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Abstract:
This paper provides some subordination equalities and
their applications for the generalized Shannon sampling
series.

1. Introduction

For the uniformly continuous and bounded functionsf ∈
C(R) the generalized Shannon sampling series (see [3]
and references cited there) are given by (t ∈ R; W > 0)

(SW f)(t) :=
∞∑

k=−∞

f(
k

W
)s(Wt− k), (1)

where the condition for the operatorSW : C(R) → C(R)
to be well-defined is that for the kernel functions = s(t)
we assume

∞∑
k=−∞

|s(u− k)| < ∞ (u ∈ R).

Let be given an even window functionλ ∈ C[−1,1],
λ(0) = 1, λ(u) = 0 (|u| > 1,) then in our approach the
kernel function will be defined by the equality

s(t) := sλ(t) :=

1∫
0

λ(u) cos(πtu) du. (2)

Many window functions have been used in applications
(see, e.g. [1], [2], [4], [8]), in Signal Analysis in particu-
lar. Next window functions are important for our subordi-
nation equalities.
1) λ(r)(u) = 1 − ur, r ≥ 1 defines the Zygmund
(or Riesz) kernel, denoted byzr = zr(t), which spe-
cial caser = 1, the Fej́er (or Bartlett, see [8]) kernel
sF (t) = 1

2 sinc 2 t
2 , is well-known; the special caser = 2

is called also as the Welch [8] kernel;
2) λj(u) := cos π(j + 1/2)u, j = 0, 1, 2, . . . defines the
Rogosinski-type kernel (see [5]) in the form

rj(t) :=
(−1)j

π

(j + 1/2) cos πt

(j + 1/2)2 − t2
; (3)

3) λH(u) := cos2 πu
2 = 1

2 (1 + cos πu) defines the Hann
kernel (see [6])

sH(t) :=
1
2

sinct
1− t2

. (4)

Concerning some direct (Jackson-type) approximation
theorems we present certain subordination equalities,
which show that the sampling operators, like Rogosinski,
Zygmund, and Hann, are in some sense basic.

2. Subordination equalities

Subordination equalities state some relations between two
sampling operators.

2.1 Subordination by the Rogosinski-type sam-
pling series

Let consider the Rogosinski-type sampling operators
RW,j defined by the kernel functionsrj in (3). These
kernel functions are deduced by the window functions
λj(u) := cos π(j + 1/2)u, (j ∈ N) and as a family of
functions it forms an orthogonal system on[0, 1]. There-
fore, we may represent a quite arbitrary window function
λ by its Fourier series. But the Fourier representation al-
lows us to prove for a given kernel functions the sampling
series

s(t) = 2
∞∑

j=0

s(j + 1/2) rj(t).

In following Bp
σ stands for the Bernstein class, it consists

of those bounded functionsf ∈ Lp(R) (1 6 p 6 ∞),
which can be extended to an entire functionf(z) (z ∈ C)
of exponential typeσ. For s ∈ B1

π the sampling series
above is absolutely convergence and by (1) we get for-
mally the equalities

SW f = 2
∞∑

j=0

s(j + 1/2)RW,jf,

f − SW f = 2
∞∑

j=0

s(j + 1/2)(f −RW,jf),

calling as the subordination equalities, since the approx-
imation properties of the general sampling operators (1)
can be described via the approximation properties of the
Rogosinski-type sampling operatorsRW,j : C(R) →
C(R). We have proved that [5]

‖RW,j‖ =
4
π

2j∑
`=0

1
2` + 1

=
2
π

log(j + 1) + O(1),



thus the subordination equalities are valid, when

∞∑
j=0

|s(j + 1/2)| log(j + 1) < ∞.

Similar subordination equalities can be deduced for some
interpolating sampling series, i.e. for which the equation
(S̃W f)( k

W ) = f( k
W ) (k ∈ Z) is valid. In [7] we have

proved that the interpolating sampling operators will be
defined by (1) using the kernels̃(t) := 2s(2t), where the
kernels is generated by (2) with a window functionλ for
whichλ(u) + λ(1− u) = 1 (u ∈ [0, 1]).
Let the operatorS α

W : C(R) → C(R) be defined by the
kernelsα := α s(α·) ∈ B1

απ (0 < α ≤ 2), wheres ∈
B1

π, and the modified Hann operatorHα
W,j is defined by

the kernel

sα
H,j(t) :=

α

2
(2j + 1)2

(2j + 1)2 − (αt)2
sinc(αt). (5)

Then here we have (see [7], Th. 2.3 and 2.4)

S α
W f = 4

∞∑
j=0

s(2j + 1)Hα
W,jf,

f − S α
W f = 4

∞∑
j=0

s(2j + 1)(f −Hα
W,jf).

2.2 Subordination by the Rogosinski-type sam-
pling series: 2D case

The two-dimensional generalized sampling series has the
form

(SW f)(x, y)

:=
∞∑

k,l=−∞

f(
k

W
,

l

W
)s(Wx− k, Wy − l),

in particular, the multiplicative Rogosinski-type sampling
series we define as

(RW ;i,jf)(x, y)

:=
∞∑

k,l=−∞

f(
k

W
,

l

W
)ri(Wx− k)rj(Wy − l),

where the Rogosinski-type kernelrj is defined by (3).
Here our subordination equalities read as

SW f = 4
∞∑

i,j=0

s(i + 1/2, j + 1/2)RW ;i,jf,

f − SW f = 4
∞∑

i,j=0

s(i + 1/2, j + 1/2)(f −RW ;i,jf),

provided

∞∑
i,j=1

|s(i + 1/2, j + 1/2)| log i log j < ∞.

By given subordination equalities we see that the non-
multiplicative sampling series may be studied by the mul-
tiplicative Rogosinski-type sampling series.

2.3 Subordination by the Zygmund sampling se-
ries

The Zygmund sampling operatorZr
W will be defined by

the window functionλ(r)(u) = 1 − ur, r ≥ 1. Let us
consider the kernels in (2), for which the corresponding
window function has the power series representation

λ(u) = 1−
∞∑

j=r

cju
j .

Then the formal subordination equalities are in the shape

SW f =
∞∑

j=r

cjZ
j
W f,

f − SW f =
∞∑

j=r

cj(f − Zj
W f).

Several other subordination equalities and their applica-
tions will be presented.
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