A Nonlinear Reconstruction Algorithm from Absolute Value of Frame Coefficients for Low Redundancy Frames

Radu Balan

- To cite this version:

Radu Balan. A Nonlinear Reconstruction Algorithm from Absolute Value of Frame Coefficients for Low Redundancy Frames. SAMPTA’09, May 2009, Marseille, France. pp.General session. hal00453181

HAL Id: hal-00453181
https://hal.science/hal-00453181
Submitted on 4 Feb 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Nonlinear Reconstruction Algorithm from Absolute Value of Frame Coefficients for Low Redundancy Frames

Radu Balan
Department of Mathematics, CSCAMM and ISR, University of Maryland, College Park, MD 20742, USA
rvbalan@math.umd.edu

Abstract

: In this paper we present a signal reconstruction algorithm from absolute value of frame coefficients that requires a relatively low redundancy. The basic idea is to use a nonlinear embedding of the input signal Hilbert space into a higher dimensional Hilbert space of sesquilinear functionals so that absolute values of frame coefficients are associated to relevant inner products in that space. In this space the reconstruction becomes linear and can be performed in a polynomial number of steps.

1. Introduction

Let us denote by \mathbf{E}^{n} the n-dimensional space of signals (e.g. $E^{n}=\mathbf{R}^{n}$ or $E^{n}=\mathbf{C}^{n}$), and assume we are given a frame of m vectors $\left\{f_{1}, \ldots, f_{m}\right\} \subset \mathbf{E}^{n}$ that span E^{n}. Thus necessarily $m \geq n$. In this paper we look at the following problem: Given $c_{l}=\left|\left\langle x, f_{l}\right\rangle\right|, 1 \leq l \leq m$, reconstruct the original signal $x \in \mathbf{E}^{n}$ up to a constant phase ambiguity, that is, obtain a signal $y \in \mathbf{E}^{n}$ such that $y=e^{i \varphi} x$ for some $\varphi \in[0,2 \pi)$.
This problem arises in several areas of signal processing (see [BCE06] for a more detailed discussion of these issues). In particular, in X-Ray Crystallography (see [LFB87]) it is known as the phase retrieval problem. In speech processing it is related to the use of cepstral coefficients in Automatic Speech Recognition as well as direct reconstruction from denoised spectogram (see [NQL82]). By the same token the solution posed here can be viewed as a new, nonlinear signal generating model.
Recently ([BBCE09]) we proposed a quasi-linear reconstruction algorithm that requires the frame to have high redundancy ($m=O\left(n^{2}\right)$). The algorithm works as follows. First note that two vectors $x, y \in \mathbf{E}^{n}$ that are equivalent (i.e. equal to one another up to a constant phase) generate the same rank-one operators $K_{x}=K_{y}$, where

$$
\begin{equation*}
K_{u}: \mathbf{E}^{n} \rightarrow \mathbf{E}^{n}, K_{u}(z)=\langle z, u\rangle u \tag{1}
\end{equation*}
$$

with $u=x$ or $u=y$. Conversely, if $K_{x}=K_{y}$ then necessarily there exists a phase φ so that $y=e^{i \varphi} x$. Thus the reconstruction problem reduces to obtaining first K_{x}, and then a representative of the class \hat{x}. Next notice that the absolute value of frame coefficient $\left|\left\langle x, f_{l}\right\rangle\right|$ is related to the Hilbert-Schmidt inner product between K_{x} and $K_{f_{l}}$:

$$
\left\langle K_{x}, K_{f_{l}}\right\rangle:=\operatorname{trace}\left(K_{x} K_{f_{l}}^{*}\right)=\left|\left\langle x, f_{l}\right\rangle\right|^{2}
$$

$$
\begin{equation*}
\Lambda_{d, d}\left(\mathbf{E}^{n}\right)=\{\alpha: \underbrace{\mathbf{E}^{n} \times \cdots \mathbf{E}^{n}}_{2 d} \rightarrow \mathbf{C}\} \tag{4}
\end{equation*}
$$

