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Uniform Sampling and Reconstruction of Trivariate Functions

The Body Centered Cubic (BCC) and Face Centered Cubic (FCC) lattices have been known to outperform the commonly-used Cartesian sampling lattice due to their improved spectral sphere packing properties. However, the Cartesian lattice has been widely used for sampling of trivariate functions with applications in areas such as biomedical imaging, scientific data visualization and computer graphics. The widespread use of Cartesian lattice is partly due to the availability of tensor-product approach that readily extend the univariate reconstruction methods to trivariate setting. In this paper we report on recent advances on non-separable reconstruction algorithms, based on box splines, for reconstruction of data sampled on the BCC and FCC lattices. It turns out that these box spline reconstructions are faster than the corresponding tensorproduct B-spline reconstructions on the Cartesian lattice. This suggests that not only the BCC and FCC lattices are more accurate sampling patterns, their respective reconstruction methods are also more computationally efficient than the tensor-product reconstructions -a fact which is contrary to the common assumption among practitioners.

Introduction

Sampling and reconstruction play a vital role in visualization and computer graphics. Various volume rendering algorithms rely on accurate reconstruction as a key step since the quality and fidelity of the rendered image heavily depends on reconstruction. In image processing reconstruction is used in resampling, resizing, conversion, and manipulation of sampled data. In the realm of sampling, the term regular is often used to refer to the case that the sampling grid is uniform. Although there has been significant research, recently, in non-uniform sampling (e.g., sparse sampling, compressed sensing), the regular sampling is the most commonly-used sampling scheme in practice [START_REF] Unser | Sampling-50 Years after Shannon[END_REF]. When it comes to sampling multivariate functions, the tensor-product of uniform sampling, which forms a Cartesian lattice, is almost always the choice. The simple structure of the Cartesian lattice and its separable nature allows one to readily apply a tensor-product paradigm to many problems in a multi-dimensional setting. The power of the dimensionality reduction will remain the major reason that the Cartesian lattice is the preferred tool in numerical algorithms. The other attraction of the Cartesian lattice is that it simply exists in any dimension and often tools and theory extend to problems in a higher dimensional setting in a trivial manner. However, the Cartesian lattice has been known to be an inefficient lattice from the sampling-theoretic point of view. Miyakawa [START_REF] Miyakawa | Sampling theorem of stationary stochastic variables in multidimensional space[END_REF] and then Petersen and Middleton [START_REF] Petersen | Sampling and Reconstruction of Wave-Number-Limited Functions in N -Dimensional Euclidean Spaces[END_REF] were among the first people to discover the superiority of sphere-packing and sphere-covering lattices for sampling multivariate functions. In particular they have demonstrated that Cartesian lattice is very inefficient for sampling multivariate functions.

Optimal Sampling Lattices

When sampling a multivariate function with a lattice, generated by (integer linear combinations of the columns of) a sampling matrix, M , the spectrum of the signal is contained in the Brillouin zone. Brillouin zone is the Voronoi cell of the reciprocal lattice. The reciprocal lattice to the lattice M is generated by the columns of the matrix 2πM -⊤ . The multivariate version of the Nyquist frequency is the boundary of the Brillouin zone. Without a priori knowledge when sampling multivariate functions, one often assumes that the underlying function has features possibly in all directions. Therefore, without knowledge about particular orientations of high-frequency features, we need to capture an isotropic spectrum during the sampling process. Therefore, the objective of optimal sampling is to maximize the isotropic content of the Brillouin zone. In other words, the sampling lattice whose Brillouin zone has the largest inscribing (hyper) sphere is the best sampling lattice. Therefore, the optimal sampling lattice in any dimension is the lattice whose reciprocal lattice allows for the densest packing of spheres. In the bivariate setting the hexagonal lattice is the best sampling lattice since its reciprocal lattice, which happens to be the dual hexagonal lattice, allows for the best packing of 2-D with disks. When compared to the commonlyused Cartesian lattice with the same sampling density, the hexagonal lattice allows for about 14% more information to be captured in the spectrum of the underlying signal. This is illustrated in Figure 1 as the area of inscribing disc to the Brillouin zone of the hexagonal lattice (i.e., hexagon) is larger than the area of inscribing disc to the Brillouin zone of the Cartesian lattice (i.e., square), even though the two Brillouin zones have the same area.

In the trivariate setting, the optimal sampling lattice is the BCC lattice whose reciprocal lattice (i.e., the FCC lattice) is the densest sphere packing lattice. The sampling efficiency of the BCC lattice, when compared to the commonly-used Cartesian lattice is about 30% higher. Appendix A in [START_REF] Entezari | Optimal Sampling Lattices and Trivariate Box Splines[END_REF] presents a thorough comparison of the Brillouin zone of the Cartesian, BCC and FCC lattices.

