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Control and Stabilization of the Nonlinear Schrödinger Equation on

Rectangles

Lionel Rosier ∗ Bing-Yu Zhang †

February 3, 2010

Abstract

This paper studies the local exact controllability and the local stabilization of the semilinear Schrödinger
equation posed on a product of n intervals (n ≥ 1). Both internal and boundary controls are considered,
and the results are given with periodic (resp. Dirichlet or Neumann) boundary conditions. In the case
of internal control, we obtain local controllability results which are sharp as far as the localization of
the control region and the smoothness of the state space are concerned. It is also proved that for the
linear Schrödinger equation with Dirichlet control, the exact controllability holds in H

−1(Ω) whenever
the control region contains a neighborhood of a vertex.

Key words. Schrödinger equation, Bourgain spaces, exact boundary controllability, exact internal
controllability, exponential stabilization

1 Introduction

The control of the Schrödinger equation has received a lot of attention in the last decades. (See e.g. [52] for
an excellent review of the contributions up to 2003). Significant progresses have been made for the linear
Schrödinger equation on its controllability and stabilizability properties (see [21, 24, 31, 36, 37, 38, 40, 43]
for control issues, and [3, 11, 12, 39, 51] for Carleman estimates and their applications to inverse problems).
For the control of the so-called bilinear Schrödinger equation, in which the bilinear term is linear in both
the control and the state function, see e.g. [1, 10, 7, 5, 2, 41, 20, 6, 4] and the references therein.

By contrast, the study of the nonlinear Schrödinger equation is still at its early stage. Recently, Illner,
Lange and Teismann [19, 20] considered the internal controllability of the nonlinear Schrödinger equation
posed on a finite interval with periodic boundary conditions:

iut + uxx + f(u) = ia(x)h(x, t). (1)

In (1), a denotes a smooth real function which is strictly supported in T, the one-dimensional torus. They
showed that the system (1) is locally exactly controllable in the space H1(T). Their approach was based
on the well-known Hilbert Uniqueness Method (HUM) and Schauder’s fixed point theorem. Later, Lange
and Teismann [25] considered internal control for the nonlinear Schrödinger equation (1) posed on a finite
interval with the homogeneous Dirichlet boundary conditions

u(0, t) = u(π, t) = 0 (2)

and established local exact controllability of the system (1)-(2) in the space H1
0 (0, π) around a special ground

state of the system. Their approach was mainly based upon HUM and the implicit function theorem.
Dehman, Gérard and Lebeau [13] studied the internal control and stabilization of a class of defocusing
nonlinear Schrödinger equations posed on a two-dimensional compact Riemannian manifold M without
boundary

iut +∆u+ f(u) = ia(x)h(x, t).

They demonstrated, in particular, that the system is (semiglobally) exactly controllable and stabilizable in
the space H1(M) assuming that the Geometric Control Condition and some unique continuation condition
are satisfied.
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Recently, the authors proved in [46] that the cubic Schrödinger equation on the torus T with a localized
control

iut + uxx + λ|u|2u = ia(x)h(x, t), x ∈ T, (3)

is locally exactly controllable in Hs(T) for all s ≥ 0 (hence, in L2(T)). Inspired by the work of Russell-Zhang
in [48], the method of proof combined the momentum approach and Bourgain analysis. In the same paper, the
local stabilization by the feedback law h = a(x)u(x, t) was established by applying the contraction mapping
theorem in some Bourgain space. Finally, similar results were obtained with Dirichlet (resp. Neumann)
homogeneous boundary conditions thanks to an extension argument. More recently, Laurent has shown
in [28] that the system (3) is semiglobally exactly controllable and stabilizable. The same result has also
been derived by Laurent in [29] for certain manifolds of dimension 3, including T3, S3, and S2 × S1. The
propagation of compactness and regularity proved in [28, 29] plays a crucial role in the derivation of the
stabilization results in these papers. See also [30] for another application of these ideas to the semiglobal
stabilization of the periodic Korteweg-de Vries equation.

In addition, the authors considered in [47] the following nonlinear Schrödinger equation

iut +∆u+ λ|u|2u = 0

posed on a bounded domain Ω in Rn with either the Dirichlet boundary conditions or the Neumann boundary
conditions. They showed that if

s >
n

2
,

or
0 ≤ s <

n

2
with 1 ≤ n < 2 + 2s,

or
s = 0, 1 with n = 2,

then the systems with control inputs acting on the whole boundary of Ω are locally exactly controllable in
the classical Sobolev space Hs(Ω) around any smooth solution of the Schrödinger equation.

