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Abstract:
The reconstruction of PW1

π-functions by sampling series
is not possible in general if the samples are disturbed by
the non-linear threshold operator which sets all samples
whose absolute value is smaller than some threshold to
zero. In this paper we characterize the set of functions for
which the sampling series diverges as the threshold goes
to zero and show that this set is a residual set.

1. Notation

Before we start our discussion, we introduce some nota-
tions and definitions [4]. Let f̂ denote the Fourier trans-
form of a function f , where f̂ is to be understood in the
distributional sense. Lp(R), 1 ≤ p < ∞, is the space of
all measurable, pth-power Lebesgue integrable functions
on R, with the usual norm ‖ · ‖p, and L∞(R) is the space
of all measurable functions for which the essential supre-
mum norm ‖ · ‖∞ is finite.
For σ > 0 and 1 ≤ p ≤ ∞ we denote by PWp

σ the
Paley-Wiener space of functions f with a representation
f(z) = 1/(2π)

∫ σ
−σ g(ω) eizω dω, z ∈ C, for some

g ∈ Lp(−σ, σ). If f ∈ PWp
σ then g(ω) = f̂(ω). The

norm for PWp
σ , 1 ≤ p < ∞, is given by ‖f‖PWp

σ
=

(1/(2π)
∫ σ
−σ|f̂(ω)|p dω)1/p.

Furthermore, we need the threshold operator. For com-
plex numbers z ∈ C, the threshold operator κδ , δ > 0, is
defined by

κδz =

{
z |z| ≥ δ
0 |z| < δ.

For continuous functions f : R → C, we define the
threshold operator Θδ , δ > 0, pointwise, i.e., (Θδf)(t) =
κδf(t), t ∈ R.

2. Motivation

A well known fact [1, 2, 3] about the convergence behavior
of the Shannon sampling series for f ∈ PW1

π is expressed
by the following theorem.

Theorem (Brown). For all f ∈ PW1
π and T > 0 fixed

we have

lim
N→∞

max
t∈[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N

f(k)
sin(π(t− k))
π(t− k)

∣∣∣∣∣ = 0.

(1)

This theorem plays a fundamental role in applications, be-
cause it establishes the uniform convergence on compact
subsets of R for a large class of functions, namely PW1

π ,
which is the largest space within the scale of Paley-Wiener
spaces.
The truncation of the series in (1) is done in the do-
main of the function f because only the samples f(k),
k = −N, . . . , N are taken into account. In contrast, it
is also possible to control the truncation of the series in
the codomain of f by considering only the samples f(k),
k ∈ Z, whose absolute value is larger than or equal to
some threshold δ > 0. This leads to the approximation
formula

(Aδf)(t) =
∞∑

k=−∞
|f(k)|≥δ

f(k)
sin(π(t− k))
π(t− k)

. (2)

Since f ∈ PW1
π we have limt→∞ f(t) = 0 by the

Riemann-Lebesgue lemma, and it follows that the series
in (2) has only finitely many summands, which implies
Aδf ∈ PW2

π ⊂ PW
1
π . In general, Aδf is only an ap-

proximation of f , and we want the function Aδf to be
close to f if δ is sufficiently small.
The operator Aδ has several properties which complicate
its analysis. Aδ , δ > 0, is non-linear. Furthermore, for
each δ > 0, the operator Aδ : (PW1

π, ‖ · ‖PW1
π
) →

(PW1
π, ‖ · ‖∞) is discontinuous. This implies that Aδ :

(PW1
π, ‖ · ‖PW1

π
) → (PW1

π, ‖ · ‖PW1
π
) is discontinuous.

For some f ∈ PW1
π , the operatorAδ is also discontinuous

with respect to δ.
Of course (2) can be written as

∞∑
k=−∞

(Θδf)(k)
sin(π(t− k))
π(t− k)

, (3)

where Θδ denotes the threshold operator. Wireless sensor
networks are one possible application where the threshold
operator Θδ and the series (3) are important. The sen-
sors sample some bandlimited signal in space and time
and then transmit the samples to the receiver. In order to
save energy, it is common to let the sensors transmit only
if the absolute value of the current sample exceeds some
threshold δ > 0. Thus, the receiver has to reconstruct the
signal by using only the samples whose absolute value is
larger than or equal to the threshold δ.



