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Abstract: We analytically and numerically analyze the fluorescence
decay rate of a quantum emitter placed in the vicinity of a spherical metallic
particle of mesoscopic size (i.e with dimensions comparable to the emission
wavelength). We discuss the efficiency of the radiative decay rate and
non–radiative coupling to the particle as well as their distance dependence.
The electromagnetic coupling mechanisms between the emitter and the
particle are investigated by analyzing the role of the plasmon modes and
their nature (dipole, multipole or interface mode). We demonstrate that
near-field coupling can be expressed in a simple form verifying the optical
theorem for each particle modes.
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1. Introduction

The precise control of the coupling efficiency between a quantum emitter (fluorescent molecule,
quantum dot. . . ) and a metallic nanoparticle is at the originof the new field ofmolecular plas-
monics[1]. In these composite systems, coupling with the moleculeis mainly of electromag-
netic origin, principally mediated by plasmon resonances.The optical properties of metallic
nanoparticles are strongly relying on different plasmon–polaritons modes with specific proper-
ties. For instance, an elongated metallic particle can support both a dipolar (localised) plasmon
mode characterized by high electromagnetic field confinement and an interface (propagating)
plasmon mode able to guide electromagnetic energy along theparticle surface. The strong con-
finement of the localised plasmon mode leads to a very efficient coupling with a nearby emitter.
This coupling strength is at the origin of surface–enhancedspectroscopy. In addition, the exci-
tation of the interface mode of the particle is responsible for transferring luminous energy away
from the source of emission. By controlling the electromagnetic confinement at a nanorod ex-
tremity and understanding the propagation of the optical mode along its surface, it was recently
proposed to realize an antenna in the optical domain [2, 3, 4]. Optical antennas are fundamen-
tal devices for interfacing light with nano-objects and could be used for instance to efficiently
couple a single photon source to an optical fiber [4, 5]. Optimization of an optical antenna is a
difficult problem since its spectroscopic response strongly depends on the shape, the chemical
nature of the materials, and the surrounding environment. Among several methods available to
describe the electromagnetic response of metallic particle of arbitrary shape, boundary element
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method [6], multiple multipole technique [7, 8], finite–difference time–domain simulations [9],
and Green dyadic formalism [10] have been used to analyze thecoupling between a fluorescent
molecule and an optical antenna.

All these purely numerical studies however, can be supplemented by analytical approaches
for which mathematical solutions exist. Indeed, an analytical study of simplified geometries
can facilitate the description of the elementary processesinvolved in these coupled systems.
Despite restricted shapes,e.g.spheres or ellipsoids, some important behaviors and trendscan
be identified [7, 8, 11, 12, 13, 14]. In a recent work, using a quasi-static model, Bharadwaj
and Novotny discussed the optimal fluorescence wavelength and found that it should be red-
shifted from the interface plasmon resonance of the particle [13]. In the same time, Mertenset
al compared full electrodynamical theory to a corrected quasi-static model and demonstrated a
trade–off between emitter-particle coupling, efficient for small spheres, and signal scattering,
efficient for large particles [14]. They obtained an optimalsphere diameter around 50-100 nm,
in the optical domain.

In this article, we address, from analytical arguments, theproblem of optical near–field cou-
pling processes governing the fluorescence of a molecule placed in the vicinity of a mesoscopic
spherical metallic particle, i-e a nanoparticle with characteristic dimensions that are not very
small compared to the emission wavelength. In particular, we precisely distinguish the radia-
tive and non-radiative channels and clearly identify different coupling mechanisms. In section
2, we describe the asymptotic behavior of the decay rates in the very near-field of a metal-
lic particle. The coupling of the emitter to the different plasmon modes is demonstrated from
detailed analysis of the analytical expressions. The distance dependence of the decay rates is
then investigated in section 3. Finally, we discuss in section 4 the fluorescence enhancement
optimization.

