T 0 ||(x + 1) 1 2 u n || L 2 (R + ) + ||(x + 1) 1 2 u n,x || L 2 (R + ) ||w n,x || L 2 (R + ) dt ≤ C √ T ||(x + 1)u n || L ∞ (0,T ;L 2 (R + ))
+||(x + 1)

1 2 u n,x || L 2 (0,T,L 2 (R + )) ||w n,x || L 2 (0,T ;L 2 (R + )) . ( 39 
)
Gathering together (37), ( 38) and (39), we conclude that for T < 1/10

h n (T ) ≤ K n (T )h n (T ) + C||w n,0 || 2 L 2 (x+1)dx where h n (t) := sup 0<τ <T ∞ 0 (x + 1)|w n (x, τ )| 2 dx + T 0 ∞ 0 |w n,x | 2 dxdt (40) K n (T ) ≤ C T 0 ∞ 0 (x + 1)|v n,x | 2 dxdt + T ||(x + 1)u n || 2 L ∞ (0,T ;L 2 (R + )) + T 0 ∞ 0 (x + 1)|u n,x | 2 dxdt (41)
and C denotes a universal constant. The following claim is needed. Claim 3.

lim T →0 lim sup n→∞ T 0 ∞ 0 (x + 1)|u n,x | 2 dxdt = 0, lim T →0 lim sup n→∞ T 0 ∞ 0 (x + 1)|v n,x | 2 dxdt = 0.
Clearly, it is sufficient to prove the claim for the sequence {u n } only. From [START_REF] Rosier | Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line[END_REF] applied with u = u n on [0, T ], we obtain

1 2 ∞ 0 (x + 1) 2 |u n (x, T )| 2 dx + 3 T 0 ∞ 0 (x + 1)|u n,x | 2 dxdt ≤ 1 2 ∞ 0 (x + 1) 2 |u n,0 | 2 dx + T 0 ∞ 0 (x + 1)|u n | 2 dxdt + 2 3 T 0 ∞ 0 (x + 1)|u n | 3 dxdt.
Combined to ( 23)- [START_REF] Pazoto | Stabilization of a Boussinesq system of KdV-KdV type[END_REF], this gives 

||u n (T )|| 2 L 2 (x+1) 2 dx + T 0 ∞ 0 (x + 1)|u n,x | 2 dxdt ≤ ||u n,0 || 2 L 2 (x+1) 2 dx + C T 0 ||u n || 2 L 2 ( 
+ lim sup n→∞ T 0 ∞ 0 |u n,x | 2 dxdt ≤ e CT ||u 0 || 2 L 2 (x+1) 2 dx
As u is continuous from R + to L 2 (x+1) 2 dx , we infer that lim

T →0 lim sup n→∞ T 0 ∞ 0 |u n,x | 2 dxdt = 0.
The claim is proved. Therefore, we have that for T > 0 small enough and n large enough, K n (T ) < 1 2 , and hence

h n (T ) ≤ 2C||w n (0)|| 2 L 2 (x+1)dx . This yields ||u -v|| 2 L ∞ (0,T ;L 2 (x+1)dx ) ≤ lim inf n→∞ h n (T ) ≤ 2C lim inf n→∞ ||w n (0)|| 2 L 2 (x+1)dx = 0
and u = v for 0 < t < T . This proves the uniqueness for T small enough. The general case follows by a classical argument. Proof. The proof will be done by induction in m. We set

(44) V 0 (u) = E(u) = 1 2 ∞ 0 u 2 dx
and define the Lyapunov function V m for m ≥ 1 in an inductive way

(45) V m (u) = 1 2 ∞ 0 (x + 1) m u 2 dx + d m-1 V m-1 (u),
where d m-1 > 0 is chosen sufficiently large (see below). Suppose first that m = 1 and put V = V 1 . Multiplying the first equation in ( 1) by u and integrating by parts over R + × (0, T ), we obtain

(46) 1 2 ∞ 0 |u(x, T )| 2 dx = 1 2 ∞ 0 |u 0 (x)| 2 dx - T 0 ∞ 0 a(x)|u| 2 dxdt - 1 2 T 0 u 2 x (0, t)dt.
Now, multiplying the equation by xu, we deduce that

1 2 ∞ 0 x|u(x, T )| 2 dx - 1 2 ∞ 0 x|u 0 (x)| 2 dx + 3 2 T 0 ∞ 0 u 2 x dxdt - 1 2 T 0 ∞ 0 u 2 dxdt - 1 3 T 0 ∞ 0 u 3 dxdt + T 0 ∞ 0 xa(x)|u| 2 dxdt = 0. (47)
Combining ( 46) and (47) it follows that

V (u) -V (u 0 ) + (d 0 + 1) 1 2 T 0 u 2 x (0, t)dt + T 0 ∞ 0 a(x)|u| 2 dxdt + 3 2 T 0 ∞ 0 u 2 x dxdt - 1 2 T 0 ∞ 0 u 2 dxdt - 1 3 T 0 ∞ 0 u 3 dxdt + T 0 ∞ 0 xa(x)|u| 2 dxdt = 0. (48)
The next step is devoted to estimate the nonlinear term in the left hand side of (48). To do that, we first assume that ||u 0 || L 2 ≤ 1.