In addition to the sensor network scenario, the threshold
operator can be used to model non-linearities in many
other applications. For example, due to its close relation
to the quantization operator, the threshold operator can be
employed to analyze the effects of quantization in analog
to digital conversion.

3. Problem Formulation and Main Result

Since the series in (2) uses all “important” samples of the
function, i.e., all samples that are larger than or equal to
δ, one could expect Aδf to have an approximation behav-
ior similar to the Shannon sampling series. In particular
the approximation error should decrease as the threshold
δ goes to zero. But, we will see that Aδf exhibits a signif-
icantly different behavior.
In this paper we are interested in the structure of the set

D1 ={f ∈ PW1
π : lim sup

δ→0
|(Aδf)(t)| =∞∀ t ∈ R \ Z},

i.e., in the structure of the set of functions for which the
approximation error |f(t) − (Aδf)(t)| grows arbitrarily
large for all t ∈ R \ Z as δ → 0.

Remark 1. The analysis of the operator Aδ is difficult be-
cause it is non-linear and discontinuous, and therefore the
standard theorems of functional analysis, like the Banach-
Steinhaus theorem, cannot be used.

For the further discussion we need the following concepts
from metric spaces [5]. A subset M of a metric space X
is said to be nowhere dense in X if the closure [M ] does
not contain a non-empty open set of X . M is said to be of
the first category (or meager) if M is the countable union
of sets each of which is nowhere dense in X . M is said to
be of the second category (or nonmeager) if is not of the
first category. The complement of a set of the first cate-
gory is called a residual set. Sets of first category may be
considered as “small”. According to Baire’s theorem [5]
we have that in a complete metric space, the residual set is
dense and a set of the second category. One property that
shows the richness of residual sets is the following: The
countable intersection of residual sets is always a resid-
ual set. In particular we will use the following fact in our
proof. In a complete metric space an open and dense set is
a residual set because its complement is nowhere dense.
Theorem 1 will show that the set D1 it is a residual set.
Thus the threshold operator destroys the good reconstruc-
tion behavior of the Shannon sampling series for “almost
all” functions in PW1

π .

4. Proof of the Main Result

In addition to the threshold operator that sets all samples
whose absolute value is smaller than δ to zero, we consider
the threshold operator that sets all samples whose absolute
value is smaller than or equal to δ to zero. This operator
gives rise to the sampling series

(Āδf)(t) :=
∞∑

k=−∞
|f(k)|>δ

f(k)
sin(π(t− k))
π(t− k)

(4)

and the set

D2 ={f ∈ PW1
π : lim sup

δ→0
|(Āδf)(t)| =∞∀ t ∈ R \ Z}.

Both threshold operators and thus Aδ and Āδ are mean-
ingful in practical applications, and one would expect the
difference being not important. However, as we will see,
Āδ can be analyzed more easily.
For t̂ ∈ R \ Z we furthermore define the sets

D1(t̂) = {f ∈ PW1
π : lim sup

δ→0
|(Aδf)(t̂)| =∞}

and

D2(t̂) = {f ∈ PW1
π : lim sup

δ→0
|(Āδf)(t̂)| =∞}.

Lemma 1 shows that we do not have to distinguish be-
tween the sets D1 and D1(t̂) and between D2 and D2(t̂).

Lemma 1. For all t̂ ∈ R \ Z we have D1 = D1(t̂) and
D2 = D2(t̂).