where $\alpha\left(y_{1}, \ldots, y_{d}, z_{1}, \ldots, z_{d}\right)$ is linear in y_{1}, \ldots, y_{d}, and antilinear in z_{1}, \ldots, z_{d}. Note $\Lambda_{d, d}\left(\mathbf{E}^{n}\right)$ is a vector space of dimension $n^{2 d}$. Let $\left\{e_{k}, 1 \leq k \leq n\right\}$ be an orthonormal basis of \mathbf{E}^{n}. For each $2 d$-tuple $\left(k_{1}, \ldots, k_{2 d}\right)$ of integers from $1, \ldots, n$ (repetitions are allowed) define

$$
\begin{align*}
\delta_{k_{1}, \ldots, k_{2 d}}\left(y_{1}, \ldots, y_{d}, z_{1}, \ldots, z_{d}\right) & =\left\langle y_{1}, e_{k_{1}}\right\rangle \cdots\left\langle y_{d}, e_{k_{d}}\right\rangle . \tag{7}\\
\left\langle e_{k_{d+1}}, z_{1}\right\rangle \cdots\left\langle e_{k_{2 d}}, z_{d}\right\rangle & \tag{5}
\end{align*}
$$

Note $\Delta=\left\{\delta_{k_{1}, \ldots, k_{2 d}} ; 1 \leq k_{l} \leq n, 1 \leq l \leq 2 d\right\}$ forms a basis in $\Lambda_{d, d}\left(\mathbf{E}^{n}\right)$. We define an inner product on $\Lambda_{d, d}\left(\mathbf{E}^{n}\right)$ so that this basis is orthonormal. Consider two sesquilinear functionals in $\Lambda_{d, d}\left(\mathbf{E}^{n}\right)$:

3. The Reconstruction Algorithm

Under Assumption A, let us denote by $\left\{\widetilde{\psi_{j_{1}, \ldots, j_{d}}}, 1 \leq\right.$ $\left.j_{1} \leq \cdots \leq j_{d} \leq m\right\}$ the canonical dual frame to $P \Psi$. This dual frame allows us to recover $\Phi(x)$. Recall $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of \mathbf{E}^{n}. Notice the following relations:
$\sum_{k=1}^{n}\left(\Phi(x)\left(e_{k}, \ldots, e_{k}\right)\right)^{1 / d}=\|x\|^{2}$
$\Phi(x)(\underbrace{e_{j}, \ldots, e_{j}}_{2 d-1}, e_{k})=\left|\left\langle x, e_{j}\right\rangle\right|^{2 d-2}\left\langle e_{j}, x\right\rangle\left\langle x, e_{k}\right\rangle$
$\alpha\left(y_{1}, \ldots, y_{d}, z_{1}, \ldots, z_{d}\right)=\left\langle y_{1}, a_{1}\right\rangle \cdots\left\langle y_{d}, a_{d}\right\rangle\left\langle b_{1}, z_{1}\right\rangle \cdots\left\langle b_{d}, z_{d}\right\rangle$
$\beta\left(y_{1}, \ldots, y_{d}, z_{1}, \ldots, z_{d}\right)=\left\langle y_{1}, g_{1}\right\rangle \cdots\left\langle y_{d}, g_{d}\right\rangle\left\langle h_{1}, z_{1}\right\rangle \cdots\left\langle h_{d}, z_{d}\right\rangle$
Then their inner product is defined as

$$
\begin{equation*}
\langle\alpha, \beta\rangle:=\left\langle g_{1}, a_{1}\right\rangle \cdots\left\langle g_{d}, a_{d}\right\rangle\left\langle b_{1}, h_{1}\right\rangle \cdots\left\langle b_{d}, h_{d}\right\rangle \tag{6}
\end{equation*}
$$