By [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] we have that

∞ 0 |u| 3 dx ≤ ε||u x || 2 L 2 + c ε ||u|| 10 3 L 2
for any ε > 0 and some constant c ε > 0. Thus, if ||u 0 || L 2 ≤ 1, we have ||u||

10 3 L 2 ≤ ||u|| 2 L 2 and
(49)

T 0 ∞ 0 |u| 3 dxdt ≤ ε T 0 ∞ 0 u 2 x dxdt + c ε T 0 ∞ 0 u 2 dxdt.
Moreover, according to [START_REF] Linares | Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane[END_REF], there exists c 1 > 0, satisfying

T 0 ∞ 0 u 2 dxdt ≤ c 1 { 1 2 T 0 u 2 x (0, t)dt + T 0 ∞ 0 a(x)u 2 dxdt}. (50) 
Now, combining (48)-(50) and taking ε < 1 2 and d 0 := 2c 1 ( 1 2 + cε 3 ) we obtain

V (u(T )) -V (u 0 ) + d 0 + 1 2 ( 1 2 T 0 u 2 x (0, t)dt + T 0 ∞ 0 a(x)|u| 2 dxdt) + ( 3 2 - ε 3 ) T 0 ∞ 0 u 2 x dxdt + T 0 ∞ 0 xa(x)|u| 2 dxdt ≤ 0 (51) or (52) V (u(T )) -V (u 0 ) ≤ -c { T 0 u 2 x (0, t)dt + T 0 ∞ 0 (x + 1)a(x)|u| 2 dxdt + T 0 ∞ 0 u 2 x dxdt}
where c > 0. We aim to prove the existence of a constant c > 0 satisfying

(53) V (u(T )) -V (u 0 ) ≤ -c V (u 0 )
Indeed, such an inequality gives at once the decay V (u(t)) ≤ ce -νt V (u 0 ). To this end, we need to establish two claims. Claim 4. There exists c > 0 such that 4) and ( 50) we get

T 0 V (u)dt ≤ c { T 0 u 2 x (0, t)dt + T 0 ∞ 0 (x + 1)a(x)u 2 dxdt}. Since u 0 ∈ L 2 (x+1)dx ⊂ L 2 , from (
T 0 V (u)dt = 1 2 T 0 ∞ 0 (x + 1)u 2 dxdt + d 0 2 T 0 ∞ 0 u 2 dxdt ≤ c 1 d 0 2 { 1 2 T 0 u 2 x (0, t)dt + T 0 ∞ 0 a(x)u 2 dxdt} + 1 2 T 0 x 0 0 (x + 1)u 2 dxdt + 1 2 T 0 ∞ x 0 (x + 1)u 2 dxdt ≤ c 1 d 0 2 { 1 2 T 0 u 2 x (0, t)dt + T 0 ∞ 0 a(x)u 2 dxdt} + 1 2 (x 0 + 1) T 0 x 0 0 u 2 dxdt + 1 2 T 0 ∞ x 0 (x + 1) a(x) a 0 u 2 dxdt ≤ c { T 0 u 2 x (0, t)dt + T 0 ∞ 0 (x + 1)a(x)u 2 dxdt}. Claim 5. (54) V (u 0 ) ≤ C( T 0 u 2 x (0, t)dt + T 0 ∞ 0 (x + 1)a(x)u 2 dxdt + T 0 ∞ 0 u 2 x dxdt)
where C > 0.

Multiplying the first equation in ( 1) by (T -t)u and integrating by parts in (0, ∞) × (0, T ), we obtain

(55) T 2 ∞ 0 |u 0 (x)| 2 dx = 1 2 T 0 ∞ 0 |u| 2 dxdt + T 0 ∞ 0 (T -t)a(x)|u| 2 dxdt + 1 2 T 0 (T -t)u 2 x (0, t)dt,
and therefore, using (50) (56)

∞ 0 |u 0 (x)| 2 dx ≤ C T 0 ∞ 0 a(x)|u| 2 dxdt + T 0 u 2 x (0, t)dt .

