N
N

N

HAL

open science

A Nonlinear Reconstruction Algorithm from Absolute
Value of Frame Coeflicients for Low Redundancy Frames
Radu Balan

» To cite this version:

Radu Balan. A Nonlinear Reconstruction Algorithm from Absolute Value of Frame Coefficients for

Low Redundancy Frames. SAMPTA’09, May 2009, Marseille, France. pp.General session.

00453181

HAL Id: hal-00453181
https://hal.science/hal-00453181
Submitted on 4 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00453181
https://hal.archives-ouvertes.fr

A Nonlinear Reconstruction Algorithm from
Absolute Valugé)f Frame Coefﬂuentsfor L ow

undancy

Frames

Radu Balan

Department of Mathematics, CSCAMM and ISR, University of Maryland, College Park, MD 20742, USA
rvbalan@math.umd.edu

Abstract:

In this paper we present a signal reconstruction algorithm
from absolute value of frame coefficients that requires a
relatively low redundancy. The basic ideaisto use a non-
linear embedding of the input signal Hilbert space into a
higher dimensional Hilbert space of sesquilinear function-
als so that absolute values of frame coefficients are associ-
ated to relevant inner productsin that space. In this space
the reconstruction becomes linear and can be performedin
a polynomial number of steps.

1. Introduction

Let us denote by E" the n-dimensional space of signals
(eg. E™ = R"™ or E™ = C"), and assume we are given
aframe of m vectors {f1,..., fm} C E™ that span E™.
Thus necessarily m > n. In this paper we look at the
following problem: Given¢; = |{z, fi)|, 1 < I < m,
reconstruct the original signal z € E™ up to a constant
phase ambiguity, that is, obtain asignal y € E™ such that
y = e*x for some p € [0, 27).
This problem arises in severa areas of signal process-
ing (see [BCEO6] for a more detailed discussion of these
issues). In particular, in X-Ray Crystalography (see
[LFB87]) it is known as the phase retrieval problem. In
speech processing it is related to the use of cepstral coeffi-
cients in Automatic Speech Recognition as well as direct
reconstruction from denoised spectogram (see [NQL82)).
By the same token the solution posed here can be viewed
as anew, nonlinear signal generating model.
Recently ([BBCEQ9]) we proposed a quasi-linear recon-
struction algorithm that requiresthe frameto have high re-
dundancy (m = O(n?)). The algorithm works as follows.
First note that two vectors x,y € E™ that are equivalent
(i.e. equal to one ancther up to a constant phase) generate
the same rank-one operators K ,, = K, where
K,:E"—>E", K,(2) = (z,u)u Q)
withu = z or u = y. Conversely, if K, = K, then
necessarily there exists a phase ¢ so that y = e* 2. Thus
the reconstruction problem reduces to obtaining first K,
and then a representative of the class z. Next notice that
the absol ute val ue of frame coefficient | (z, f;)| isrelated to
the Hilbert-Schmidt inner product between K, and Ky,

(Kz, Ky,) :=trace(K, Kfz) |{x, fl>|

Hence, if {Ky , 1 < [ < m} form aframe for the set
of Hilbert-Schmidt operators (thisis the same as the set of
quadratic forms), then K, can be reconstructed from d7
with a linear algorithm, from where a vector y € % can
be obtained. Explicitely, the algorithmis as follows: First
denoteby {K; : E* — E" | 1 <[ < m} the canonical
dual frameof {Ky, , 1 <1 <m}.

1. Compute:

m

=1
2. Assumee € E", |le|]| = Lissothat || K e|| # 0. Then:
y=—F——=Ka(e) ©

isavector in E™ equivalent to x.

While very appealing from a computational perspective,
this algorithm requiresthe set {Ky, , 1 < [ < m} to
be complete (spanning) in the Hilbert space of n x n
quadratic forms. In the rea case (E = R) this latter
Hilbert spaceis of dimensionn(n + 1)/2. In the complex
case (E = C) the dimension becomes n2. Thus the algo-
rithm requires the origina frame set {f; , 1 < 1 < m}
to have m = O(n?) vectors. In practice this require-
ment may not be feasible. Furthermore, in [BCEQ6] we
obtained that generically m > 4n — 2 should sufficein the
complex case, and n > 2n — 1 should suffice in the real
case. In this paper we present an algorithm that appliesto
ageneric frame set of m = 5.394n — 4.394 vectorsin the
complex case, and m = 2n — 1 inthereal case. Themain
ingredient of this algorithm is the nonlinear embeding of
E™ into alinear space A 4,4 of (d, d)-sesquilinear symmet-
ric forms where the absolute value of frame coefficients
provide the inner products with aframe set.