The aim of this paper is to extend the results of [46] to any dimension. More precisely, we shall assume
that the spatial variable lives in the rectangle

Ω = (0, l1)× · · · × (0, ln).

We shall investigate the control properties of the semilinear Schrödinger equation

iut +∆u+ λ|u|αu = ia(x)h(x, t), (4)

where λ ∈ R and α ∈ 2N∗, by combining new linear controllability results in the spaces Hs(Ω) with Bourgain
analysis. Let us briefly review the results proved in this paper.

The internal controllability of the linear Schrödinger equation on Tn

iut +∆u = ia(x)h(x, t), x ∈ Tn, t ∈ (0, T ) (5)

is established in Hs(Tn) for any s ≥ 0 and any function a 6≡ 0. (Note that the Geometric Control Condition is
not required.) It is derived from a well-known result in L2(Tn), due to Jaffard [21] when n = 2 and Komornik
[23] for any n ≥ 2, by an argument allowing to shift the (state and control) space from L2(Tn) to Hs(Tn).
In particular, the exact controllability in Hs(Tn) will require a control input h ∈ L2(0, T ;Hs(Tn)). Similar
results with Dirichlet or Neumann homogeneous boundary conditions are deduced by using the extension
argument from [46].

The boundary controllability of the linear Schrödinger equation is considered both with Dirichlet control

u = 1Γ0
h(x, t) (6)

and with Neumann control
∂u

∂ν
= 1Γ0

h(x, t). (7)

In (6) and in (7), Γ0 denotes an open set in ∂Ω. For the Dirichlet control, we shall prove that in any
dimension n ≥ 2 the exact controllability holds in H−1(Ω) whenever Γ0 is a neighborhood of a vertex
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of Ω. The observability inequality for this (arbitrarily small) control region is actually derived from the
corresponding observability inequality for internal control by multiplier techniques.

For the Neumann control, the exact controllability in L2(Ω) is obtained in any dimension when Γ0 is
a side. Finally, the results with Dirichlet (resp Neumann) boundary control are extended to any Sobolev
space Hs(Ω) with s < 1/2 (resp. s < 1) by considering control inputs more regular in time, namely

h ∈ H
s+1

2 (0, T ;L2(∂Ω)) (resp. h ∈ H
s
2 (0, T ;L2(∂Ω))).

The extension of the above exact controllability results to the semilinear Schrödinger equation

iut +∆u+ λ|u|αu = ia(x)h(x, t) (8)

is performed on the basis of Bourgain analysis. The needed linear and multilinear estimates are combined
with a fixed-point argument to produce local exact controllability results. Sharp results (for the support of
the control input) are given for the internal control. Boundary controllability results are derived from those
established for the linear equation with the aid of estimates in Bourgain spaces of solutions of boundary-value
problems with boundary terms given by HUM.

Finally, the local exponential stabilization with an internal feedback law is proved by following the same
approach as in [46].

The paper is organized as follows. The controllability results for the linear Schrödinger equation are
collected in Section 2. Section 3 is devoted to the controllability of the semilinear equations. Section 4
deals with the internal stabilization issue. Multilinear estimates for nonlinearities of the form uα1uα2 are
established in Appendix.

2 Linear systems

2.1 Internal control

We first consider the linear open loop control system for the Schrödinger equation posed on Tn := (−π, π)n

with periodic boundary conditions:

iut +∆u = iGh := ia(x)h(x, t), u(x, 0) = u0(x), (9)

where a ∈ C∞(Tn) is a given smooth real-valued function and h = h(x, t) is the control input.
We denote by Hs(Tn) the Sobolev space of the functions u defined on the torus Tn (i.e. defined on Rn

and periodic of period 2π with respect to each variable xi) for which the Hs norm

||u||s = ||(1−∆)s/2u||L2(Tn)

is finite.
We first establish an internal observability inequality for the solution v(t) =W (t)v0 of

{
ivt +∆v = 0 (x, t) ∈ Tn × R,
v(0) = v0.

(10)

Proposition 2.1 (Observability inequality in H−s(Tn)) Let a ∈ C∞(Tn) with a 6= 0 and T > 0. Then
for any s ≥ 0 there exists a constant c > 0 such that for any solution v of (10) with v0 ∈ H−s(Tn), it holds

||v0||
2
−s ≤ c

∫ T

0

||av(t)||2−sdt. (11)

Proof. We proceed in several steps.

Step 1. Assume that s = 0, and let

ω = {x ∈ (−π, π)n; |a(x)| > ||a||L∞(Tn)/2}.