Extend this binary operation to an inner product on $\Lambda_{d, d}\left(\mathbf{E}^{n}\right)$. With this inner product Δ becomes an orthonormal basis for the Hilbert space $\Lambda_{d, d}\left(\mathbf{E}^{n}\right)$.
Now we are ready to define the nonlinear embedding of the input Hilbert space \mathbf{E}^{n} in $\Lambda_{d, d}\left(\mathbf{E}^{n}\right)$. This is given by the map $\Phi: \mathbf{E}^{n} \rightarrow \Lambda_{d, d}\left(\mathbf{E}^{n}\right)$

$$
\begin{gather*}
\Phi(x)\left(y_{1}, \ldots, y_{d}, z_{1}, \ldots, z_{d}\right)=\left\langle y_{1}, x\right\rangle \cdots\left\langle y_{d}, x\right\rangle . \\
\cdot\left\langle x, z_{1}\right\rangle \cdots\left\langle x, z_{d}\right\rangle \tag{7}
\end{gather*}
$$

Let $E_{d}=\operatorname{span}\left(\Phi\left(\Lambda_{d, d}\left(\mathbf{E}^{n}\right)\right)\right)$ be the linear span of the embedding. Note in general $E_{d} \subsetneq \Lambda_{d, d}\left(\mathbf{E}^{n}\right)$ unless $d=$ 1. Let P denote the orthogonal projection onto E_{d}, P : $\Lambda_{d, d}\left(\mathbf{E}^{n}\right) \rightarrow E_{d}$.
Define now the following sesquilinear functionals associated to the frame set \mathcal{F}. Fix $1 \leq j_{1}, \ldots, j_{d} \leq m$.

$$
\begin{align*}
\psi_{j_{1}, \ldots, j_{d}}\left(y_{1}, \ldots, y_{d}, z_{1}, \ldots, z_{d}\right) & =\left\langle y_{1}, f_{j_{1}}\right\rangle \cdots\left\langle y_{d}, f_{j_{d}}\right\rangle . \\
\cdot\left\langle f_{j_{1}}, z_{1}\right\rangle \cdots\left\langle f_{j_{d}}, z_{d}\right\rangle & \tag{8}
\end{align*}
$$

Note there are m^{d} distinct such functionals, however the number of distinct projections onto E_{d} is much smaller. Notice

$$
\begin{equation*}
\left\langle\Phi(x), \psi_{j_{1}, \ldots, j_{d}}\right\rangle=\left|\left\langle x, f_{j_{1}}\right\rangle\right|^{2} \cdots\left|\left\langle x, f_{j_{d}}\right\rangle\right|^{2} \tag{9}
\end{equation*}
$$

Thus if $\left(k_{1}, \ldots, k_{d}\right)$ is a permutation of $\left(j_{1}, \ldots, j_{d}\right)$ then $P \psi_{k_{1}, \ldots, k_{d}}=P \psi_{j_{1}, \ldots, j_{d}}$. For converse we need to assume first that frame vectors belong to distinct equivalence classes (that is, for any two $1 \leq l<j \leq m$ and any $\left.a \in[0,2 \pi), f_{l} \neq e^{i a} f_{j}\right)$. Then we get that $P \psi_{k_{1}, \ldots, k_{d}}=P \psi_{j_{1}, \ldots, j_{d}}$ if and only if $\left(k_{1}, \ldots, k_{d}\right)$ is a permutation of $\left(j_{1}, \ldots, j_{d}\right)$. Thus we obtain that for frames with frame vectors in distinct equivalence classes the set

$$
\begin{equation*}
\Psi=\left\{\psi_{j_{1}, \ldots, j_{d}}, 1 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{d} \leq m\right\} \tag{10}
\end{equation*}
$$

is a maximal set of sesquilinear functionals of type (8) that have distinct projections through P.
For our algorithm to work we need to assume:
Assumption A. The set $P \Psi:=\{P \psi, \psi \in \Psi\}$ is spanning in E_{d}.
In section 4 . we analyze the dimensionality constraint $|P \Psi| \geq \operatorname{dim}\left(E_{d}\right)$, and in section 5 . we present numerical results supporting Assumption A for a generic frame.