2. Near-field behavior

Figure 1 describes the model we consider. A single emitter isplaced at a distancez0 from a
spherical particle of radiusa. The surrounding medium optical index isnB. In the following,
we adopt the classical point of view for the description of the decay rate. This model assumes
that the fluorescent emission can be identified to the power emitted by a dipolep0 oscillat-
ing at the fluorescent frequencyω0 = 2πc/λ0 in vacuum. Here the classical dipole represents
twice the quantum transition dipole moment of the emitter. As demonstrated in [15], this model
is appropriate for describing weak coupling regime. In thisarticle, we also assume that the
electromagnetic properties of the metallic particle are described by a bulk optical indexnS.
For molecule–particle distance below one nanometer, non-local description of the optical index
should be taken into account [16, 17].

2.1. Analytical formulation based on Mie’s expansion

The decay rates of a molecule in presence of a spherical particle can be solved by using well–
known Mie formalism [18, 19]. When they are normalized with respect to the decay rateγ0 of
the free molecule, total decay rates write [19]:

γ⊥
γ0

= nB
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∞

∑
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Fig. 1. Model used to study the molecule-particle coupling.

where the subscript⊥ (‖) indicates a dipole perpendicular (parrallel) to the particle surface and
u= kBz0 = 2πnBz0/λ0. For the sake of clarity, the analytical expressions of the Mie coefficients

An andBn will be detailed in the appendix. The two special functionsh(1)
n andζn that enter Eq.

(1) and (2) represent the spherical Hankel and Ricatti–Bessel functions, respectively. Prime
stands for differentiation with respect to u.

The radiative decay rates can be written as follows [19]:
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where jn is the spherical Bessel function andψn(u) = u jn(u). From these four relations, the
non–radiative decay rate can be obtained by computing the difference between total and radia-
tive decay rates. Since we are interested in describing analytically the coupling process, we had
to express this difference. Applying the procedure described in [20] in the presence of dielectric
sphere to the present case of a metallic particle, we first develop the expressions (3) and (4) of
radiative contributions to the relaxation rate. After somealgebra, this leads to
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The non-radiative decay rates are now easily expressed as the difference between the total and
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radiative rates. After a few manipulations, we obtain
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Let us note that the difference between the two terms proportional to [−Re(Bn)] or [−Re(An)]
(extinction) and to|Bn|

2 or |An|
2 (scattering) directly relates to the energy conservation as dis-

cussed in section 2.2.1 [18]. Up to now, no assumption has been made on either the emitter-
particle distance or the particle size. In the following section, we show how the expressions
(1-8) simplify for short coupling distance regime.

2.2. Relaxation channels at very short distances

As recently discussed by Bharadwaj and Novotny [13], the non–radiative decay rate of a
molecule is mainly dictated by an efficient coupling to the interface plasmon mode of the
antenna whereas the radiative decay rate is associated to the excitation of a dipolar mode of
the metallic particle. Indeed, in the very near–field, fluorescence relaxation processes are dom-
inated by non-radiative transfer to the metal. It should be noted that for an emitter located at
very short distance from the particle, the otherwise curvedsurface can be approximated by a flat
interface. We therefore define the very near-field as the distance range such that(z0−a) ≪ a.
This criterion will be refined in section 3 devoted to the study of distance dependence of the
decay rates.

The radiative channel, however, has other characteristicsbecause it describes the power ra-
diated in far–field zone by the wholemolecule plus particlesystem. Since the particle dipolar
mode presents the highest scattering cross–section, the radiative emission rate of the system
may be similar to that of a molecule placed in the presence of asimple dipolar particle.

In the following, we will focus on the study of radiative and non–radiative contributions in
the domain of the very short emitter-particle distances.

2.2.1. Nonradiative channel

At very short distances, the emitter-particle coupling relies mainly on the non-radiative channel.
Using the asymptotic behavior of the spherical Bessel functions near zero [21], we can write
from Eq. (7) and (8) respectively
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⊥
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Fig. 2. Error done on the non radiative decay rate when approximated by Eq. (9) or (10) for
a perpendicular or parallel orientation, respectively. The molecule is located 1 nm from a
gold particle in air. The emission wavelength isλ0 = 580 nm.

where(2n+ 1)!! = 1×3×5...× (2n+1) and we introduce thenth order polarizability of the
sphere

αn =
n(εS− εB)

(n+1)εB+nεS
a(2n+1) . (11)

Figure 2 represents the error done using the approximated expressions (9) or (10). The error is
less than 10 % forkBa < 0.5 and is around 20 % for mesoscopic particles (kBa∼ 1).