Now, multiplying by (T -t)xu, it follows that

- T 2 ∞ 0 x|u 0 (x)| 2 dx + 1 2 T 0 ∞ 0 x|u| 2 dxdt + 3 2 T 0 ∞ 0 (T -t)u 2 x dxdt - 1 2 T 0 ∞ 0 (T -t)u 2 dxdt + T 0 ∞ 0 (T -t)xa(x)|u| 2 dxdt- - 1 3 T 0 ∞ 0 (T -t)u 3 dxdt = 0.
The identity above and (49) allow us to conclude that (57)

∞ 0 x|u 0 (x)| 2 dx ≤ C { T 0 ∞ 0 (x + 1)|u| 2 dxdt + T 0 ∞ 0 u 2 x dxdt + T 0 ∞ 0 xa(x)|u| 2 dxdt+ + T 0 ∞ 0 |u| 3 dxdt} ≤ C { T 0 V (u(t))dt + T 0 ∞ 0 xa(x)u 2 dxdt + T 0 ∞ 0 u 2 x dxdt}
for some C > 0. Claim 5 follows from Claim 4 and ( 56)-( 57).

The previous computations give us (53) (and the exponential decay) when

||u 0 || L 2 ≤ 1. The general case is proved as follows. Let u 0 ∈ L 2 (x+1)dx ⊂ L 2 be such that ||u 0 || L 2 ≤ R. Since u ∈ C(R + ; L 2 (R + )) and ||u(t)|| L 2 ≤ αe -βt ||u 0 || L 2 , where α = α(R) and β = β(R) are positive constants, ||u(T )|| L 2 ≤ 1 if we pick T satisfying αe -βT R < 1.
Then, it follows from ( 48)-( 26) and ( 53) that for some constants ν > 0, c > 0, C > 0

V (u(t + T )) ≤ ce -νt V (u(T )) ≤ c(T ||u 0 || 2 L 2 + T ||u 0 || 10 3 L 2 + V (u 0 ))e -νt , hence V (u(t)) ≤ Ce -νt V (u 0 ),
where C = C(R), which concludes the proof when m = 1.

Induction Hypothesis: There exist c > 0 and ρ > 0 such that if V m-1 (u 0 ) ≤ ρ, we have 

V m (u) -V m (u 0 ) ( * ) m ≤ -c{ T 0 u 2 x (0, t)dt + T 0 ∞ 0 (x + 1) m-1 u 2 x dxdt + T 0 ∞ 0 (x + 1) m a(x)u 2 dxdt} V m (u 0 ) ( * * ) m ≤ c { T 0 u 2 x (0, t)dt + T 0 ∞ 0 (x + 1) m-1 u 2 x dxdt + T 0 ∞ 0 (x + 1) m a(x)u 2 dxdt}.
V m (u) -V m (u 0 ) -d m-1 (V m-1 (u) -V m-1 (u 0 )) - m(m -1)(m -2) 2 T 0 ∞ 0 (x + 1) m-3 u 2 dxdt + 1 2 T 0 u 2 x (0, t)dt + 3m 2 T 0 ∞ 0 (x + 1) m-1 u 2 x dxdt - m 2 T 0 ∞ 0 (x + 1) m-1 u 2 dxdt - m 3 T 0 ∞ 0 (x + 1) m-1 u 3 dxdt + T 0 ∞ 0 (x + 1) m a(x)u 2 dxdt = 0.
The next steps are devoted to estimate the terms in the above identity. First, combining ( 4) and (50) we infer the existence of a positive constant c > 0 such that (59)

T 0 ∞ 0 (x + 1) m-1 u 2 dxdt = T 0 x 0 0 (x + 1) m-1 u 2 dxdt + T 0 ∞ x 0 (x + 1) m-1 u 2 dxdt ≤ (x 0 + 1) m-1 T 0 ∞ 0 u 2 dxdt + 1 a 0 T 0 ∞ 0 a(x)(x + 1) m-1 u 2 dxdt ≤ c { T 0 u 2 x (0, t)dt + T 0 ∞ 0 (x + 1) m-1 a(x)u 2 dxdt} ≤ -c {V m-1 (u) -V m-1 (u 0 )}
where we used ( * ) m-1 . In the same way

(60) T 0 ∞ 0 (x + 1) m-3 u 2 dxdt ≤ T 0 ∞ 0 (x + 1) m-1 u 2 dxdt ≤ -c {V m-1 (u) -V m-1 (u 0 )}
where c > 0 is a positive constant. Moreover, assuming V m-1 (u 0 ) ≤ ρ with ρ > 0 small enough (so that by exponential decay of V m-1 (u(t)) we have ∞ 0 (x + 1) m-1 |u(x, t)| 2 dx ≤ 1 for all t ≥ 0) and proceeding as in the case m = 1, we obtain the existence of ε > 0 and c ε > 0 satisfying