Proof. The inclusion D1 ⊂ D1(t̂) is obvious. It remains
to show that D1(t̂) ⊂ D1. Let f ∈ D1(t̂). For all t1 ∈
R \ Z and δ > 0 a short calculation shows that∣∣∣∣ 1
sin(πt1)

(Aδf)(t1)− 1
sin(πt̂)

(Aδf)(t̂)
∣∣∣∣

≤ ‖f‖PW1
π

|t̂− t1|
π

∞∑
k=−∞

1
|t1 − k||t̂− k|

= C1(t1, t̂, f),

where C1(t1, t̂, f) <∞ is a constant that only depends on
t1, t̂, and f . It follows that

|(Aδf)(t1)| ≥ |(Aδf)(t̂)|
∣∣∣∣ sin(πt1)

sin(πt̂)

∣∣∣∣− C2(t1, t̂, f). (5)

Taking the limit superior on both sides of (5) gives

lim sup
δ→0

|(Aδf)(t1)| =∞. (6)

Since (6) is valid for all t1 ∈ R\Z, it follows that f ∈ D1.
The same calculation shows that D2 = D2(t̂).

According to Lemma 1 it is sufficient to restrict the anal-
ysis to the sets D1(t̂) and D2(t̂) for some t̂ ∈ R \ Z. Fur-
thermore, we can concentrate on one of both sets, because
of the following lemma.

Lemma 2. We have D1 = D2.

Proof. Let f ∈ D2(t̂) be arbitrary but fixed. By the def-
inition of D2(t̂), we have lim supδ→0|(Āδf)(t̂)| = ∞.
Thus, for every M > 0 there exists a δM > 0 such that
|(ĀδM f)(t̂)| > M . Let T (M) = {k ∈ Z : |f(k)| > δM}
and f

M
= mink∈T (M)|f(k)|. Then it follows that f

M
>

δM . Moreover, for all δ with f
M
> δ > δM we have

(Aδf)(t̂) =
∞∑

k=−∞
|f(k)|≥δ

f(k)
sin(π(t̂− k))
π(t̂− k)

=
∞∑

k=−∞
|f(k)|>δM

f(k)
sin(π(t̂− k))
π(t̂− k)

= (ĀδM f)(t̂).



Consequently,

sup
δ>0
|(Aδf)(t̂)| > M. (7)

Since (7) is valid for all M > 0, it follows that
supδ>0|(Aδf)(t̂)| = ∞, and, as a consequence,
lim supδ→0|(Aδf)(t̂)| = ∞, because |(Aδf)(t̂)| < ∞
for all δ > 0. This shows that f ∈ D1(t̂), which im-
plies that D2(t̂) ⊂ D1(t̂). The converse D2(t̂) ⊃ D1(t̂) is
shown similarly. HenceD1(t̂) = D2(t̂), and the statement
D1 = D2 follows from Lemma 1.

In order to prove our main result, we need the important
Lemma 3.

Lemma 3. For all M ∈ N and t̂ ∈ R \ Z,

D2(t̂,M) = {f ∈ PW1
π : sup

δ>0
|(Āδf)(t̂)| > M}

is a residual set.

Proof. Let M ∈ N and t̂ ∈ R \ Z be arbitrary but fixed.
First, we show that D2(t̂,M) is an open set. Let f1 ∈
D2(t̂,M) be arbitrary. We have to show that there ex-
ists an ε > 0 such that, given any f ∈ PW1

π with
‖f − f1‖PW1

π
< ε, f ∈ D2(t̂,M). By assumption, there

exists a δM > 0 such that

|(ĀδM f1)(t̂)| > M.

Furthermore, let T (M) = {k ∈ Z : |f1(k)| > δM} and
f

1,M
= mink∈T (M)|f1(k)|. Next, we choose δ̃M = δM+

(f
1,M
− δM )/2. Then we have that

{k ∈ Z : |f1(k)| > δ̃M} = T (M). (8)

We choose

ε̃ < min

(
|(Āδ̃M f1)(t̂)| −M

|T (M)|
, δ̃M − δM

)
. (9)

For all f ∈ PW1
π with ‖f1−f‖PW1

π
< ε̃we have |f1(k)−

f(k)| < ε̃, k ∈ Z. It follows, for all k ∈ Z with |f(k)| >
δ̃M , that

|f1(k)| ≥ |f(k)| − |f(k)− f1(k)| > δ̃M − ε̃ > δM ,

i.e., k ∈ T (M). Conversely, k ∈ T (M) implies f1(k) ≥
f

1,M
, and it follows that

|f(k)| ≥ |f1(k)| − |f(k)− f1(k)| > f
1,M
− ε̃

> f
1,M
− δ̃M + δM = δ̃M .