Eq. (9) and (10) are an important result of this paper, since the non-radiative rate appears
in a form that generalizes the expressions obtained previously with a purely dipolar sphere
[22, 23], by including in a similar way all the particle modes. Moreover, within this formulation,
the non radiative decay rate respects the optical theorem for each mode. More precisely, the
first term in Eq. (9) or (10), proportional toIm(αn), encodes the whole emission extinction,
due to both absorption into the metallic particle and scattering in the far–field. The second
term, proportional to|αn|

2 gives the fraction of power scattered by the particle itself. Hence,
the non-radiated decay contribution is given by the difference between this two terms, as a
direct consequence of the optical theorem [18, 22]. Finally, considering Eq. (9) and (10), it
clearly appears that when the molecule approaches the metallic particle, it couples first to the
dipole mode, then to multipole modes and finally to the interface plasmon mode for very short
distances. This directly originates from the highest confinement of high order modes.

Termsk2n+1
B αn/u(2n+1) are proportional to(a/z0)

2n+1, therefore, when the emitter is placed
in close vicinity to the particle (z0 → a), the high order terms [∝ n2(a/z0)

2n+1] dominate the
expressions of the non-radiative decay rates. Under these conditions, Eq. (9) and Eq. (10) can
be approximated by
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Note that we used the fact that the serie diverges forz0 ≃ a, so that the infinite serie sum reduces
to its highest order term and can be compared to the serie expansion of(1−a/z0)

−3 (see also
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Fig. 3. Non radiative decay rate dependence for an emitter placed 5 nm above a gold
nanoparticle (80 nm diameter) embedded in a PMMA matrix (solid line) or above a flat
gold/PMMA interface film (dashed line, quasi-static approximation). (a) Dipole parallel to
the surface. (b) Dipole perpendicular to the surface. Vertical lines indicate the Au/PMMA
interface plasmon mode resonance.

[15]). Expressions (13) and (15) exactly reproduce the short range (quasi-static) behavior of
non–radiative decay rate near a flat metal surface [24].

As a concrete example, we now consider a fluorescent moleculein presence of a 80 nm
diameter gold nanoparticle (a = 40 nm) since similar systems were the topic of recent exper-
imental [7, 11, 12] and theoretical works [8, 14]. The surrounding medium index isnB = 1.5
corresponding to both PMMA (polymethylmethacrylate) and glass indices since molecule are
generally dispersed into a PMMA matrix deposited on a glass substrate. Note that in this case,
kBa ≈ 0.3 for emission wavelength in the visible range, corresponding to a particle of meso-
scopic size. Figure 3 represents the wavelength dependenceof the non radiative decay rate in
the very near–field of a gold particle or a flat film. As expected, the non–radiative coupling to
a spherical metallic particle is very well reproduced by assuming the quasi–static approxima-
tions (13) or (15). In both cases, a resonance occurs atλ ≃ 515 nm indicating a coupling to the
interface plasmon mode.

2.2.2. Radiative channel

We apply a similar procedure to the radiative contribution.Taking the limitu→ 0 in expression
(5), the radiative decay rate for a dipole perpendicular to the particle surface is given by

γ rad
⊥

γ0
∼

u→0
nB +

3
2u2

∞

∑
n=1

n(n+1)2(2n+1)

{
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B |αn|
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+
2
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k2n+1

B Re(αn)

−
2

(2n−1)!! [(2n+1)!! ]3
u2nk2n+1

B Im(αn)

}

. (16)

Numerical simulations (not shown) reveal an error up to 50 % for mesoscopic particles . The
behavior of the radiative decay rate is drastically different from the non-radiative contributions
in the very near-field of the particle. Having in mind that thepolarizability depends on the
sphere radius asa2n+1, we note that the series converges to zero in the near-field range for
small particle sizes. Therefore, the radiative decay rate can be reduced to the first terms only.
Neglecting the last term in Eq. (16) compared to the two others, the radiative decay rate for a
vertical dipole simplifies to