From (11) and (13) we obtain:

$$
\begin{equation*}
\left\langle x, e_{k}\right\rangle=\frac{\left\langle x, e_{j}\right\rangle}{\left|\left\langle x, e_{j}\right\rangle\right|} \frac{\Phi(x)\left(e_{j}, \ldots, e_{j}, e_{k}\right)}{\left(\Phi(x)\left(e_{j}, \ldots, e_{j}, e_{j}\right)\right)^{(2 d-1) / 2 d}} \tag{14}
\end{equation*}
$$

The Reconstruction Algorithm is as follows.

Reconstruction Algorithm

Input: Coefficients $c_{1}=\left|\left\langle x, f_{1}\right\rangle\right|, \ldots c_{m}=\left|\left\langle x, f_{m}\right\rangle\right|$.
Step 0. If $\sum_{k=1}^{m} c_{k}^{2}=0$ then $y=0$ and stop. Otherwise continue.
Step 1. Construct the following sesquilinear functional

$$
\begin{equation*}
\alpha=\sum_{1 \leq j_{1} \leq \cdots \leq j_{d} \leq m} c_{j_{1}}^{2} \cdots c_{j_{d}}^{2} \widetilde{\psi_{j_{1}, \ldots, j_{d}}} \tag{15}
\end{equation*}
$$

Step 2. Find a $1 \leq j_{0} \leq n$ so that $\alpha\left(e_{j_{0}}, \cdots, e_{j_{0}}\right)>0$. This is possible due to (12). Set

$$
\begin{equation*}
\nu=\sqrt[2 d]{\alpha\left(e_{j_{0}}, \ldots, e_{j_{0}}\right)} \tag{16}
\end{equation*}
$$

Step 3. Set

$$
\begin{equation*}
y=\frac{1}{\nu^{2 d-1}} \sum_{k=1}^{n} \alpha(\underbrace{e_{j_{0}}, \ldots, e_{j_{0}}}_{2 d-1}, e_{k}) e_{k} \tag{17}
\end{equation*}
$$

Summarizing all results obtained so far we obtain:
Theorem 3.. 1 For every $x \in \mathbf{E}^{n}$ there is $z \in \mathbf{C}$ so that $|z|=1$ and the output of the Reconstruction Algorithm satisfies $x=z y$. Specifically $z=\frac{\left\langle x, e_{j_{0}}\right\rangle}{\mid\left\langle x, e_{j_{0}}\right\rangle}$, with $j_{0} o b$ tained in Step 2.

4. Redundancy Constraint

In this section we analyse the necessary condition $|\Psi| \geq$ $\operatorname{dim}\left(E_{d}\right)$.

4.1 The Cardinal of Set Ψ

The set Ψ given in (10) has the same cardinal as

$$
\begin{equation*}
\left\{\left(k_{1}, \ldots, k_{d}\right), 1 \leq k_{1} \leq \cdots \leq k_{d} \leq m\right\} \tag{18}
\end{equation*}
$$

Let us denote this number by $M_{m, d}$. In order to compute it, consider the following cardinal equivalent set:
$\left\{\left(n_{1}, \ldots, n_{m}\right), 0 \leq n_{1}, \ldots, n_{m} \leq d, n_{1}+\cdots+n_{m}=d\right\}$
(19)

The bijective correspondence between d-tuples of (18) and m-tuples of (19) is given by the following interpretation: n_{l} is the number of times l is presented in the d-tuple $\left(k_{1}, \ldots, k_{d}\right)$. Then, one can obtain the following recursion:

$$
M_{m+1, d}=\sum_{r=0}^{d} M_{m, d}
$$

where we set $M_{m, 0}=1$. Since $M_{1, d}=1$, one obtains by induction that:
$M_{m, d}=\binom{m+d-1}{m-1}=\frac{m(m+1) \cdots(m+d-1)}{d!}$

