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An Efficient Algorithm for the Discrete Gabor

Transform using full length Windows
Peter L. Søndergaard

Abstract—This paper extends the efficient factorization of the
Gabor frame operator developed by Strohmer in [17] to the
Gabor analysis/synthesis operator. The factorization provides a
fast method for computing the discrete Gabor transform (DGT)
and several algorithms associated with it. The factorization
algorithm should be used when the involved window and signal
have the same length. An optimized implementation of the
algorithm is freely available for download.

I. INTRODUCTION

The finite, discrete Gabor transform (DGT) of a signal f of

length L is given by

c (m, n,w) =

L−1
∑

l=0

f(l, w)g (l − an)e−2πiml/M . (1)

Here g is a window (filter prototype) that localizes the signal

in time and in frequency. The DGT is equivalent to a Fourier

modulated filter bank with M channels and decimation in time

a, [2].

Efficient computation of a DGT can be done by several

methods: If the window g has short support (consists of

relatively few filter taps), a filter bank based approach can

be used. We shall instead focus on the case when g and f are

equally long. The main advantage of the algorithm presented

is its ease of use: The running time is guaranteed to be small

even for long windows. This allows for the practical use of

non-compactly supported windows like the Gaussian and its

tight and dual windows without truncating them.

In the case when the window and signal have the same

length, a factorization of the frame operator matrix was found

by Zibulski and Zeevi in [19]. The method was initially

developed in the L2 (R) setting, and was adapted for the

finite, discrete setting by Bastiaans and Geilen in [1]. They

extended it to also cover the analysis/synthesis operator. A

simple, but not so efficient, method was developed for the

Gabor analysis/synthesis operator by Prinz in [15]. Strohmer

[17] improved the method and obtained the lowest known

computational complexity for computing the Gabor frame

operator. This paper extends Strohmer’s method to also cover

the Gabor analysis and synthesis operators.

The advantage of the method developed in this paper as

compared to the one developed in [1], is that it works with

FFTs of shorter length, and does not require multiplication by

complex exponentials caused by the quasi-periodicity of the

Zak transform. The two methods have the same asymptotic

complexity, O (NM log M), where M is the number of chan-

nels and N is the number of time steps. A more accurate flop

count is presented later in the paper.

We shall study the DGT applied to multiple signals at once.

This is for instance a common subroutine in computing a

multidimensional DGT. The DGT defined by (1) works on

a multi-signal f ∈ C
L×W , where W ∈ N is the number of

signals.

II. DEFINITIONS

We shall denote the set of integers between zero and some

number L by

〈L〉 = 0, . . . , L− 1. (2)

The Discrete Fourier Transform (DFT) of a signal f ∈ C
L

is defined by

(FLf) (k) =
1√
L

L−1
∑

l=0

f(l)e−2πikl/L. (3)

We shall use the · notation in conjunction with the DFT to

denote the variable over which the transform is to be applied.

To denote all elements indexed by a variable we shall use

the : notation. As an example, if C ∈ C
M×N then C:,1 is a

M × 1 column vector, C1,: is a 1×N row vector and C:,: is

the full matrix. This notation is commonly used in Matlab

and FORTRAN programming and also in some prominent

textbooks, [8].

The convolution f ∗ g of two functions f, g ∈ C
L and the

involution f∗ is given by

(f ∗ g) (l) =

L−1
∑

k=0

f (k) g (l − k) , l ∈ 〈L〉 (4)

f∗ (l) = f (−l), l ∈ 〈L〉 . (5)

It is well known how convolution can be computed efficiently

using the discrete Fourier transform. We shall use a variant of

this result

(f ∗ g∗) (l) =
√

LF−1

L

(

(FLf) (·) (FLg) (·)
)

(l) . (6)

The Poisson summation formula in the finite, discrete set-

ting is given by

FM

(

b−1
∑

k=0

g(·+ kM)

)

(m) =
√

b (FLg) (mb), (7)

where g ∈ C
L, L = Mb with b, M ∈ N.

A family of vectors ej , j ∈ 〈J〉 of length L is called a

frame if constants 0 < A ≤ B exist such that

A ‖f‖2 ≤
J−1
∑

j=0

|〈f, ej〉|2 ≤ B ‖f‖2 , ∀f ∈ C
L. (8)
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Algorithm 1 Window factorization

WFAC(g, a, M)

1) for r = 〈c〉 k = 〈p〉, l = 〈q〉
2) for s = 〈d〉
3) tmp (s)←

g (r + c · (k · q − l · p + s · p · q mod d · p · q))
4) end for

5) Phi (r, k, l, :)←DFT(tmp)
6) end for

7) return Phi

The constants A and B are called lower and upper frame

bounds. If A = B, the frame is called tight. If J > L,

the frame is redundant (oversampled). Finite- and infinite

dimensional frames are described in [4].

