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Abstract:

The Body Centered Cubic (BCC) and Face Centered Cu-

bic (FCC) lattices have been known to outperform the

commonly-used Cartesian sampling lattice due to their

improved spectral sphere packing properties. However,

the Cartesian lattice has been widely used for sampling

of trivariate functions with applications in areas such as

biomedical imaging, scientific data visualization and com-

puter graphics. The widespread use of Cartesian lattice is

partly due to the availability of tensor-product approach

that readily extend the univariate reconstruction methods

to trivariate setting. In this paper we report on recent ad-

vances on non-separable reconstruction algorithms, based

on box splines, for reconstruction of data sampled on the

BCC and FCC lattices. It turns out that these box spline

reconstructions are faster than the corresponding tensor-

product B-spline reconstructions on the Cartesian lattice.

This suggests that not only the BCC and FCC lattices are

more accurate sampling patterns, their respective recon-

struction methods are also more computationally efficient

than the tensor-product reconstructions – a fact which is

contrary to the common assumption among practitioners.

1. Introduction

Sampling and reconstruction play a vital role in visual-

ization and computer graphics. Various volume rendering

algorithms rely on accurate reconstruction as a key step

since the quality and fidelity of the rendered image heav-

ily depends on reconstruction. In image processing recon-

struction is used in resampling, resizing, conversion, and

manipulation of sampled data.

In the realm of sampling, the term regular is often used to

refer to the case that the sampling grid is uniform. Al-

though there has been significant research, recently, in

non-uniform sampling (e.g., sparse sampling, compressed

sensing), the regular sampling is the most commonly-used

sampling scheme in practice [21].

When it comes to sampling multivariate functions, the

tensor-product of uniform sampling, which forms a Carte-

sian lattice, is almost always the choice. The simple struc-

ture of the Cartesian lattice and its separable nature allows

one to readily apply a tensor-product paradigm to many

problems in a multi-dimensional setting. The power of

the dimensionality reduction will remain the major reason

that the Cartesian lattice is the preferred tool in numerical

algorithms. The other attraction of the Cartesian lattice is

that it simply exists in any dimension and often tools and

theory extend to problems in a higher dimensional setting

in a trivial manner.

However, the Cartesian lattice has been known to be an in-

efficient lattice from the sampling-theoretic point of view.

Miyakawa [12] and then Petersen and Middleton [16]

were among the first people to discover the superiority of

sphere-packing and sphere-covering lattices for sampling

multivariate functions. In particular they have demon-

strated that Cartesian lattice is very inefficient for sam-

pling multivariate functions.

2. Optimal Sampling Lattices

When sampling a multivariate function with a lattice, gen-

erated by (integer linear combinations of the columns of)

a sampling matrix, M , the spectrum of the signal is con-

tained in the Brillouin zone. Brillouin zone is the Voronoi

cell of the reciprocal lattice. The reciprocal lattice to

the lattice M is generated by the columns of the matrix

2πM
−⊤. The multivariate version of the Nyquist fre-

quency is the boundary of the Brillouin zone.

Without a priori knowledge when sampling multivariate

functions, one often assumes that the underlying function

has features possibly in all directions. Therefore, without

knowledge about particular orientations of high-frequency

features, we need to capture an isotropic spectrum during

the sampling process. Therefore, the objective of optimal

sampling is to maximize the isotropic content of the Bril-

louin zone. In other words, the sampling lattice whose

Brillouin zone has the largest inscribing (hyper) sphere is

the best sampling lattice. Therefore, the optimal sampling

lattice in any dimension is the lattice whose reciprocal lat-

tice allows for the densest packing of spheres.

In the bivariate setting the hexagonal lattice is the best

sampling lattice since its reciprocal lattice, which happens

to be the dual hexagonal lattice, allows for the best pack-

ing of 2-D with disks. When compared to the commonly-

used Cartesian lattice with the same sampling density, the

hexagonal lattice allows for about 14% more information

to be captured in the spectrum of the underlying signal.