4.2 The Dimension of E_{d}

Recall E_{d} is the linear span of vectorx $\Phi(x)$ in $\Lambda_{d, d}\left(\mathbf{E}^{n}\right)$. Recall also that Δ whose $n^{2 d}$ vectors are defined in (5) is an orthonormal basis in $\Lambda_{d, d}\left(\mathbf{E}^{n}\right)$. Let us denote by $N_{n, d}$ the dimension of E_{d}. We will describe an orthonormal basis in E_{d}. Fix $t_{1}, \ldots, t_{n} \in \mathbf{C}$ and expand:
d-tuples \underline{l} :

$$
\begin{equation*}
N_{n, d}=\left(M_{n, d}\right)^{2}=\left(\frac{n(n+1) \cdots(n+d-1)}{d!}\right)^{2} \tag{23}
\end{equation*}
$$

where we used (20). Note $N_{n, 1}=n^{2}$ and we recover the complex case considered in [BBCE09].
The Real Case
In the real case, t_{k} and $\overline{t_{k}}$ are the same variables. Then the independent terms in (21) are indexed by $2 d$-tuples $\underline{k}=$ $\left(k_{1}, \ldots, k_{2 d}\right)$ as follows:

$$
\begin{equation*}
\sum_{1 \leq k_{1} \leq k_{2 d} \leq n} t_{k_{1}} \cdots t_{k_{2 d}} \sum_{\pi \in \mathcal{P}_{\underline{k}}} \delta_{\pi\left(k_{1}\right), \ldots, \pi\left(k_{2 d}\right)} \tag{20}
\end{equation*}
$$

and an orthonormal basis of E_{d} is given by the following vectors indexed by ordered $2 d$-tuples \underline{k} :

$$
\begin{equation*}
d_{\underline{k}}=\frac{1}{\sqrt{\left|\mathcal{P}_{\underline{k}}\right|}} \sum_{\pi \in \mathcal{P}_{\underline{k}}} \delta_{\pi\left(k_{1}\right), \ldots, \pi\left(k_{2 d}\right)} \tag{24}
\end{equation*}
$$

The dimension of E_{d} in real case is then:
$\Phi\left(t_{1} e_{1}+\cdots t_{n} e_{n}\right)=\sum_{\substack{1 \leq k_{1}, \ldots, k_{2 d} \leq n \\ \\ \\ \cdot \delta_{k_{1}, \ldots, k_{2 d}}}} t_{k_{1}} \cdots t_{k_{d}} \overline{t_{k_{d+1}}} \cdots \overline{t_{k_{2 d}}}$.
$N_{n, d}=M_{n, 2 d}=\frac{n(n+1) \cdots(n+2 d-1)}{(2 d)!}$

We shall group together terms containing same t_{k} terms. The real case will be treated separately from the complex case.
To simplify the exposition, we introduce notation common to both cases. Let us denote by $\underline{k}=\left(k_{1}, \ldots, k_{r}\right)$ an ordered r-tuple of integers each from 1 to n, where the length r is equal to $2 d$ (in the real case), or d (in the complex case). Let us denote by \mathcal{P}_{r} the set of r permutations, and by $\mathcal{P}_{\underline{k}}$ the quotient set $\mathcal{P}_{\underline{k}}=\mathcal{P} / \sim_{\underline{k}}$ where $\pi^{\prime}, \pi^{\prime \prime} \in \mathcal{P}_{r}$ are equivalent $\pi^{\prime} \sim_{\underline{k}} \pi^{\prime \prime} \overline{\text { if }}$ and only if $\pi^{\prime}(\underline{k})=\pi^{\prime \prime}(\underline{k})$. Note

$$
\left|\mathcal{P}_{\underline{k}}\right|=\frac{r!}{m_{1}!\cdots m_{n}!}
$$

where m_{l} denotes the number of repetitions of l in \underline{k}.
The Complex Case
In the complex case, t_{k} and $\overline{t_{k}}$ can be treated as indepedent (real) variables. Then terms in (21) are grouped using two independent d-tuples, $\underline{j}=\left(j_{1}, \ldots, j_{d}\right)$ and $\underline{l}=\left(l_{1}, \ldots, l_{d}\right)$ as follows

$$
\begin{array}{r}
\sum_{1 \leq j_{1} \leq \cdots \leq j_{d} \leq n} \sum_{1 \leq l_{1} \leq \cdots \leq l_{d} \leq n} t_{j_{1}} \cdots t_{j_{d}} \overline{t_{l_{1}}} \cdots \overline{t_{l_{d}}} \times \\
\times \sum_{\pi \in \mathcal{P}_{\underline{j}}} \sum_{\rho \in \mathcal{P}_{\underline{\underline{l}}}} \delta_{\pi\left(j_{1}\right), \ldots, \pi\left(j_{d}\right), \rho\left(l_{1}\right), \ldots, \rho\left(l_{d}\right)} \tag{2}
\end{array}
$$