A finite, discrete Gabor system (g, a, M) is a family of

vectors gm,n ∈ C
L of the following form

gm,n (l) = e2πilm/Mg (l − na) , l ∈ 〈L〉 (9)

for m ∈ 〈M〉 and n ∈ 〈N〉 where L = aN and M/L ∈ N. A

Gabor system that is also a frame is called a Gabor frame. The

analysis operator Cg : C
L 7→ C

M×N associated to a Gabor

system (g, a, M) is the DGT given by given by (1). The Gabor

synthesis operator Dγ : C
M×N 7→ C

L associated to a Gabor

system (γ, a, M) is given by

f (l) =

N−1
∑

n=0

M−1
∑

m=0

c (m, n) e2πiml/Mγ (l − an) . (10)

In (1), (9) and (10) it must hold that L = Na = Mb for some

M,N ∈ N. Additionally, we define c, d, p, q ∈ N by

c = gcd (a, M) , d = gcd (b, N) , (11)

p =
a

c
=

b

d
, q =

M

c
=

N

d
, (12)

where GCD denotes the greatest common divisor of two

natural numbers. With these numbers, the redundancy of the

transform can be written as L/ (ab) = q/p, where q/p is an

irreducible fraction. It holds that L = cdpq. The Gabor frame

operator Sg : C
L 7→ C

L of a Gabor frame (g, a, M) is given

by the composition of the analysis and synthesis operators

Sg = DgCg. The Gabor frame operator is important because it

can be used to find the canonical dual window gd = S−1

g g and

the canonical tight window gt = S
−1/2

g g of a Gabor frame.

The canonical dual window is important because Dgd is a left

inverse of Cg . This gives an easy way to construct an inverse

transform of the DGT. Similarly, then Dgt is a left inverse of

Cgt . For more information on Gabor systems and properties

of the operators C, D and S see [9], [6], [7].

III. THE ALGORITHM

We wish to make an efficient calculation of all the co-

efficients of the DGT. Using (1) literally to compute all

coefficients c (m, n,w) would require 8MNLW flops.

To derive a faster DGT, one approach is to consider the

analysis operator Cg as a matrix, and derive a faster algorithm

Algorithm 2 Discrete Gabor transform

DGT(f, g, a, M)

1) Phi =WFAC(g, a, M)
2) for r = 〈c〉
3) for k = 〈p〉, l = 〈q〉, w = 〈W 〉
4) for s = 〈d〉
5) tmp (s)←

f (r + (k ·M + s · p ·M − l · ha · a mod L) , w)
6) end for

7) Psitmp (k, l + w · q, ·)←DFT(tmp)
8) end for

9) for s = 〈d〉
10) G← Phi (:, :, r, s)
11) F ← Psitmp (:, :, s)
12) Ctmp (:, :, s)← GT · F
13) end for

14) for u = 〈q〉, l = 〈q〉, w = 〈W 〉
15) tmp←IDFT(Ctmp (u, l + w · q, :))
16) for s = 〈d〉
17) coef (r + l · c, u + s · q − l · ha mod N, w)

← tmp (s)
18) end for

19) end for

20) end for

21) for n = 〈N〉,w = 〈W 〉
22) coef (:, n, w)←DFT(coef (:, n, w))
23) end for

24) return coef

through unitary matrix factorizations of this matrix. This is

the approach taken by [17], [16]. Unfortunately, this approach

tends to introduce many permutation matrices and Kronecker

product matrices. Another approach is the one taken in [1]

where the Zak transform is used. This approach has the

downside that values outside the fundamental domain of the

Zak transform require an additional step to compute. In this

paper we have chosen to derive the algorithm by directly

manipulating the sums in the definition of the DGT.

To find a more efficient algorithm than (1), the first step is

to recognize that the summation and the modulation term in

(1) can be expressed as a DFT:

c (m, n,w) =
√

LFL

(

f(·, w)g (· − an)
)

(mb) . (13)

We can improve on this because we do not need all the

coefficients computed by the Fourier transform appearing in

(13), only every b’th coefficient. Therefore, we can rewrite by

the Poisson summation formula (7):

c (m, n,w)

=
√

MFM

(

b−1
∑

m̃=0

f(·+ m̃M, w)g (·+ m̃M − an)

)

(m)

= (FMK (·, n, w)) (m) , (14)

where

K (j, n, w) =
√

M

b−1
∑

m̃=0

f (j + m̃M,w) g (j + m̃M − na) , (15)
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for j ∈ 〈M〉 and n ∈ 〈N〉. From (14) it can be seen that

computing the DGT of a signal f can be done by computing

K followed by DFTs along the first dimension of K.