2. Nonlinear Embeddings

Let E™ be the signa n-dimensional Hilbert space. Let
F=A{f1,..., fm} beaspanning set of m vectorsin E".
Its redundancy isr = m/n > 1. Fix aninteger d > 1
which is going to measure the embedding depth. Let
Aq,q4(E™) denote the linear space of (d, d)-sesquilinear
functionals, that is

Aga(

E'Y={a:E"x---E" = C} (4

2d



where «(y1,...,Yd, 21, --,24) IS linear in y1,...,y4,
and antilinear in zy,...,z4. Note A4 q(E™) is a vector
space of dimension n?¢. Let {e;, 1 < k < n} bean or-
thonormal basis of E™. For each 2d-tuple (k1, . . ., kag) of
integersfrom 1, ..., n (repetitions are allowed) define

e,

3. TheReconstruction Algorithm

Under Assumption A, let us denote by {wj/ljjd, 1<
1 < -+ < jg < m} the canonical dual frame to
PW. Thisdua frame alows us to recover ®(z). Recall

.,en} is an orthonormal basis of E™. Notice the

) , e e = N ,

ki,...,k24 (yla yYds 21, ) Zd) <y1; ek1> <yda ekd> followi ng relations:

<ek’d+1 ) Zl) o <ek’2d7 Zd> (5 2d

Note A = {60 pil < b < ml <1 < 2d) ) O(x)(en, .- ex) = |(z,exr)] (1)
forms a basis in A4 ¢(E™). We define an inner product P ) 1/d  _ 2 12
on A44(E™) so that this basis is orthonormal. Consider 1;( @)(ex; - ex)) I (12)
two sesquilinear functionalsin A 4 4(E"): - _

#a(E") D)y, veper) = [{e,es) 2 es,a) (e cn)
Y1y Yds 215+ -5 2d) = (Y1,01) -+ (Yd, aa) (b1, 21) - - - (ba, 2a) e
ﬁ(yla e Ydy 21, Zd) = <y1agl> e <ydagd><h17 Zl> to <hd7 Zd> (13)
Then their inner product is defined as From (11) and (13) we obtain:
(o, B) == (g1,a1) -+ - (gd, aa) (b1, h1) - - - (ba, ha)  (6) ( > (x,ej) O(z)(ej,...,e5,€x)
T,ex) =

Extend this binary operation to an inner product on ¥ [(z,e;)] (®(x)(ej,...,e4,e5))2d-1)/2d
Aqqa(E™). With this inner product A becomes an or- (14)

thonormal basis for the Hilbert space A 4 4(E™).

Now we are ready to define the nonlinear embedding of
the input Hilbert space E” in Ay 4(E™). Thisis given by
themap @ : E® — Ag q(E")

() (Y1, s Ydy 21+ -y 2d) = (Y1,2) - {Ya,x) -
(@, z1) -+ (@, za) @

Let By = span(®(Aqq(E™))) be the linear span of the
embedding. Notein general E; C Aqq(E™) unlessd =
1. Let P denote the orthogonal projection onto £ 4, P :
Ad’d(En) — Ed.

Define now the following sesquilinear functionals associ-
atedtotheframeset F. Fix 1 < j1,..., 54 < m.

wj17~~~,jd(y1’ ey Ydy Ry ey Zd) =

Note there are m¢ distinct such functionals, however the
number of distinct projections onto E; is much smaller.
Notice

<(I)(x)7wj17---7jd> - |<.13, fj1>|2 T |<.13, fjd>|2 )

Thusif (ki,...,kq) isapermutation of (j1,...,j4) then
Py, ... .k, = Py, 5, For converse we need to as-
sume first that frame vectors belong to distinct equiva-
lence classes (that is, foranytwo 1 < I < j < m
and any a € [0,27), fi # €“f;). Then we get that
Pwkl,...,kd = ijl,...,jd, if and only if (/fl,...,kd) is
a permutation of (ji1,...,74). Thus we obtain that for
frames with frame vectors in distinct equivalence classes
the set

U={tj ., 1<j1<jo<---<ja<m} (10)

isamaximal set of sesquilinear functional sof type (8) that
have distinct projections through P.