(61) T 0 ∞ 0 (x + 1) m-1 |u| 3 dxdt ≤ ε T 0 ∞ 0 (x + 1) m-1 u 2 x dxdt + c ε T 0 ∞ 0 (x + 1) m-1 u 2 dxdt. Indeed, ∞ 0 (x + 1) m-1 |u| 3 dx (62) ≤ ||u|| L ∞ ∞ 0 (x + 1) m-1 u 2 dx ≤ √ 2||u x || 1 2 L 2 ||u|| 1 2 L 2 ∞ 0 (x + 1) m-1 u 2 dx ≤ ε ∞ 0 (x + 1) m-1 u 2 x dx + c ε ∞ 0 u 2 dx + c ε ∞ 0 (x + 1) m-1 u 2 dx 2 .
Then, if we return to (58) and take ε < 9/2 and d m-1 > 0 large enough, from (59)-(61) if follows that (63)

V m (u) -V m (u 0 ) ≤ -c { T 0 u 2 x (0, t)dt + T 0 ∞ 0 (x + 1) m-1 u 2 x dxdt + T 0 ∞ 0 a(x)(x + 1) m u 2 dxdt} + d m-1 2 (V m-1 (u) -V m-1 (u 0 )).
This yields ( * ) m , by ( * ) m-1 . Let us now check ( * * ) m . It remains to estimate the terms in the right hand side of (63). We multiply the first equation in ( 1) by (T -t)(x + 1) m u to obtain

T 2 ∞ 0 (x + 1) m u 2 0 dx = 1 2 T 0 ∞ 0 (x + 1) m u 2 dxdt - m(m -1)(m -2) 2 T 0 ∞ 0 (T -t)(x + 1) m-3 u 2 dxdt + 1 2 T 0 (T -t)u 2 x (0, t)dt + 3m 2 T 0 ∞ 0 (T -t)(x + 1) m-1 u 2 x dxdt - m 2 T 0 ∞ 0 (T -t)(x + 1) m-1 u 2 dxdt - m 3 T 0 ∞ 0 (T -t)(x + 1) m-1 u 3 dxdt + T 0 ∞ 0 (T -t)(x + 1) m a(x)u 2 dxdt.
Then, proceeding as above, we deduce that

T 0 (x + 1) m u 2 0 dx ≤ c { T 0 ∞ 0 (x + 1) m-1 u 2 dxdt + T 0 u 2 x (0, t)dt + T 0 ∞ 0 (x + 1) m-1 u 2 x dxdt + T 0 ∞ 0 (x + 1) m a(x)u 2 dxdt} ≤ c{ T 0 u 2 x (0, t)dt + T 0 ∞ 0 (x + 1) m-1 u 2 x dxdt + T 0 ∞ 0 (x + 1) m a(x)u 2 dxdt}.
Combined to ( * * ) m-1 , this yields ( * * ) m . This completes the construction of the sequence {V m } m≥1 by induction.

Let us now check the exponential decay of

V m for m ≥ 2. It follows from ( * ) m -( * * ) m that V m (u) -V m (u 0 ) ≤ -c V m (u 0 )
where c > 0, which completes the proof when V m-1 (u 0 ) ≤ ρ. The global result (V m-1 (u 0 ) ≤ R) is obtained as above for m = 1.

Corollary 3.2 Let a = a(x) fulfilling ( 4) and a ∈ W 2,∞ (0, ∞). Then for any R > 0, there exist positive constants c = c(R) and µ = µ(R) such that

(64) ||u x (t)|| L 2 (R + ) ≤ c e -µt √ t ||u 0 || L 2 (x+1)dx
for all t > 0 and all

u 0 ∈ L 2 (x+1)dx satisfying ||u 0 || L 2 (x+1)dx ≤ R.
Proof. Pick any R > 0 and any

u 0 ∈ L 2 (x+1)dx with ||u 0 || L 2 (x+1)dx ≤ R. By Theorem 3.1 there are some constants C = C(R) and ν = ν(R) such that (65) ||u(t)|| L 2 (x+1)dx ≤ Ce -νt ||u 0 || L 2 (x+1)dx
.

Using the multiplier t(u 2 + 2u xx ) we obtain after some integrations by parts that for all 0

< t 1 < t 2 t 2 ∞ 0 u 2 x (x, t 2 )dx + t 2 t 1 tu 2 x (0, t)dt + 2 t 2 t 1 ∞ 0 ta(x)u 2 x dxdt + t 2 t 1 tu 2 xx (0, t)dt = - 1 3 t 2 t 1 ∞ 0 u 3 dxdt + t 2 3 ∞ 0 u 3 (x, t 2 )dx + t 2 t 1 ∞ 0 tu 3 a(x)dxdt + t 2 t 1 ∞ 0 u 2 x dxdt + t 2 t 1 ∞ 0 ta ′′ (x)u 2 dxdt. (66) 
1. Let us assume first that T > 1. Applying (66) on the time interval [T -1, T ], we infer that (67)