This is illustrated in Figure 1 as the area of inscribing

disc to the Brillouin zone of the hexagonal lattice (i.e.,

hexagon) is larger than the area of inscribing disc to the

Brillouin zone of the Cartesian lattice (i.e., square), even
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Figure 1: A square and a hexagon with unit area corre-

sponding to the Brillouin zone of Cartesian and hexago-

nal sampling. The area of inscribing disk to a square is

about 14% less than the area of the inscribing disk to the

hexagon.

though the two Brillouin zones have the same area.

In the trivariate setting, the optimal sampling lattice is

the BCC lattice whose reciprocal lattice (i.e., the FCC

lattice) is the densest sphere packing lattice. The sam-

pling efficiency of the BCC lattice, when compared to

the commonly-used Cartesian lattice is about 30% higher.

Appendix A in [6] presents a thorough comparison of the

Brillouin zone of the Cartesian, BCC and FCC lattices.

The FCC lattice, is also superior to the Cartesian lattice

as its efficiency compared to the Cartesian lattice is about

27% higher. Although among the FCC and BCC lattices

the BCC wins, by a small margin, for optimal sampling,

the FCC lattice appears to have good resistance to alias-

ing. This can be justified since its reciprocal lattice (i.e.,

the BCC lattice) allows for the best sphere covering of the

space. The best covering of the space translates to replica-

tion of isotropic spectrum with minimal overlap between

them– minimizing the aliasing for that sampling resolu-

tion.

These facts about comparison of the Cartesian, BCC

and FCC lattices together with their higher-dimensional

counter parts are discussed for sampling stationary

isotropic random processes [10]. The arguments of the op-

timal sampling (BCC) and resilience to aliasing (FCC) is

generalized to the notion that the reciprocal lattice for op-

timal sphere-packing lattice is the best choice for sampling

functions at relatively high resolutions, while the sphere-

packing lattice is the best option for sampling functions at

relatively low resolutions [10].

3. Reconstruction

There is abundant research on reconstruction (i.e., inter-

polation or approximation) of data based on univariate fil-

tering methods [15]. Various 1-D filters have a low-pass

behavior and approximate the ideal kernel (i.e., sinc) for

reconstruction into the space of band-limited functions. B-

splines, offer a framework for representation of piecewise

polynomial functions and thus are widely used in recon-

struction of univariate functions [3].

There are two common methods for extending the univari-

ate reconstruction ‘kernels’ to multivariate setting. The

separable approach builds the multivariate kernel by a

simple tensor-product of univariate kernels. The separa-

ble approach is obviously suitable for reconstruction of

data on the Cartesian lattice since the lattice itself is also

separable. The radial basis approaches construct the mul-

tivariate reconstruction kernel by spherical extension of

univariate kernel. Due to the spherical extension, the ra-

dial basis approach ignores the underlying geometry of the

sampling lattice and is often used for scattered data inter-

polation/approximation.

Splines have been widely accepted for image process-

ing [20]. In the context of image processing, splines are

often constructed as a tensor-product of two univariate

splines. Mitchell and Netravali [11], demonstrated the

advantages of using splines for image processing. Re-

cently, Van De Ville [22], developed the so called Hex-

splines that are used for reconstruction of hexagonal im-

ages. Hex-splines can not be constructed as a tensor-

product of univariate splines. Due to the non-separable

structure of hexagonal lattice, the tensor-product splines

can not be applied for processing of hexagonal data.

3.1 Reconstruction of trivariate functions

In the visualization community reconstruction filters have

received a lot of attention since accurate reconstruction

of trivariate functions and their gradients is crucial in fi-

delity of rendering algorithms [14, 1, 5, 13]. Similar to

image processing, in volume visualization algorithms, of-

ten the tensor-product approach is used for reconstruction

of Cartesian sampled data.

Theußl [18] introduced the BCC sampling in volume

rendering. However, since the BCC lattice is a non-

separable lattice, various ad-hoc tensor-product [17] and

radial basis [18] algorithms fail to provide satisfactory re-

construction algorithms and they exhibit blurry artifacts.

Csébfalvi [2] proposed a global pre-processing algorithm

(based on generalized interpolation [19]) that reconstructs

the BCC lattice based on its two Cartesian sub-lattices.

This approach is computationally inefficient and does not

guarantee approximation order.