The FCC lattice, is also superior to the Cartesian lattice as its efficiency compared to the Cartesian lattice is about 27% higher. Although among the FCC and BCC lattices the BCC wins, by a small margin, for optimal sampling, the FCC lattice appears to have good resistance to aliasing. This can be justified since its reciprocal lattice (i.e., the BCC lattice) allows for the best sphere covering of the space. The best covering of the space translates to replication of isotropic spectrum with minimal overlap between them-minimizing the aliasing for that sampling resolution. These facts about comparison of the Cartesian, BCC and FCC lattices together with their higher-dimensional counter parts are discussed for sampling stationary isotropic random processes [START_REF] Hr Kunsch | Optimal lattices for sampling[END_REF]. The arguments of the optimal sampling (BCC) and resilience to aliasing (FCC) is generalized to the notion that the reciprocal lattice for optimal sphere-packing lattice is the best choice for sampling functions at relatively high resolutions, while the spherepacking lattice is the best option for sampling functions at relatively low resolutions [START_REF] Hr Kunsch | Optimal lattices for sampling[END_REF].

Reconstruction

There is abundant research on reconstruction (i.e., interpolation or approximation) of data based on univariate filtering methods [START_REF] Oppenheim | Discrete-Time Signal Processing[END_REF]. Various 1-D filters have a low-pass behavior and approximate the ideal kernel (i.e., sinc) for reconstruction into the space of band-limited functions. Bsplines, offer a framework for representation of piecewise polynomial functions and thus are widely used in reconstruction of univariate functions [START_REF] De Boor | A practical guide to splines[END_REF].

There are two common methods for extending the univariate reconstruction 'kernels' to multivariate setting. The separable approach builds the multivariate kernel by a simple tensor-product of univariate kernels. The separable approach is obviously suitable for reconstruction of data on the Cartesian lattice since the lattice itself is also separable. The radial basis approaches construct the multivariate reconstruction kernel by spherical extension of univariate kernel. Due to the spherical extension, the radial basis approach ignores the underlying geometry of the sampling lattice and is often used for scattered data interpolation/approximation. Splines have been widely accepted for image processing [START_REF] Unser | Splines: A perfect fit for signal and image processing[END_REF]. In the context of image processing, splines are often constructed as a tensor-product of two univariate splines. Mitchell and Netravali [START_REF] Mitchell | Reconstruction Filters in Computer Graphics[END_REF], demonstrated the advantages of using splines for image processing. Recently, Van De Ville [START_REF] Van De Ville | Hex-Splines: A Novel Spline Family for Hexagonal Lattices[END_REF], developed the so called Hexsplines that are used for reconstruction of hexagonal images. Hex-splines can not be constructed as a tensorproduct of univariate splines. Due to the non-separable structure of hexagonal lattice, the tensor-product splines can not be applied for processing of hexagonal data.

Reconstruction of trivariate functions

In the visualization community reconstruction filters have received a lot of attention since accurate reconstruction of trivariate functions and their gradients is crucial in fidelity of rendering algorithms [START_REF] Möller | Design of Accurate and Smooth Filters for Function and Derivative Reconstruction[END_REF][START_REF] Carlbom | Optimal Filter Design for Volume Reconstruction and Visualization[END_REF][START_REF] Dutta Roy | Handbook of Statistics, volume 10, chapter Digital Differentiators[END_REF][START_REF] Möller | A Comparison of Normal Estimation Schemes[END_REF]. Similar to image processing, in volume visualization algorithms, often the tensor-product approach is used for reconstruction of Cartesian sampled data.

Theußl [START_REF] Theußl | Optimal Regular Volume Sampling[END_REF] introduced the BCC sampling in volume rendering. However, since the BCC lattice is a nonseparable lattice, various ad-hoc tensor-product [START_REF] Theußl | Reconstruction schemes for high quality raycasting of the body-centered cubic grid[END_REF] and radial basis [START_REF] Theußl | Optimal Regular Volume Sampling[END_REF] algorithms fail to provide satisfactory reconstruction algorithms and they exhibit blurry artifacts.

Csébfalvi [START_REF] Csébfalvi | Prefiltered gaussian reconstruction for high-quality rendering of volumetric data sampled Cartesian, C 2 , fourth order BCC, C 2[END_REF] proposed a global pre-processing algorithm (based on generalized interpolation [START_REF] Thévenaz | Interpolation revisited[END_REF]) that reconstructs the BCC lattice based on its two Cartesian sub-lattices. This approach is computationally inefficient and does not guarantee approximation order. The author's recent work in this area establishes the relationship between box splines and the above-mentioned sampling lattices. The box splines have been developed as a generalization of B-splines to the multivariate setting. While box splines have been considered as non-separable basis functions for approximation based on their shifts on the Cartesian lattice [START_REF] De Boor | Box Splines[END_REF], here their shifts on BCC and FCC lattices are considered. The interesting fact about these box splines is that while their shifts on the Cartesian lattice do not form a linearly independent set of functions, their shifts on the FCC and BCC lattices are linearly independent -a rare and useful property for the spline space!