Thus we have

{k ∈ Z : |f(k)| > δ̃M} = T (M). (10)

Moreover, using (8) and (10), we obtain that

|(Āδ̃M f)(t̂)− (Āδ̃M f1)(t̂)|

=

∣∣∣∣∣
∞∑

k=−∞
|f(k)|>δ̃M

f(k)
sin(π(t̂− k))
π(t̂− k)

−
∞∑

k=−∞
|f1(k)|>δM

f1(k)
sin(π(t̂− k))
π(t̂− k)

∣∣∣∣∣
≤

∑
k∈T (M)

|f1(k)− f(k)|
∣∣∣∣ sin(π(t̂− k))

π(t̂− k)

∣∣∣∣ ≤ ε̃|T (M)|

and consequently

|(Āδ̃M f)(t̂)| ≥ |(Āδ̃M f1)(t̂)| − ε̃|T (M)| > M,

where the last inequality is due to (9). Therefore

sup
δ>0
|(Āδf)(t̂)| > M,

i.e., f ∈ D2(t̂,M), for all f ∈ PW1
π with ‖f1 −

f‖PW1
π
< ε̃.

Second, we show thatD2(t̂,M) is dense inPW1
π . Let f ∈

PW1
π be arbitrary. We have to show that for every ε > 0

there exists a fε ∈ D2(t̂,M) such that ‖f − fε‖PW1
π
< ε.

Let ε > 0 be arbitrary but fixed. Since PW2
π is dense in

PW1
π , there exists a f (1)

ε ∈ PW2
π with

‖f − f (1)
ε ‖PW1

π
<
ε

3
. (11)

Moreover, there exists a f (2)
ε ∈ PW2

π such that f (2)
ε (k) 6=

0 only for finitely many k ∈ Z and

‖f (1)
ε − f (2)

ε ‖PW1
π
<
ε

3
. (12)

LetN denote the smallest natural number such thatN > t̂
and f (2)

ε (k) = 0 for all |k| > N . Furthermore, let T2 =
{k ∈ Z : |f (2)

ε (k)| 6= 0} and f (2)

ε
= mink∈T2 |f

(2)
ε (k)|.

For 0 < η < 1 and L ∈ N, L > N , consider the functions
h and g defined by

h(t, η, L) :=
2L−1∑

k=−2L+1

h(k, η, L)
sin(π(t− k))
π(t− k)

,

where

h(k, η, L)=


(−1)k(2(1− η)+ 1−η

L k), −2L<k<−L,
(−1)k(1− η), −L ≤ k < 0,
(−1)k, 0 ≤ k ≤ L,
(−1)k(2− 1

Lk), L < k < 2L,

and

g(t, η, L) :=h(t, η, L)−
N∑
k=0

(−1)k sin(π(t− k))
π(t− k)︸ ︷︷ ︸
=:u1

−
−1∑

k=−N

(1− η)
(−1)k sin(π(t− k))

π(t− k)︸ ︷︷ ︸
=:u2

.

Note that g(k, η, L) = 0 for |k| ≤ N . We have

‖g(t, η, L)‖PW1
π

≤ ‖h( · , η, L)‖PW1
π

+ ‖u1‖PW1
π

+ ‖u2‖PW1
π
. (13)

The norm ‖u1‖PW1
π

is upper bounded by

‖u1‖PW1
π
<
π

2
+ log(N + 1), (14)



because

‖u1‖PW1
π

=
1

2π

∫ π

−π

∣∣∣∣∣
N∑
k=0

e−iωk(−1)k
∣∣∣∣∣ dω

=
1

2π

∫ π

−π

∣∣∣∣1− eiω(N+1)

1− eiω

∣∣∣∣dω =
1
π

∫ π

0

∣∣∣∣ sin(N+1
2 ω)

sin(ω2 )

∣∣∣∣dω
≤
∫ π

0

∣∣sin(N+1
2 ω)

∣∣
ω

dω =
∫ N+1

0

∣∣sin(π2ω)
∣∣

ω
dω

≤
∫ 1

0

sin(π2ω)
ω

dω +
∫ N+1

1

1
ω

dω <
π

2
+ log(N + 1).