To further lower the complexity of the algorithm, we wish

to express the summation in (15) as a convolution.

We split j as j = r + lc with r ∈ 〈c〉, l ∈ 〈q〉 and introduce

ha, hM ∈ Z such that the following is satisfied:

c = hMM − haa. (16)

The two integers ha, hM can be found by the extended Euclid

algorithm for computing the GCD of a and M .

Using (16) and the splitting of j we can express (15) as

K (r + lc, n, w)

=
√

M

b−1
∑

m̃=0

f (r + lc + m̃M,w)×

×g (r + l (hMM − haa) + m̃M − na) (17)

=
√

M

b−1
∑

m̃=0

f (r + lc + m̃M,w)×

×g (r + (m̃ + lhM ) M − (n + lha) a) (18)

We substitute m̃ + lhM by m̃ and n + lha by n and get

K (r + lc, n− lha, w)

=
√

M
b−1
∑

m̃=0

f (r + lc + (m̃− lhM )M,w)×

×g (r + m̃M − na) (19)

=
√

M

b−1
∑

m̃=0

f (r + m̃M + l (c− hMM) , w)×

×g (r + m̃M − na) (20)

We split m̃ = k + s̃p with k ∈ 〈p〉 and s̃ ∈ 〈d〉 and n =
u+sq with u ∈ 〈q〉 and s ∈ 〈d〉 and use that M = cq, a = cp
and c− hMM = −haa:

K (r + lc, u + sq − lha, w)

=
√

M

p−1
∑

k=0

d−1
∑

s̃=0

f (r + kM + s̃pM − lhaa, w)×

×g (r + kM − ua + (s̃− s) pM) (21)

After having expressed the variables j, m̃, n using the vari-

ables r, s, s̃, k, l, u we have now indexed f using s̃ and g
using (s̃− s). This means that we can view the summation

over s̃ as a convolution, which can be efficiently computed

using a discrete Fourier transform. Define

Ψf
r,s (k, l + wq) = Fdf (r + kM + ·pM − lhaa, w) , (22)

Φg
r,s (k, u) =

√
MFdg (r + kM + ·pM − ua) , (23)

Using (6) we can now write (21) as

K (r + lc, u + s̃q − lha, w)

=
√

d

p−1
∑

k=0

F−1

d

(

Ψf
r,· (k, l + wq)Φg

r,· (k, u)
)

(s̃) (24)

=
√

dF−1

d

(

p−1
∑

k=0

Ψf
r,· (k, l + wq) Φg

r,· (k, u)

)

(s̃) (25)

Table I
FLOP COUNTS

Alg.: Flop count

Eq. (1) 8MNL

Eq. (14) 8L
Lg

a
+ 4NM log

2
(M)

[1] L
“

8q + 1 + q

p

”

+ 4L
“

1 + q

p

”

log
2

N + 4MN log
2
(M)

Alg. 2 L (8q) + 4L
“

1 + q

p

”

log
2

d + 4MN log
2
(M)

Flop counts for 4 different way of computing the DGT: By the linear algebra
definition (1), by the method based on Poisson summation (14), by the method
of Bastiaans and Geilen from [1] and by Algorithm 2. The term Lg denotes the
length of the window used so Lg/a is the overlapping factor of the window.
Note for comparison that log

2
N = log

2
d + log

2
q

If we consider Ψf
r,s and Φg

r,s as matrices for each r and s, the

sum over k in the last line can be written as matrix products.

Algorithm 2 follows from this.

IV. RUNNING TIME

When computing the flop count of the algorithm, we will

assume that a complex FFT of length M can be computed

using 4M log
2
M flops. A nice review of flop counts for

FFT algorithms is presented in [14]. Table I shows the flop

count for Algorithm 2 and compares it with the definition

of the DGT (1), with the algorithm for short windows using

Poisson summation (14) and with the algorithm published

in [1]. The algorithm by Prinz presented in [15] has the

same computational complexity as the Poisson summation

algorithm. For simplicity we assume that both the window and

signal are complex valued. In the common case when both f
and g are real-valued, all the algorithms will see a 2 to 4 times

speedup.