γ rad
⊥

γ0
∼

z0→a
nB

{

1+
4

z3
0

Re(α1)+
4

z6
0
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2
}

(17)
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Fig. 4. Radiative decay rate for an emitter placed 5 nm above agold nanoparticle (80 nm
in diameter). (a) Dipole parallel to the surface. (b) Dipoleperpendicular to the surface.
The solid curves are calculated from Mie formalism (Eq. 3,4). The dashed curves assume a
dipolar response of the particle, including finite size effects [Eq. 28) and (29) in appendix
(6.2)]. Vertical lines indicate the sphere dipolar resonance.

which exactly reproduces the radiative contribution at small distance assuming a dipolar re-
sponse of the metallic sphere (seee.g [23]). In case of a dipole parallel to the sphere surface,
we obtain the following relation:

γ rad
‖

γ0
∼

z0→a
nB

{

1−
2

z3
0

Re(α1)+
1

z6
0

|α1|
2
}

, (18)

that is once again in agreement with a dipolar response of themetallic sphere. Note that these
expressions slightly differ from the equation given in [23]by the absence of the radiation reac-
tion term in the polarizabilityα1. This term, which comes from the finite size of the particle, is
necessary in order to satisfy the optical theorem. In a more critical way, a correct description of
scattering resonances requires to include simultaneouslyboth the radiation reaction termanda
dynamic polarization term [25]. This can be easily achievedwithin the volume integral methods
and leads to the following polarizability [26]

αe f f = [1−MB
α1

a3 ]−1α1 (19)

MB = 2[(1− ikBa)eikBa−1] (20)

whereα1 is the static polarizability as defined in Eq. (11) and the dipolar responsep of the
particle to an external electric fieldE0 obeysp = 4πε0εBαe f fE0.

As shown on Fig. 4, the dipolar model qualitatively reproduces the wavelength dependence
of the radiative decay rates. Clearly, the resonances are red-shifted compared to the dipolar
mode frequencyω1 (λ1 = 2πc/ω1 = 560 nm). More precisely, the resonance is only slightly
red-shifted in case of a dipole parallel to the particle surface (λ = 570 nm instead ofλ1 = 560
nm), whereas a stronger deviation is observed for a dipole perpendicular to the surface of the
metallic particle (λ = 595 nm). This red–shift is due to a more important dipole–dipole coupling
between the molecule and the gold particle for this dipole orientation. The efficiency of dipole-
dipole coupling also explains the higher decay rate obtained when considering dipolar response
of the particle compared to Mie description in which the energy is dispersed on all modes. Let
us also note that the distance dependence of the radiative decay rate should strongly depends
on the emission wavelength. Far from any resonance, the amplitude of the particle dipole is
proportional to the field emitted by the emitter. Consequently, a z−3

0 dependence is expected for
a particle in the near-field of the quantum emitter. As already discussed in [23], an additional
Förster–type dependence contribution (z−6

0 ) is expected close to the particle resonance because
a strong dipole–dipole coupling dominates between the particle and the emitter. Note that in
this case, a corrective term should be added to properly describe the whole decay rate [15, 27].
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Fig. 5. Non radiative decay rates as a function of the distance d = (z0−a) to the particle
surface (solid lines) or gold flat film (dashed lines, quasi-static approximation) for a parallel
(a) and perpendicular (b) dipole. The emission wavelength is λ0 = 580 nm.

3. Distance dependence

In this section, we have chosen the emission wavelengthλ0 = 580 nm of the terrylene molecule.
This molecule is widely used in single molecule spectroscopy experiments and the position of
emission wavelength ensures that both the parallel and perpendicular radiative channels should
be strongly enhanced. The embedding medium is again PMMA. Wecompare the distance de-
pendence to the two limiting cases (quasi-static flat surface and dipolar particle) introduced in
the previous section. Exact expressions of the different decay rates are given in the appendix.

Figure 5 represents the non radiative decay rate variation when increasing the particle–
molecule distance. The quasi-static approximation remains satisfying only below 10 nm, cor-
responding tod/a < 0.2 as the range where the spherical surface can be approximated by a
flat interface. As expected, ad−3 law is observed for these very short distance corresponding
to the creation of an exciton in the bulk of the metal [28]. Note that ad−4 law can be expected
for even shorter distances, due to the creation of an excitonat the metal surface [29]. Such a
description needs to properly describe the metal/dielectric interface and to take into account the
nonlocals effect into the metal dielectric constant [28].