The author’s recent work in this area establishes the re-

lationship between box splines and the above-mentioned

sampling lattices. The box splines have been developed

as a generalization of B-splines to the multivariate setting.

While box splines have been considered as non-separable

basis functions for approximation based on their shifts on

the Cartesian lattice [4], here their shifts on BCC and FCC

lattices are considered. The interesting fact about these

box splines is that while their shifts on the Cartesian lat-

tice do not form a linearly independent set of functions,

their shifts on the FCC and BCC lattices are linearly inde-

pendent – a rare and useful property for the spline space!

3.2 Four direction box splines on BCC

The relation of box splines with the BCC lattice was es-

tablished based on the fact that the immediate neighbor-

hood of a lattice point on the BCC pattern forms a rhom-

bic dodecahedron (see Figure 2). This polyhedron has the

special property that is a projection of a four-dimensional

hypercube (tesseract). This makes it a perfect match to be

the support of a box spline since the geometric definition

of box splines precisely amounts to projecting hypercubes

(i.e., box) down to lower dimensional spaces. Generally,

the class of polytopes that are the shadow of higher di-

mensional hypercubes are referred to as zonotopes. This

linear box spline is defined by the four direction and is
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Figure 2: The neighborhood of a BCC lattice point forms a

rhombic dodecahedron. This polyhedron is a zonohedron

which is the support of a linear box spline.

Figure 3: Benchmark example dataset. The CT dataset of

a carp fish at a high resolution of 256 × 256 × 256.

a C0 kernel. The shifts of this box spline on the BCC

lattice generate a spline space whose approximation or-

der is two. By convolving this box spline by itself, one

obtains a smoother, C2, quintic box spline that is speci-

fied by a repetition of the four principal directions. The

shifts of this box spline generate a spline space whose ap-

proximation order is four [7, 8]. This smoothness and ap-

proximation order match that of the tricubic B-spline on

the Cartesian lattice and hence we compare the two on a

Carp fish dataset in first row in Figure 4. The piecewise

polynomial representation of these box splines along with

efficient evaluation methods can be found in [8].

3.3 The six direction box spline on FCC

Unlike the BCC lattice, the immediate neighborhood in

the FCC lattice is not a zonohedron. However, by enlarg-

ing the neighborhood one finds the truncated octahedron

which is a zonohedron Figure 5. This polyhedron is a

projection of a six-dimensional hypercube and the corre-

sponding box spline is a cubic six-direction box spline [6].

The spline space that is generated by shifts of this cubic

box spline on the FCC lattice is a C1 space whose ap-

proximation order is three. These characteristics match

the triquadratic B-spline on the Cartesian lattice which is

the base for our comparisons in second row in Figure 4.

The piecewise polynomial representation of the cubic box

spline along with efficient spline evaluation method on the

FCC lattice is demonstrated in [9].
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Figure 5: The neighborhood of a FCC lattice point forms

a truncated octahedron. This polyhedron is another zono-

hedron which is the support of a six-direction box spline.

3.4 Computational advantages

Once efficient evaluation algorithms are derived for the

four-direction box splines [8] and the six direction box

spline [9], one can compare these box spline reconstruc-

tions to the commonly-used tensor-product B-spline re-

constructions on the Cartesian lattice.

For the C2, fourth-order method the tricubic B-spline uses

a neighborhood of 4 × 4 × 4 = 64 points for recon-

struction, while the quintic box spline only uses a total

of 32 points for reconstruction. Therefore as documented

in [8] the BCC non-separable box spline approach outper-

forms the comparable tensor-product B-spline approach

by a factor of two. Similarly the triquadratic B-spline

uses a neighborhood of 3 × 3 × 3 = 27 Cartesian data

points, while the cubic box spline only requires a total

of 16 FCC data points for the reconstruction. Therefore,

the non-separable box spline reconstruction outperforms

the comparable tensor-product B-spline approach as doc-

umented in [9].

4. Conclusions

The recent research on optimal sampling lattices suggests

that not only the FCC and BCC lattices offer higher-

fidelity sampling schemes, but also their reconstruction

algorithms outperform the corresponding tensor-product

reconstructions on the traditionally-popular Cartesian lat-

tice. These encouraging results are crucial for acceptance

of these efficient lattices in practical applications.
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