∞ 0 |u x (x, T )| 2 dx ≤ c T T -1 ∞ 0 |u| 3 dxdt + ||u(T )|| 3 L 3 (R + ) + T T -1 ||u|| 2 H 1 (R + ) dt .
To estimate the cubic terms in (67), we use [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF] to obtain 

∞ 0 |u x (x, T )| 2 dx ≤ ε ∞ 0 |u x (x, T )| 2 dx +c ε ||u(T )|| 10 3 L 2 (R + ) + T T -1 (||u|| 2 H 1 (R + ) + ||u||
(||u|| 2 H 1 (R + ) + ||u|| 10 3 L 2 (R + ) )dt ≤ C V 1 (u(T -1)) + T T -1 ||u|| 2 L 2 (R + ) + ||u|| 10 3 L 2 (R + ) dt ≤ Ce -νT ||u 0 || 2 L 2 (x+1)dx (69) 
where C = C(R, ν). (64) for T ≥ 1 follows from ( 68) and ( 69) by choosing ε < 1 and µ < ν.

2. Assume now that T ≤ 1. Estimating again the cubic terms in (66) (with [t 1 , t 2 ] = [0, T ]) by using [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], we obtain 26) and (65), we have that (71)

T ∞ 0 u 2 x (x, T )dx ≤ T 3 ε||u x (T )|| 2 L 2 (R + ) + C ε ||u(T )||
1 0 ∞ 0 |u x | 2 dxdt ≤ C(R)||u 0 || 2 L 2 (x+1)dx
which, combined to (70) with ε = 1 and (65), gives Proof. We first prove estimates for the linearized problem

||u x (T )|| 2 L 2 (R + ) ≤ C(R)T -1 ||u 0 || 2 L 2 ( 
u t + u x + u xxx + au = 0 (72) u(0, t) = 0 (73) u(x, 0) = u 0 (x) (74)
and next apply a perturbation argument to extend them to the nonlinear problem [START_REF] Bona | The Korteweg-de Vries equation,posed in a quarter-plane[END_REF]. Let us denote by W (t)u 0 = u(t) the solution of (72)-(74). By computations similar to those performed in the proof of Theorem 3.1, we have that

||W (t)u 0 || L 2 (x+1) m dx ≤ C 0 e -νt ||u 0 || L 2 (x+1) m dx .
We need the Claim 6. Let k ∈ {0, ..., 3}. Then there exists a constant C k > 0 such that for any 

u 0 ∈ H k (x+1) m dx , ( 
≤ C 1 e -ν(T -t) ||u(t)|| H 1 (x+1) m dx
, ∀t ∈ (0, T ).

Integrating with respect to t in (77) yields

[C -1 1 ||u(T )|| H 1 (x+1) m dx ] 2 T 0 e 2ν(T -t) dt ≤ T 0 ||u(t)|| 2 H 1 (x+1) m dx dt,
and hence

||u(T )|| H 1 (x+1) m dx ≤ C K C 1 2ν e 2νT -1 ||u 0 || L 2 (x+1) m dx ≤ C K C 1 √ T ||u 0 || L 2 (x+1) m dx for 0 < T ≤ 1. Therefore (78) ||u(t)|| H 1 (x+1) m dx ≤ C K C 1 e ν e -νt √ t ||u 0 || L 2 (x+1) m dx
∀t ∈ (0, 1).

(76) follows from (78) and (75), since µ < ν.

Let us return to the proof of Corollary 3.3. Fix a number µ ∈ (0, ν), where ν is as in (75), and let us introduce the space

F = {u ∈ C(R + ; H 1 (x+1) m dx ); ||e µt u(t)|| L ∞ (R + ;H 1 (x+1) m dx )
< ∞} endowed with its natural norm. Note that (1) may be recast in the following integral form (79)

u(t) = W (t)u 0 + t 0 W (t -s)N (u(s)) ds
where N (u) = -uu x . We first show that (79) has a solution in F provided that

u 0 ∈ H 1 (x+1) m dx with ||u 0 || H 1 (x+1) m dx small enough. Let u 0 ∈ H 1 (x+1) m dx and u ∈ F with ||u 0 || H 1 (x+1) m dx
≤ r 0 and ||u|| F ≤ R, r 0 and R being chosen later. We introduce the map Γ defined by

(80) (Γu)(t) = W (t)u 0 + t 0 W (t -s)N (u(s)) ds ∀t ≥ 0.
We shall prove that Γ has a fixed point in the closed ball B R (0) ⊂ F provided that r 0 > 0 is small enough.