A similar calculation gives

‖u2‖PW1
π
<
π

2
+ log(N). (15)

In addition we have ‖h( · , 0, L)‖PW1
π
≤ 3, which

can be proven easily, and limη→0‖h( · , η, L) −
h( · , 0, L)‖PW1

π
= 0. Therefore, there exists an

0 < η0(L) < 1 such that

‖h( · , η0(L), L)‖PW1
π
< 4. (16)

Combining (13)–(16) gives, that for all L ∈ N, L > N
there exists an 0 < η0(L) < 1 such that

‖g( · , η0(L), L)‖PW1
π
< 4 + π + 3 log(N + 1) =: C3.

It is important that the constant C3 does not depend on L.
Next, we analyze

Gε(t, L) = f (2)
ε (t) + µg(t, η0(L), L),

where µ > 0 is some real number that satisfies µ <
min(ε/(3C3), f (2)

ε
). By the choice of µ we have

‖f (2)
ε −Gε( · , L)‖PW1

π
= µC3 <

ε

3
(17)

for all L > N . Combining (11), (12), and (17), we see
that

‖f −Gε( · , L)‖PW1
π
< ε (18)

for all L > N , i.e., Gε( · , L) lies in the ε-ball around f .
Furthermore, for any L > N we can find a δ0(L) that
fulfills

max
(

(1− η0(L))µ,
(

1− 1
L

)
µ

)
< δ0(L) < µ.

Since δ0(L) < f (2)

ε
, by the definition of µ, it follows that

(Āδ0(L)Gε( · , L))(t̂)

=
N∑

k=−N
|Gε(k,L)|>δ0(L)

Gε(k, L)
sin(π(t̂− k))
π(t̂− k)

+
L∑

k=N+1
|Gε(k)|>δ0(L)

Gε(k, L)
sin(π(t̂− k))
π(t̂− k)

=
N∑

k=−N

f (2)
ε (k)

sin(π(t̂− k))
π(t̂− k)

+ µ

L∑
k=N+1

(−1)k sin(π(t̂− k))
π(t̂− k)

= f (2)
ε (t̂) + µ

sin(πt̂)
π

L∑
k=N

1
t̂− k

.

Observing that N − t̂ > 0, we obtain∣∣∣∣∣
L∑

k=N

1
t̂− k

∣∣∣∣∣ =
L−N∑
k=0

1
k +N − t̂

≥
L−N∑
k=0

∫ k+1

k

1
τ +N − t̂

dτ

=
∫ L−N+1

0

1
τ +N − t̂

dτ

> log
(
L− t̂
N − t̂

)
,

and consequently

|(Āδ0(L)Gε( · , L))(t̂)|

≥ µ |sin(πt̂)|
π

log
(
L− t̂
N − t̂

)
− |f (2)

ε (t̂)|. (19)

The right-hand side of (19) can be made arbitrarily large
by choosing L large. Let L1 > N be the smallest L such
that the right hand side of (19) is larger than M . It follows
that fε(t) = Gε(t, L1) is the desired function, because
supδ>1|(Āδfε)(t̂)| ≥ |(Āδ0(L1)fε)(t̂)| > M , i.e., fε ∈
D2(t̂,M), and because ‖f − fε‖PW1

π
< ε, according to

(18).

Theorem 1. D1 and D2 are residual sets.

Proof. Since D2 = D1, by Lemma 2, it is sufficient to
show that D2 is a residual set.
Let t̂ ∈ R \ Z be arbitrary but fixed. We have

D2(t̂) =
⋂
M∈N

D2(t̂,M).

From Lemma 3 we know that all D2(t̂,M), M ∈ N,
are residual sets. It follows that D2(t̂) is a residual set,
because the countable intersection of residual sets is a
residual set. The application of Lemma 1 completes the
proof.
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