For our algorithm to work we need to assume:
Assumption A. The set PU := { P, ¢ € ¥} isspanning
in Ey.

In section 4. we analyze the dimensionality constraint
|PU| > dim(Ey), and in section 5. we present numeri-
cal results supporting Assumption A for ageneric frame.

(s fin) - (as fia) -
'<fj1721>"'<fjdazd> (8)

The Reconstruction Algorithm is as follows.
Reconstruction Algorithm

Input: Coefficientscy = |(z, f1)], - ¢m = |{z, fin)]-
Sep 0. If 37", ¢2 = 0theny = 0 and stop. Otherwise
continue.

Step 1. Construct the following sesquilinear functional

a= Z 051 T C?d,¢j1»~;jd (15)
1<j1 < <ja<m
Sep 2. Findal < jo < n sothat a(ej,,---,ej5) > 0.
Thisis possible dueto (12). Set
v= 2 alejy,. .. €j) (16)
Sep 3. Set
1 n
y= p2d—1 ; a(ejo’ <9 €hg5 ek)ek (17)
2d—1

Summarizing all results obtained so far we obtain:

Theorem 3..1 For every x € E™ thereis z € C so that
|z] = 1 and the output of the Reconstruction Algorithm

satisfies z = zy. Specifically z = ‘g’?ﬁ“iw with jo ob-
=70
tainedin Sep 2.

4. Redundancy Constraint

In this section we analyse the necessary condition || >

4.1 TheCardinal of Set ¥
The set ¥ given in (10) has the same cardinal as

{(k1,-.

Let us denote this number by M, 4. In order to compute
it, consider the following cardinal equivalent set:

{(’I’Ll,..

ka), 1<k <---<kg<m} (18)

S <dyngF Ay, = d}

.,nm),Ognl,.. S
(19



The bijective correspondence between d-tuplesof (18) and
m-tuples of (19) is given by the following interpretation:
ny is the number of times [ is presented in the d-tuple
(k1,...,kq). Then, one can obtain the following recur-

sion:
d
Mm+1,d = Z Mm,d
r=0

where we set M,,, o = 1. Since M, 4 = 1, one obtains by
induction that:

My = ( m+d—1 ) _m(m 1) (mtd—1)

m—1 d!
(20)

4.2 TheDimension of E,

Recall E,; isthe linear span of vectorx ®(z) in A g 4(E").
Recall also that A whose n?? vectors are defined in (5) is
an orthonormal basisin A4 4(E™). Let usdenoteby N, 4
the dimension of E;. We will describe an orthonormal
basisin E,. Fix t,...,t, € C and expand:

tnen) = >t

1<k1,....,k2qa<n

D(trey + -

We shall group together terms containing same ¢, terms.
The real case will be treated separately from the complex
case.

To simplify the exposition, we introduce notation com-
mon to both cases. Let us denoteby & = (k1,..., k)
an ordered r-tuple of integers each from 1 to n, where
the length r is equal to 2d (in the real case), or d (in
the complex case). Let us denote by P,. the set of r-
permutations, and by P, the quotient set P, = P/ ~p
where ', " € P, areequivaent ' ~ «” if and only if
(k) = =" (k). Note

[Pel = mal- - my!

where m,; denotes the number of repetitionsof [ in k.

The Complex Case

In the complex case, t;, and %5 can be treated as inde-
pedent (real) variables. Then termsin (21) are grouped
using two independent d-tuples, j = (j1,...,ja) and
1= (l,...,13) asfollows -

Z Z tiy ety - T, X

1<5:1<-<jas<n 1< < <lg<n

XY > B Ga) o) (L)

mEP; pEPL

Then the following sesquilinear functionals are orthonor-
mal and form abasisin E:

jL m(j1),---m(Ja l1),...,p(lgq
g \/|737 & w;ﬂ;} (G1)s--m(Ga)sp(la)sesp(la)
(22)
Their number (and hence dimension of F;) isequal to the
number of ordered d-tuples j times the number of ordered

. 'tkdtkd+1 NN

d-tuples:

(n+d-—
d!

N o= (Mo a)? = <n(n+1)~ 1)>2 )

where we used (20). Note N,, ; = = n? and we recover the
complex case considered in [BBCEQ9].