For the forcing problem

     u t + u x + u xxx + au = f u(0, t) = 0 u(x, 0) = u 0 (x)
we have the following estimate

sup 0≤t≤T ||u(t)|| 2 L 2 (x+1) m dx + T 0 ∞ 0 (x + 1) m-1 u 2 x dxdt ≤ C ||u 0 || 2 L 2 (x+1) m dx + ||f || 2 L 1 (0,T ;L 2 (x+1) m dx .
Let us take f = N (u) = -uu x . Observe that for all x > 0

(x + 1)u 2 (x) = ∞ 0 d dx [(x + 1)u 2 (x)]dx ≤ C ∞ 0 (x + 1) m |u| 2 dx + ∞ 0 (x + 1) m-1 |u x | 2 dx whenever m ≥ 2. It follows that for some constant K > 0 ||uu x || 2 L 2 (x+1) m dx ≤ ||(x + 1)u 2 || L ∞ (R + ) ∞ 0 (x + 1) m-1 |u x | 2 dx ≤ K||u|| 4 H 1 (x+1) m dx .
Therefore, for any T > 0,

sup 0≤t≤T ||(Γu)(t)|| 2 L 2 (x+1) m dx + T 0 ∞ 0 (x + 1) m-1 |(Γu) x | 2 dxdt ≤ C ||u 0 || 2 L 2 (x+1) m dx + T 0 ||u(t)|| 2 H 1 (x+1) m dx dt 2 < ∞. Thus Γu ∈ C(R + , L 2 (x+1) m dx ) ∩ L 2 loc (R + ; H 1 (x+1) m dx ) with (Γu)(0) = u 0 . We claim that Γu ∈ F . Indeed, by (75), ||e µt W (t)u 0 || H 1 (x+1) m dx ≤ C 1 ||u 0 || H 1 (x+1) m dx
and for all t ≥ 0

||e µt t 0 W (t -s)N (u(s))ds|| H 1 (x+1) m dx ≤ Ce µt t 0 e -µ(t-s) √ t -s ||N (u(s))|| L 2 (x+1) m dx ds ≤ C t 0 e µs √ t -s K(e -µs ||u|| F ) 2 ds ≤ CK||u|| 2 F t 0 e -µ(t-s) √ s ds ≤ CK(2 + µ -1 )||u|| 2 F
where we used Lemma 3.4. Pick R > 0 such that CK(2 + µ -1 )R ≤ 1 2 , and r 0 such that

C 1 r 0 = R 2 . Then, for ||u 0 || H 1 (x+1) m dx ≤ r 0 and ||u|| F ≤ R, we obtain that ||e µt (Γu)(t)|| H 1 (x+1) m dx ≤ C 1 r 0 + CK(2 + µ -1 )R 2 ≤ R, t ≥ 0.
Hence Γ maps the ball B R (0) ⊂ F into itself. Similar computations show that Γ contracts. By the contraction mapping theorem, Γ has a unique fixed point

u in B R (0). Thus ||u(t)|| H 1 (x+1) m dx ≤ Ce -µt ||u 0 || H 1 (x+1) m dx provided that ||u 0 || H 1 (x+1) m dx
≤ r 0 with r 0 small enough. Proceeding as in the proof of Lemma 3.4, we have that

||u(t)|| H 1 (x+1) m dx ≤ C e -µt √ t ||u 0 || L 2 (x+1) m dx for 0 < t < 1, provided that ||u 0 || L 2 (x+1) m dx
≤ ρ 0 with ρ 0 < 1 small enough. The proof is complete with a decay rate µ ′ < µ.

Corollary 3.5 Assume that a(x) satisfies (4) and that ∂ k x a ∈ L ∞ (R + ) for all k ≥ 0. Pick any u 0 ∈ L 2 (x+1) m dx . Then for all ε > 0, all T > ε, and all k ∈ {1, ..., m}, there exists a constant

C = C(ε, T, k) > 0 such that ∞ ε (x + 1) m-k |∂ k x u(x, t)| 2 dx ≤ C||u 0 || 2 L 2 (x+1) m dx ∀t ∈ [ε, T ]. (81)
Proof. The proof is very similar to the one in [18, Lemma 5.1] and so we only point out the small changes. First, it should be noticed that the presence in the KdV equation of the extra terms u x and a(x)u does not cause any serious trouble. On the other hand, choosing a cut-off function in x of the form η(x) = ψ 0 (x/ε) (instead of η(x) = ψ 0 (x -x 0 + 2) as in [START_REF] Kruzhkov | Faminskii Generalized solutions of the Cauchy problem for the Kortewegde Vries equation[END_REF]) where ψ 0 ∈ C ∞ (R, [0, 1]) satisfies ψ 0 (x) = 0 for x ≤ 1/2 and ψ 0 (x) = 1 for x ≥ 1, allows to overcome the fact that u is a solution of (1) on the half-line only. The proof of Corollary 3.7 (resp. 3.8) is very similar to the proof of Corollary 3.2 (resp. 3.3), so it is omitted.