The flop count for definition (1) is that of a complex

matrix multiplication. All the other algorithms share the

4MN log
2
M term coming from the application of an FFT

to each ’block’ of coefficients and only differ in how the ap-

plication of the window is performed. The Poisson summation

algorithm is very fast for a small overlapping factor Lg/a, but

turns into an O
(

L2
)

algorithm for a full length window. In

this case the other algorithms have an advantage. The term

L
(

8q + 1 + q
p

)

in the [1] algorithm comes from calculation

of the needed Zak-transforms, and the 4L
(

1 + q
p

)

log
2
N

term comes from the transform to and from the Zak-domain.

Compared to (22) and (23) this transformation uses longer

FFTs. Algorithm 2 does away with the multiplication with

complex exponentials in the [1] algorithm, and so the first

term reduces to L (8q).
Both the Poisson summation based algorithm and Algorithm

2 can do a DGT with L ≈ 2000000 in less than 1 second on

a standard PC at the time of writing. We have not created

an efficient implementation of the algorithm from [1] in C so

therefore we cannot reliably time it.

V. EXTENSIONS

The algorithm just developed can also be used to calculate

the synthesis operator Dγ . This is done by applying Algorithm
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Algorithm 3 Canonical Gabor dual window

GABDUAL(g, a, M)

1) Phi =WFAC(g, a,M)
2) for r = 〈c〉, s = 〈d〉
3) G← Phi (:, :, r, s)

4) Phid (:, :, r, s)←
(

G ·GT
)

−1 ·G
5) end for

6) gd =IWFAC
(

Phid, a,M
)

7) return gd

2 in the reverse order and inverting each line. The only lines

that are not trivially invertible are lines 10-12, which becomes

10) Γ← Phid (:, :, r, s)
11) C ← Ctmp (:, :, s)
12) Psitmp (:, :, s)← Γ · C

where the matrices Phid (:, :, r, s) should be left inverses of

the matrices Phi (:, :, r, s) for each r and s.

The matrices Phid (:, :, r, s) can be computed by Algorithm

1 applied to a dual Gabor window γ of the Gabor frame

(g, a, M). It also holds that all dual Gabor windows γ of a

Gabor frame (g, a, M) must satisfy that Phid (:, :, r, s) are

left inverses of the matrices Phi (:, :, r, s). This criterion was

reported in [11], [12].

A special left-inverse in the Moore-Penrose pseudo-inverse.

Taking the pseudo-inverses of Phi (:, :, r, s) yields the fac-

torization associated with the canonical dual window of

(g, a, M), [3]. This is Algorithm 3. Taking the polar decom-

position of each matrix in Φg
r,s yields a factorization of the

canonical tight window (g, a,M). For more information on

these methods, as well as iterative methods for computing the

canonical dual/tight windows, see [13].

VI. SPECIAL CASES

We shall consider two special cases of the algorithm:

The first case is integer oversampling. When the redundancy

is an integer then p = 1. Because of this we see that c = a
and d = b. This gives (16) the appearance

a = hMqa− haa, (26)

indicating that hM = 0 and ha = −1 solves the equation for

all a and q. The algorithm simplifies accordingly, and reduces

to the well known Zak-transform algorithm for this case, [10].

The second case is the short time Fourier transform. In this

case a = b = 1, M = N = L, c = d = 1, p = 1, q = L and

as in the previous special case hM = 0 and ha = −1. In this

case the algorithm reduces to the very simple and well known

algorithm for computing the STFT.

VII. IMPLEMENTATION

The reason for defining the algorithm on multi-signals, is

that the multiple signals can be handled at once in the matrix

product in line 12 of Algorithm 2. This is a matrix product

of two matrices size q× p and p× qW , so the second matrix

grows when multiple signals are involved. Doing it this way

reuses the Φg
r,s matrices as much as possible, and this is an

advantage on standard, general purpose computers with a deep

memory hierarchy, see [5], [18].

The benefit of expressing Algorithm 2 in terms of loops (as

opposed to using the Zak transform or matrix factorizations)

is that they are easy to reorder. The presented Algorithm 2

is just one among many possible algorithms depending on in

which order the r, s, k and l loops are executed. For a given

platform, it is difficult a priory to estimate which ordering of

the loops will turn out to be the fastest. The ordering of the

loops presented in Algorithm 2 is the variant that uses the least

amount of extra memory.

Implementations of the algorithms described in this paper

can be found in the Linear Time Frequency Toolbox (LTFAT)

available from http://ltfat.sourceforge.net. The implementa-

tions are done in both the Matlab/Octave scripting language

and in C. A range of different variants of Algorithm 2 has been

implemented and tested, and the one found to be the fastest

on a small range of computers is included in the toolbox.
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