We now consider the radiative contribution to the decay rate, and compare it to a dipolar
response of the particle (Fig. 6). In order to improve the comparison accuracy, we include finite
size effects into the polarizability. The dipolar model only qualitatively reproduces the radia-
tive decay rate behavior, indicating that higher plasmonicmodes are involved in the radiative
process [14]. At large distances, however, the dipolar modeis sufficient to describe the radia-
tive emission evolution, as far as finite size effects are properly included. Finally, we do not
observe simple distance dependence law for small separation distance since the twoz−3

0 and
z−6
0 processes compete [23].

4. Fluorescence enhancement and particle size effect

In this last section, we discuss the influence of the particlesize on the fluorescent enhancement
for a molecule coupled to a gold particle. The fluorescence intensity enhancement is given by

η f luo(r0) = |u ·E(λexc, r0)|
2 γ rad(r0)

γ(r0)
, (21)

whereE is the normalized electric field computed at the molecule locationr0 from Mie theory
[18] at the excitation wavelengthλexcandγ rad/γ represents the quantum efficiency.u indicates
the orientation of the molecule transition dipole moment.

A critical parameter for fluorescence enhancement is position of both the excitation and
emission wavelengths compared to the plasmon modes resonances [8, 13]. Indeed, the excited
field mainly couples to the dipolar mode and therefore strongly depends on the particle size, as
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Fig. 6. Radiative decay rate dependence with respect to the distanced between the parti-
cle and the molecule: for a dipole (a) parallel or (b) perpendicular to the particle surface.
‘Exact’ curves refers to Mie formalism (Eq. 3,4),‘dipolar’ corresponds to a dipolar model,
including finite size effects [Eq. 28) and (29) in appendix (6.2)] and‘dipolar (point–like)’
assumes a point–like dipolar response of the particle to an external field [(Eq. 28) and (29)
whereαe f f is approximated byα1]. The insets show far-field behaviours. The emission
wavelength isλ0 = 580 nm.
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Fig. 7. Normalized electric-field intensity (a), decay rate(b) and non-radiative rate (c) cal-
culated 10 nm away the particle surface as a function of both wavelength and particle radius.
The system is shown in the inset of Fig. 7(a). The molecule is oriented perpendicularly to
the sphere surface.

shown by Eq. (19). Moreover, as discussed above, the radiative decay rate also mainly originates
from coupling to the dipolar mode. However, due to dipole-dipole coupling, an additionnal red-
shift occurs, particularly for dipole perpendicular to theparticle surface (see Fig. 4). On the
contrary, the non-radiative rate is governed by interface mode so that it does almost not depend
on the particle size for small emitter-particle coupling distances.

We consider again a gold nanoparticle embedded in PMMA coupled to a fluorescent
molecule. The molecule is perpendicular to the particle surface since strongest effects are
expected in this case. Figure 7(a) represents the excitation field intensity near the particle in
function of both the particle size and the excitation wavelength. Figures 7(b) and 7(c) show
respectively the radiative (Eq. 5) and non-radiative (Eq. 7) decay rates when varying emission
wavelength and also the particle radius. Independent of theparticle size, the non radiative chan-
nel is resonantly opened for emission wavelengths aroundλ0 = 515 nm (see Fig. 7(c)) due to
coupling to the interface mode. As expected, the excitationintensity (Fig. 7(a)) and the radiative
decay rate (Fig. 7(b)) present very similar behaviors, closely related to the dipolar mode of the
metallic particle. Let us note, however, that for particle radius abovea≈ 80 nm, the radiative
channel also couples to quadrupolar mode as can be seen on Fig. 7(b) [14].

η
fluo

Fig. 8. Fluorescent enhancement for ’DiD-gold particle’ coupled system embedded in
PMMA.