Remark 2.6 1 . 2 .

 12 If we assume only that u 0 ∈ L 2 (x+1)dx , then a proof similar to Step 1 gives the existence of a mild solutionu ∈ C([0, T ]; L 2 (x+1)dx ) ∩ L 2 (0, T ; H 1 (x+1)dx ) of (1). The uniqueness of such a solution is open. The existence and uniqueness of a solution issuing from u 0 ∈ L 2 (x+1)dx in a class of functions involving a Bourgain norm has been given in[START_REF] Faminskii | An initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in fractional-order Sobolev spaces[END_REF]. Ifu 0 ∈ L 2 (x+1) m dx with m ≥ 3, then u ∈ C([0, T ]; L 2 (x+1) m dx ) ∩ L 2 (0, T ; H 1 (x+1) m dx) for all T > 0 (see below Theorem 3.1).3 Asymptotic Behavior3.1 Decay in L 2 (x+1) m dx Theorem 3.1 Assume that the function a = a(x) satisfies (4). Then, for all R > 0 and m ≥ 1, there exist numbers C > 0 and ν > 0 such that ||u(t)|| L 2 (x+1) m dx ≤ C e -νt ||u 0 || L 2 (x+1) m dx for any solution given by Theorem 2.5, whenever ||u 0 || L 2 (x+1) m dx ≤ R.

By ( 52

 52 )-(54), the induction hypothesis is true for m = 1. Pick now an index m ≥ 2 and assume that d 0 , ..., d m-2 have been constructed so that ( * ) k -( * * ) k are fulfilled for 1 ≤ k ≤ m -1. We aim to prove that for a convenient choice of the constant d m-1 in (45), the properties ( * ) m -( * * ) m hold true.Let us investigate first ( * ) m . We multiply the first equation in (1) by (x + 1) m u to obtain (58)

10 3 L 2 (

 1032 R + ) )dt . (68)Note that by (65)||u(T )||

10 3 L 2 2 (.

 10322 (R + ) ≤ (Ce -νT ||u 0 || L It follows from (48), (26), and (65) that T T -1

2 H 1 (R + ) + ||u|| 10 3 L 2 (

 2132 R + ) )dt. (70) By (48), (

x+1)dx for all T < 1 .Corollary 3 . 3

 133 This gives (64) for T < 1. Corollary 3.2 may be extended (locally) to the weighted space L 2 (x+1) m dx (m ≥ 2) in following the method of proof of[START_REF] Pazoto | Stabilization of a Boussinesq system of KdV-KdV type[END_REF] Theorem 1.1]. Let a = a(x) fulfilling (4) and m ≥ 2. Then there exist some constants ρ > 0, C > 0 and µ > 0 such that||u(t)|| H 1 (x+1) m dx ≤ C e -µt √ t ||u 0 || L 2(x+1) m dx for all t > 0 and all u 0 ∈ L 2 (x+1) m dx satisfying ||u 0 || L 2 (x+1) m dx ≤ ρ.

3. 2 2 bTheorem 3 . 6 2 b≤ 2 b t ≥ 0 for any solution u given by Theorem 2 u 2 e 0 u 2 u 2 e|u| 2 e 0 ∞ 0 u 2 e 2 2 xx e 2bx dxdt + T 0 V|u| 3 e 1 Corollary 3 . 7 2 b ≤ c e -µt √ t ||u 0 || L 2 b 2 b ≤ R. Corollary 3 . 8 -µt t s 2 ||u 0 || L 2 b