The Real Case

Inthereal case, t;, and t;, arethe same variables. Then the
independent terms in (21) are indexed by 2d-tuples k& =
(k1,...,koq) asfollows:

St X i

1<k <ksq<n 7\'673&

and an orthonormal basis of E; is given by the following
vectorsindexed by ordered 2d-tuples k:

1
di = Z Or(kr)yorm(koa) (24)

v |PE| TEPk

Thedimension of E'; inrea caseis then:

nn+1)---(n+2d—1
Nn,d - Mn,2d = ( ) (2(2)' ) (25)
2
( ]leote Npi1 = ”("“ and this recovers the real case in
[BBCEQ9].

4.3 TheOptimal Depth and Redundancy Condi-
tion

For given n we would like to find the minimumm = m*

sothat M,y 4 > Ny q for somed > 1.

The Complex Case

We need to solve

(m+d—1) . <n(n+1)~-c~l|(n+d—1))2

m(m+1)---
d!

or, completing the factorials:
(m+d—1)'d (n—1N2>(m—1D!((n+d—1)!)?
Let us denote

(m+d—1)d!((n —1)!)?
(m =D (n+d—-1)12

Ideally we would like to solve:

R(n,m,d) = (26)

(1) d*(n,m) = argmazxqR(n, m,d)

(2) m*(n) = minR(7z,er,d*(n,m))Zl m

Instead we make the following choices for d = d(n) and
m = m(n), and then optimize using Stirling’s formula:

d =

m =

n—1 (27)
An—1)+1. (28)

Using Stirling'sformulan! = +/27mnn™e~" we obtain for

R(n+1,An+1,n),

A+1 A+1 1 ,"
R(n+1, An+1,n) = S )n[ G V‘}

1
A T
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Figure 1: Theplot of ¢ = ¢(A) from (29).

To obtain R > 1 for large n, we need

A+1 1
= %(1 + )4 >1 (29)

q(A) a1

In Figure 1 we plot the function ¢ = g(A). Numerically
we obtain A = 5.394. The remaining factor in R(n +
1, An + 1,n) becomes 5.376y/n > 1 for al n. Thuswe
obtain as sufficient conditions:

d = n-1 (30)
m = 5.394n —4.394 (31)
The Real Case
Inthereal case we need to solve
mm+1)---(m+d—-1) - nn+1)---(n+2d-1)
d! - (2d)!

Following the same approach we obtain the following ra-
tio function that we need to make supraunital:

(m +d — 1)l(n — 1)1(2d)!

d) = 32
B, d) = = 2d - 1)l (32)
It follows:
Rn+1,2n+1,n)=1
Hence a possible choiceis
d = n-1 (33)
m = 2n-—1 (34)

It isinteresting to note that in the real case we recover the
critical casem > 2n — 1.

5. Numerical Evidence Supporting Generic-
ity of the Assumption A.

While the previous section computed necessary conditions
for Assumption A to hold true, we still need to prove (or
check) that PV isframein E,. Inthis section we plot the
distribution of eigenvalues of the frame operator associ-
ated to PV for one randomly generated example.

Using (22), each vector Py, is represented by a N, 4-
vector whose components are indexed by a pair (j,1),

Fipk = (Yr, dj,g. Explicitely this becomes

Fope = SN lenuy fr) -
- \/ |P V |Pl TEP; pEPLu
(er(ia)s Jha) (Frrs o)) - {fras €pa))  (35)

Thus PV isframefor E, if and only if the Ny, g X M, 4
matrix F' is of full rank. The frame operator is given by
S=FF*.

We considered the complex case (E = C) with the fol-
lowing parametersn = 5 andd = 3. For m = 21 theratio
function (26) takes the value R(5,21,3) = 1.4457 > 1.
Note for the algorithm in [BBCEQ9] to work m has to
be greater than or equal to n?, that is m > 25. For a
frame with 21 vectors in dimension 5 whose vectors are
obtained as realizations of complex valued normal random
variables of zero mean and variance 2 (each real and imag-
inary partisi.i.d. A/(0, 1)), the distribution of eigenvalues
of its frame operator is plotted in Figure 2. Note the con-
ditioning number is cond(S) = 6267.7. While relatively
large, the important thing to note is that the realization
P isframe (spanning) for 4. Whilethisresult is by no

Singular Eigenvalues: m=21 n=5 d=3 , Cond=6267 664161
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Figure 2: Distribution of eigenvaluesfor arandom frame..

means a proof, or even an exhaustive experiment, it sug-
gests the Assumption A might be generically true when-
ever R(n,m,d) > 1
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