Four direction box splines on BCC

The relation of box splines with the BCC lattice was established based on the fact that the immediate neighborhood of a lattice point on the BCC pattern forms a rhombic dodecahedron (see Figure 2). This polyhedron has the special property that is a projection of a four-dimensional hypercube (tesseract). This makes it a perfect match to be the support of a box spline since the geometric definition of box splines precisely amounts to projecting hypercubes (i.e., box) down to lower dimensional spaces. Generally, the class of polytopes that are the shadow of higher dimensional hypercubes are referred to as zonotopes. This linear box spline is defined by the four direction and is a C 0 kernel. The shifts of this box spline on the BCC lattice generate a spline space whose approximation order is two. By convolving this box spline by itself, one obtains a smoother, C 2 , quintic box spline that is specified by a repetition of the four principal directions. The shifts of this box spline generate a spline space whose approximation order is four [START_REF] Entezari | Linear and Cubic Box Splines for the Body Centered Cubic Lattice[END_REF][START_REF] Entezari | Practical box splines for volume rendering on the body centered cubic lattice[END_REF]. This smoothness and approximation order match that of the tricubic B-spline on the Cartesian lattice and hence we compare the two on a Carp fish dataset in first row in Figure 4. The piecewise polynomial representation of these box splines along with efficient evaluation methods can be found in [START_REF] Entezari | Practical box splines for volume rendering on the body centered cubic lattice[END_REF].

The six direction box spline on FCC

Unlike the BCC lattice, the immediate neighborhood in the FCC lattice is not a zonohedron. However, by enlarging the neighborhood one finds the truncated octahedron which is a zonohedron Figure 5. This polyhedron is a projection of a six-dimensional hypercube and the corresponding box spline is a cubic six-direction box spline [START_REF] Entezari | Optimal Sampling Lattices and Trivariate Box Splines[END_REF].

The spline space that is generated by shifts of this cubic box spline on the FCC lattice is a C 1 space whose approximation order is three. These characteristics match the triquadratic B-spline on the Cartesian lattice which is the base for our comparisons in second row in Figure 4.

The piecewise polynomial representation of the cubic box spline along with efficient spline evaluation method on the FCC lattice is demonstrated in [START_REF] Kim | Box Spline Reconstruction on the Face Centered Cubic Lattice[END_REF]. 

Computational advantages

Once efficient evaluation algorithms are derived for the four-direction box splines [START_REF] Entezari | Practical box splines for volume rendering on the body centered cubic lattice[END_REF] and the six direction box spline [START_REF] Kim | Box Spline Reconstruction on the Face Centered Cubic Lattice[END_REF], one can compare these box spline reconstructions to the commonly-used tensor-product B-spline reconstructions on the Cartesian lattice.

For the C 2 , fourth-order method the tricubic B-spline uses a neighborhood of 4 × 4 × 4 = 64 points for reconstruction, while the quintic box spline only uses a total of 32 points for reconstruction. Therefore as documented in [START_REF] Entezari | Practical box splines for volume rendering on the body centered cubic lattice[END_REF] the BCC non-separable box spline approach outperforms the comparable tensor-product B-spline approach by a factor of two. Similarly the triquadratic B-spline uses a neighborhood of 3 × 3 × 3 = 27 Cartesian data points, while the cubic box spline only requires a total of 16 FCC data points for the reconstruction. Therefore, the non-separable box spline reconstruction outperforms the comparable tensor-product B-spline approach as documented in [START_REF] Kim | Box Spline Reconstruction on the Face Centered Cubic Lattice[END_REF].

Conclusions

The recent research on optimal sampling lattices suggests that not only the FCC and BCC lattices offer higherfidelity sampling schemes, but also their reconstruction algorithms outperform the corresponding tensor-product reconstructions on the traditionally-popular Cartesian lattice. These encouraging results are crucial for acceptance of these efficient lattices in practical applications.
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 1 Figure1: A square and a hexagon with unit area corresponding to the Brillouin zone of Cartesian and hexagonal sampling. The area of inscribing disk to a square is about 14% less than the area of the inscribing disk to the hexagon.

Figure 2 :

 2 Figure 2: The neighborhood of a BCC lattice point forms a rhombic dodecahedron. This polyhedron is a zonohedron which is the support of a linear box spline.
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 3 Figure 3: Benchmark example dataset. The CT dataset of a carp fish at a high resolution of 256 × 256 × 256.

Figure 5 :

 5 Figure 5: The neighborhood of a FCC lattice point forms a truncated octahedron. This polyhedron is another zonohedron which is the support of a six-direction box spline.
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