 223622022022200222031372223822 Decay in LThis section is devoted to the exponential decay in L 2 b . Our result reads as follows: Assume that the function a = a(x) satisfies (4) with 4b 3 + b < a 0 . Then, for all R > 0, there exist C > 0 and ν > 0, such that||u(t)|| L Ce -νt ||u 0 || L 2bx dx + c b ∞ dx,where c b is a positive constant that will be chosen later. Then, adding[START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF] and[START_REF] Kruzhkov | Faminskii Generalized solutions of the Cauchy problem for the Kortewegde Vries equation[END_REF] hand by hand we obtain (83)V (u) -V (u 0 ) = (4b 3 + b) 2bx dxdt + (4b 3 + b) )|u| 2 (e 2bx + 2c b )dxdt,where x 0 is the number introduced in (4). On the other hand, sinceL 2 b ⊂ L 2 (x+1)dx , ||u(t)|| L 2 (0,∞) and ||u x (t)|| L 2 (0,∞) decays to zero exponentially. Consequently, from Moser estimate we deduce that ||u(t)|| L ∞ (0,∞) → 0. We may assume that (2b/3)||u(t)|| L ∞ < ε = a 0 -(4b 3 + b) for all t ≥ 0, by changing u 0 into u(t 0 ) for t 0 large enough. 2bx dx dt ≤ ε T 2bx dxdt.So, returning to (83), the following holds(85) V (u) -V (u 0 ) -(4b 3 + b + ε) )|u| 2 dxdt ≤ 0.Moreover, according to[START_REF] Linares | Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane[END_REF] there exists C > 0 satisfying dxdt} since L 2 b ⊂ L 2 (R + ). Then, choosing c b sufficiently large, the above estimate and (85) give us that(86) V (u) -V (u 0 ) ≤ -C { e 2bx dxdt} ≤ -C V (u 0 ), u 2 x (0, t)dt + (u(t))dt},where C is a positive constant.Multiplying the first equation in (1) by (T -t)ue 2bx and integrating by parts in (0, ∞) × (0, t)u 2 x (0, t)dt-(4b 3 + b) t)a(x)|u| 2 e 2bx dxdtx)| 2 e 2bx dx ≤ C( 2bx dxdt).Then, combining (87) and (84), we derive Claim 8. (86) follows at once. This proves the exponential decay when ||u(t)|| L ∞ ≤ 3ε/(2b). The general case is obtained as in Theorem 3.Assume that the function a = a(x) satisfies (4) with 4b 3 + b < a 0 . Then for any R > 0, there exist positive constants c = c(R) and µ = µ(R) such that (90) ||u x (t)|| L for all t > 0 and all u 0 ∈ L 2 b satisfying ||u 0 || L Assume that the function a = a(x) satisfies (4) with 4b 3 + b < a 0 , and let s ≥ 2. Then there exist some constants ρ > 0, C > 0 and µ > 0 such that ||u(t)|| H s b ≤ C e for all t > 0 and all u 0 ∈ L 2 b satisfying ||u 0 || L 2 b ≤ ρ.

  2 (x+1) m dx is obtained by constructing a convenient Lyapunov function (which actually decreases strictly on the sequence of times {kT } k≥0 ) by induction on m. For u 0 ∈ L 2 (x+1) m dx , we also prove the following estimate

	(7)	||u(t)|| H 1 (x+1) m dx	≤ C	e -µt √ t	||u 0 || L 2 (x+1) m dx
	in two situations: (i) m = 1 and ||u 0 || L 2 (x+1) m dx	is arbitrarily large; (ii) m ≥ 2 and ||u 0 || L 2 (x+1) m dx

  Pick any number µ ∈ (0, ν). Then there exists some constant C = C(µ) > 0 such that for any u 0 ∈ L 2

	75)	||W (t)u 0 || H k (x+1) m dx	≤ C k e -νt ||u 0 || H k (x+1) m dx	.
	Indeed, if u 0 ∈ H 3 (x+1) m dx , then u t (., 0) ∈ L 2 (x+1) m-3 dx , and since v = u t solves (72)-(73), we also have that
		||u t (., t)|| L 2 (x+1) m-3 dx	≤ C 0 e -νt ||u t (., 0)|| L 2 (x+1) m-3 dx	.
	Using (72), this gives				
		||W (t)u 0 || H 3 (x+1) m dx	≤ C 3 e -νt ||u 0 || H 3 (x+1) m dx	.
	This proves (75) for k = 3. The fact that (75) is valid for k = 1, 2 follows from a standard
	interpolation argument, for H k (x+1) m dx = [H 0 (x+1) m dx , H 3 (x+1) m dx ] k 3	.
	Lemma 3.4 (x+1) m dx				
	(76)	||W (t)u 0 || H 1 (x+1) m dx	≤ C	e -µt √ t	||u 0 || L 2 (x+1) m dx	•
	Proof. Let u 0 ∈ L 2 (x+1) m dx and set u(t) = W (t)u 0 for all t ≥ 0. By scaling in (72) by (x + 1) m u, we see that for some constant C K = C K (T )
		||u|| L 2 (0,1;H 1 (x+1) m dx ) ≤ C K ||u 0 || L 2 (x+1) m dx	•
	This implies that u(t) ∈ H 1 (x+1) m dx for a.e. t ∈ (0, 1) which, combined to (75), gives that u(t) ∈ H 1 (x+1) m dx for all t > 0. Pick any T ∈ (0, 1]. Note that, by (75),
	(77)	||u(T )|| H 1 (x+1) m dx				
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which allows to conclude that V (u) decays exponentially. The last inequality is a consequence of the following results: Claim 7. There exists a positive constant C > 0, such that

First, observe that

Then, from ( 4) and (87) we have

which gives us Claim 7. Claim 8.

V (u 0 ) ≤ C { T