Therefore, strong fluorescent enhancement can be expected for a molecule–particle coupled
system such that: i) the absorption wavelength is close to the particle dipolar resonance to en-
hance the excitation field, ii) the emission wavelength is far from the interface mode resonance
to reduce ohmic losses and iii) the particle is small enough to avoid molecule coupling to the
quadrupolar mode resonance and strongly enhance the radiative channel. Finally, we consider
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a specific dye molecule, namely DiD which presents absorption and emission peaks around
λexc = 635 nm andλ = 665 nm respectively. Figure 8 presents the fluorescent enhancement
for several particle radius, in function of the emitter-particle distance. A strong 17 fold en-
hancement is observed for radius 40nm< a < 50nmat separation distance aroundd ≈ 8 nm
(d/a≈ 0.2). It is worthwile to note here that matching the excitationand detection wavelengths
to the molecule absorption and emission peaks respectively, we profit from both the molecule
absorption and fluorescence cross-sections and also fluorescence enhancement due to coupling
to the metallic particle.

5. Conclusion

In summary, we have theoretically and numerically investigated the decay rate of an emitter
coupled to a mesoscopic metallic particle. By starting froman asymptotic expansion of the
different decay rate contributions in the very near–field ofa spherical metallic particle, we
demonstrated that the non–radiative channel process is associated with a coupling to the inter-
face plasmon mode of the particle whereas the radiative decay rate process involves a transfer
to dipolar plasmon mode. We have examined the extent of thesecouplings and compared it with
two asymptotic models: a flat metal surface and a dipolar response of the particle. We found a
red-shift of the radiative decay rate due to dipole-dipole coupling between the molecule and the
particle. We also demonstrated that near-field coupling canbe expressed in a simple form that
obeys optical theorem for each particle mode. These resultsshow that a deep understanding
of the complex fluorescence decay mechanisms can be obtainedfrom a simple and analyti-
cal model. Finally, it provides some guidelines for optimizing the particle size to enhance the
molecular fluorescence.
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6. Appendix

To facilitate the reading of this article, we reproduce in this appendix the various expressions
of the decay rates assuming a dipolar response of the spherical particle. These expressions can
be easily deduced from the classical description of the spontaneous emission rates and can be
found in the literature.

6.1. Mie coefficients

An exact description of the particle electromagnetic response to an external field needs to prop-
erly describe all the particle modes. Thenth mode contribution depends on the two Mie scat-
tering coefficientsAn andBn [18, 19] (kB = 2πnB/λ0 andkS = 2πnS/λ0 are the wavenumbers
into the embedding medium and the sphere, respectively)

An =
jn(kBa)ψ ′

n(kSa)− jn(kSa)ψ ′
n(kBa)

jn(kSa)ζ ′
n(kBa)−h(1)

n (kBa)ψ ′
n(kSa)

, (22)

Bn =
εB jn(kBa)ψ ′

n(kSa)− εSjn(kSa)ψ ′
n(kBa)

εS jn(kSa)ζ ′
n(kBa)− εBh(1)

n (kBa)ψ ′
n(kSa)

. (23)

where jn andh(1)
n are the usual spherical Bessel and Hankel functions, andψn(z) = z jn(z) and

ζn(z) = zh(1)
n (z) the Ricatti-Bessel functions [18, 21].
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6.2. Dipolar spherical particle

The total decay rates write [22, 23, 26]

γ‖
γ0

= nB

{

1+
3k3

B

2
Im

[

αe f fe
2iu(

1
u

+
i

u2 −
1
u3 )2

]}

, (24)

γ⊥
γ0

= nB

{

1+6k3
BIm

[

αe f fe
2iu(

1
u3 −

i
u3 )2

]}

, (25)

whereαe f f is the particle effective polarizability associated to thedipolar mode, including finite
size effects as expressed by Eq. (19). The non radiative decay rates write

γNR
‖

γ0
=

3nB

2
k3

B

[

Im(αe f f)−
2k3

B

3
|αe f f |

2
][

1
u2 −

1
u4 +

1
u6

]

, (26)

γNR
⊥

γ0
= 6k3

BnB

[

Im(αe f f)−
2k3

B

3
|αe f f |

2
][

1
u4 +

1
u6

]

. (27)

Then the radiative decay rates are calculated as the difference between the total and the non
radiative decay rates:

γ rad
⊥

γ0
=

γ⊥
γ0

−
γNR
⊥

γ0
(28)

γ rad
‖

γ0
=

γ‖
γ0

−
γNR
‖

γ0
. (29)
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