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Concerning some direct (Jackson-type) approximation

This paper provides some subordination equalities andtheorems we present certain subordination equalities,
their applications for the generalized Shannon samplingwhich show that the sampling operators, like Rogosinski,

series.

1. Introduction

For the uniformly continuous and bounded functighs

Zygmund, and Hann, are in some sense basic.

2. Subordination equalities

Subordination equalities state some relations between two

C(R) the generalized Shannon sampling series (see [3jsampling operators.

and references cited there) are givenbg R; W > 0)

Zf

k=—o00

(Swh)(t s(Wt — k), )

where the condition for the operat6y, : C(R) — C(R)
to be well-defined is that for the kernel functien= s(t)
we assume

Z [s(u — k)] <oo (u€R).

k=—oc0
Let be given an even window functioh € C|_; 1,

A(0) =1, A(u) = 0 (Ju| > 1,) then in our approach the
kernel function will be defined by the equality

s(t) = sa(t) == /)\(u) cos(mtu) du
0

)

2.1 Subordination by the Rogosinski-type sam-
pling series

Let consider the Rogosinski-type sampling operators
Ry ,; defined by the kernel functions; in (3). These
kernel functions are deduced by the window functions
Aj(u) = cosm(j +1/2)u, (j € N) and as a family of
functions it forms an orthogonal system fn1]. There-
fore, we may represent a quite arbitrary window function
A by its Fourier series. But the Fourier representation al-
lows us to prove for a given kernel functierthe sampling
series

s(t) =2 s(j+1/2) r(1).
j=0

In following B2 stands for the Bernstein class, it consists
of those bounded functiong € LP(R) (1 < p < o0),
which can be extended to an entire functjtfx) (z € C)

Many window functions have been used in applications of exponential typer. Fors € Bl the sampling series

(see, e.g. [1], [2], [4], [8]), in Signal Analysis in particu-
lar. Next window functions are important for our subordi-
nation equalities.

1) Apy(u) = 1 —u", r > 1 defines the Zygmund
(or Riesz) kernel, denoted by. = z.(t), which spe-
cial caser = 1, the Fegr (or Bartlett, see [8]) kernel
sp(t) = 4sinc 2L, is well-known; the special case= 2

is called also as the Welch [8] kernel;

2) Aj(u) :=cosm(j +1/2)u, j = 0,1,2,... defines the
Rogosinski-type kernel (see [5]) in the form

(1) (j +1/2) cosmt
T GriRE—p

3) A (u) := cos® Tt =
kernel (see [6])

ri(t) = 3)

1(1 + cos 7u) defines the Hann

1 sinct

3T )

SH(t) =

above is absolutely convergence and by (1) we get for-
mally the equalities

Swf=2) s(j+1/2)Rw,f,
7=0

oo

=2 s(j+1/2)(f — Bw, f),

Jj=0

f=Swf

calling as the subordination equalities, since the approx-
imation properties of the general sampling operators (1)
can be described via the approximation properties of the
Rogosinski-type sampling operatofgy,; : C(R) —
C(R). We have proved that [5]

2j

4 1
[ Rw,l| = Z2£+1 Wlog(3+1)+0( ),



thus the subordination equalities are valid, when

oo

D Is(G+1/2)[log(j + 1) <

Jj=0

Similar subordination equalities can be deduced for some

interpolating sampling series, i.e. for which the equation
(Swi)(L&) = f(&) (k€ Z)isvalid. In[7] we have
proved that the interpolating sampling operators will be
defined by (1) using the kerné(t) := 2s(2t), where the
kernels is generated by (2) with a window functionfor
whichA\(u) + A(1 —u) =1 (u € [0,1]).

Let the operatoSyy, : C(R) — C(R) be defined by the
kernels, := as(a-) € BL,. (0 < a < 2), wheres €
Bl and the modified Hann operatéfy; ; is defined by
the kernel

. (2§ + 1)
=3 Gy 7 (are

Then here we have (see [7], Th. 2.3 and 2.4)

«
SH.j

®)

o
— i t).
5 sinc(at)

Sivf =4 s(2j + 1) Hjy,,f,
j=0

f- Swf—4z (27 + 1)(f — Hiy, f)-

7=0

2.2 Subordination by the Rogosinski-type sam-
pling series: 2D case

2.3 Subordination by the Zygmund sampling se-
ries

The Zygmund sampling operatdfj;, will be defined by

the window function/\(, (u) =1—u", r > 1. Letus

consider the kerned in (2), for which the corresponding
window function has the power series representation

u)=1-— icjuj.
j=r

Then the formal subordination equalities are in the shape

Swi=Y_c;Zf,

j=r

f-Swf= ch f=2Z 1)
j =T
Several other subordination equalities and their applica-
tions will be presented.
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The two-dimensional generalized sampling series has the

form

(Sw f)(z,y)
= ko1
Z f(va)S(

k,l=—o00

Wax —k, Wy —1),

in particular, the multiplicative Rogosinski-type sampling
series we define as

(Rwi i f)(z,y)

> k
>

k,l=—o00

IV = Ry Wy — ),

where the Rogosinski-type kerne} is defined by (3).
Here our subordination equalities read as

Swf=4>

i,j=0

F=Swf=4Y s(i+1/2,j+1/2)(f = R, f),

i,j=0

provided

> ls(i+1/2,5+1/2)|logilog j < oo.

ij=1

By given subordination equalities we see that the non-
multiplicative sampling series may be studied by the mul-
tiplicative Rogosinski-type sampling series.
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