Then the following sesquilinear functionals are orthonormal and form a basis in E_{d} :

$$
\begin{equation*}
d_{\underline{j}, \underline{l}}=\frac{1}{\sqrt{\left|\mathcal{P}_{\underline{j}}\right|} \sqrt{\left|\mathcal{P}_{\underline{\underline{l}}}\right|}} \sum_{\pi \in \mathcal{P}_{\underline{\underline{j}}}} \sum_{\rho \in \mathcal{P}_{\underline{\underline{l}}}} \delta_{\pi\left(j_{1}\right), \ldots, \pi\left(j_{d}\right), \rho\left(l_{1}\right), \ldots, \rho\left(l_{d}\right)} \tag{22}
\end{equation*}
$$

Their number (and hence dimension of E_{d}) is equal to the number of ordered d-tuples \underline{j} times the number of ordered
${ }^{2}$ Note $N_{n, 1}=\frac{n(n+1)}{2}$ and this recovers the real case in [BBCE09].

4.3 The Optimal Depth and Redundancy Condition

For given n we would like to find the minimum $m=m^{*}$ so that $M_{m, d} \geq N_{n, d}$ for some $d \geq 1$.
The Complex Case
We need to solve

$$
\frac{m(m+1) \cdots(m+d-1)}{d!} \geq\left(\frac{n(n+1) \cdots(n+d-1)}{d!}\right)^{2}
$$

or, completing the factorials:

$$
(m+d-1)!d!((n-1)!)^{2} \geq(m-1)!((n+d-1)!)^{2}
$$

Let us denote

$$
\begin{equation*}
R(n, m, d)=\frac{(m+d-1)!d!((n-1)!)^{2}}{(m-1)!((n+d-1)!)^{2}} \tag{26}
\end{equation*}
$$

Ideally we would like to solve:

$$
\begin{aligned}
& d^{*}(n, m)=\operatorname{argmax}_{d} R(n, m, d) \\
& m^{*}(n)=\min _{R\left(n, m, d^{*}(n, m)\right) \geq 1} m
\end{aligned}
$$

Instead we make the following choices for $d=d(n)$ and $m=m(n)$, and then optimize using Stirling's formula:

$$
\begin{align*}
d & =n-1 \tag{27}\\
m & =A(n-1)+1 \tag{28}
\end{align*}
$$

Using Stirling's formula $n!=\sqrt{2 \pi n} n^{n} e^{-n}$ we obtain for $R(n+1, A n+1, n)$,
$R(n+1, A n+1, n)=\sqrt{\frac{8 \pi(A+1) n}{A}}\left[\frac{A+1}{16}\left(1+\frac{1}{A}\right)^{A}\right]^{n}$

Figure 1: The plot of $q=q(A)$ from (29).

To obtain $R \geq 1$ for large n, we need

$$
\begin{equation*}
q(A)=\frac{A+1}{16}\left(1+\frac{1}{A}\right)^{A} \geq 1 \tag{29}
\end{equation*}
$$

In Figure 1 we plot the function $q=q(A)$. Numerically we obtain $A=5.394$. The remaining factor in $R(n+$ $1, A n+1, n)$ becomes $5.376 \sqrt{n} \geq 1$ for all n. Thus we obtain as sufficient conditions:

$$
\begin{align*}
d & =n-1 \tag{30}\\
m & =5.394 n-4.394 \tag{31}
\end{align*}
$$

The Real Case
In the real case we need to solve
$\frac{m(m+1) \cdots(m+d-1)}{d!} \geq \frac{n(n+1) \cdots(n+2 d-1)}{(2 d)!}$
Following the same approach we obtain the following ratio function that we need to make supraunital:

$$
\begin{equation*}
R(n, m, d)=\frac{(m+d-1)!(n-1)!(2 d)!}{(m-1)!(n+2 d-1)!d!} \tag{32}
\end{equation*}
$$

It follows:

$$
R(n+1,2 n+1, n)=1
$$

Hence a possible choice is

$$
\begin{align*}
d & =n-1 \tag{33}\\
m & =2 n-1 \tag{34}
\end{align*}
$$

It is interesting to note that in the real case we recover the critical case $m \geq 2 n-1$.

5. Numerical Evidence Supporting Genericity of the Assumption A.

While the previous section computed necessary conditions for Assumption A to hold true, we still need to prove (or check) that $P \Psi$ is frame in E_{d}. In this section we plot the distribution of eigenvalues of the frame operator associated to $P \Psi$ for one randomly generated example. Using (22), each vector $P \psi_{\underline{k}}$ is represented by a $N_{n, d^{-}}$ vector whose components are indexed by a pair $(\underline{j}, \underline{l})$,
$F_{(\underline{j}, \underline{l}), \underline{k}}=\left\langle\psi_{\underline{k}}, d_{\underline{j}, \underline{l}}\right\rangle$. Explicitely this becomes

$$
\begin{gather*}
F_{(\underline{j}, \underline{l}), \underline{k}}=\frac{1}{\sqrt{\left|\mathcal{P}_{\underline{j}}\right|} \sqrt{\left|\mathcal{P}_{\underline{l}}\right|}} \sum_{\pi \in \mathcal{P}_{\underline{j}}} \sum_{\rho \in \mathcal{P}_{l} u}\left\langle e_{\pi\left(j_{1}\right)}, f_{k_{1}}\right\rangle \cdots \\
\cdot\left\langle e_{\pi\left(j_{d}\right)}, f_{k_{d}}\right\rangle\left\langle f_{k_{1}}, e_{\rho\left(l_{1}\right)}\right\rangle \cdots\left\langle f_{k_{d}}, e_{\rho\left(l_{d}\right)}\right\rangle \tag{35}
\end{gather*}
$$

Thus $P \Psi$ is frame for E_{d} if and only if the $N_{n, d} \times M_{m, d}$ matrix F is of full rank. The frame operator is given by $S=F F^{*}$.
We considered the complex case $(\mathbf{E}=\mathbf{C})$ with the following parameters $n=5$ and $d=3$. For $m=21$ the ratio function (26) takes the value $R(5,21,3)=1.4457>1$. Note for the algorithm in [BBCE09] to work m has to be greater than or equal to n^{2}, that is $m \geq 25$. For a frame with 21 vectors in dimension 5 whose vectors are obtained as realizations of complex valued normal random variables of zero mean and variance 2 (each real and imaginary part is i.i.d. $\mathcal{N}(0,1)$), the distribution of eigenvalues of its frame operator is plotted in Figure 2. Note the conditioning number is $\operatorname{cond}(S)=6267.7$. While relatively large, the important thing to note is that the realization $P \Psi$ is frame (spanning) for E_{d}. While this result is by no

Figure 2: Distribution of eigenvalues for a random frame..
means a proof, or even an exhaustive experiment, it suggests the Assumption A might be generically true whenever $R(n, m, d)>1$.

References:

[BCE06] R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, Appl.Comput.Harmon.Anal. 20 (2006), 345-356.
[BBCE09] R. Balan, B. Bodman, P. Casazza, D. Edidin, Painless reconstruction from magnitudes of frame coefficients, to appear in the Journal of Fourier Analysis and Applications, 2009.
[LFB87] R. G. Lane, W. R. Freight, and R. H. T. Bates, Direct Phase Retrieval, IEEE Trans. ASSP 35, no. 4 (1987), 520-526.
[NQL82] H. Nawab, T. F. Quatieri, and J. S. Lim, Signal Reconstruction from the Short-Time Fourier Transform Magnitude, in Proceedings of ICASSP 1984.