Then, by [24, Lemma 8.9], there exists some positive constant c such that for any square-summable sequence
(ck)k∈Zn\{0} we have

∑

k 6=0

|ck|
2 ≤ c

∫ T

0

∫

ω

∣∣∣∣∣∣
∑

k 6=0

cke
i(k·x−|k|2t)

∣∣∣∣∣∣

2

dxdt. (12)
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The result is still valid when the set of indices is changed into Zn by [24, Proposition 8.4]. This yields (11)
when s = 0.

Step 2. We prove the weaker inequality

||v0||
2
−s ≤ c

(∫ T

0

||av(t)||2−sdt+ ||v0||
2
−s−1

)
(13)

by contradiction. If (13) is false, then there exists a sequence {vj} of solutions of (10) in C([0, T ];H−s(Tn))
such that

1 = ||vj(0)||
2
−s ≥ j

(∫ T

0

||avj(t)||
2
−sdt+ ||vj(0)||

2
−s−1

)
. (14)

Since vj is bounded in L∞([0, T ];H−s(Tn)) and (vj)t is bounded in L∞([0, T ];H−s−2(Tn)) by (10), we infer
from Aubin’s lemma that, for a subsequence again denoted by {vj}, we have for j → ∞

{
vj → v in L∞([0, T ];H−s(Tn)) weak ∗
vj → v in C([0, T ];Hr(Tn)) ∀r < −s

where v ∈ Cw([0, T ];H
−s(Tn)) is a solution of (10). In particular, vj(0) → v(0) in Hr(Tn) for any r < −s.

Since vj(0) → 0 in H−s−1(Tn) by (14), we conclude that v ≡ 0. Let wj = (1 − ∆)−s/2vj . Then wj ∈
L∞([0, T ];L2(Tn)) and {

wj → 0 in L∞([0, T ];L2(Tn)) weak ∗
wj → 0 in C([0, T ];Hr(Tn)) ∀r < 0.

Let us split awj into

awj = (1−∆)−s/2(avj)− (1−∆)−s/2[a, (1−∆)s/2]wj .

As the pseudodifferential operator [a, (1−∆)s/2] maps continuously Hr(Tn) into Hr−s+1(Tn), we have that

(1−∆)−s/2[a, (1−∆)s/2]wj → 0 in C([0, T ];Hr(Tn)) for any r < 1. (15)

Therefore, using (14) and (15), we obtain that

awj → 0 in L2([0, T ];L2(Tn)).

Clearly, wj satisfies also the linear Schrödinger equation (10), so we infer from the observability inequality
(11) established for s = 0 that

wj(0) → 0 in L2(Tn).

It follows that vj(0) = (1−∆)s/2wj(0) → 0 in H−s(Tn), contradicting the fact that ||vj(0)||−s = 1 for all j.

Step 3. We prove (11) by contradiction. If (11) is false, there exists a sequence {vj} of solutions of (10) in
C([0, T ];H−s(Tn)) such that

1 = ||vj(0)||
2
−s ≥ j

∫ T

0

||avj(t)||
2
−sdt ∀j ≥ 0. (16)

Extracting a subsequence if needed, we may assume that

vj → v in L∞([0, T ];H−s(Tn)) weak ∗ (17)

vj → v in C([0, T ];Hr(Tn)) ∀r < −s (18)

for some solution v ∈ Cw([0, T ];H
−s(Tn)) of (10), where Cw([0, T ];H

−s(Tn) denotes the space of weakly
sequentially continuous functions from [0, T ] to H−s(Tn) (see [35, Lemme 8.1]). Clearly, avj → av in
L∞([0, T ];H−s(Tn)) weak ∗ which, combined to (16), yields av ≡ 0. An application of Holmgren theorem
(see e.g. [18, Theorem 8.6.5]) gives v ≡ 0. On the other hand, (18) gives vj(0) → 0 in H−s−1(Tn). It then
follows from (13) that vj(0) → 0 in H−s(Tn), and this contradicts (16).

Applying HUM [34] with L2(Tn) as pivot space, we infer from Proposition 2.1 the following internal
controllability of the linear Schrödinger equation in Hs(Tn).
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Theorem 2.2 Let T > 0 and s ≥ 0 be given. Then for any (u0, u1) ∈ Hs(Tn) × Hs(Tn) there exists
a control h ∈ L2([0, T ];Hs(Tn)) such that the system (9) admits a unique solution u ∈ C([0, T ];Hs(Tn))
satisfying u(T ) = u1. Moreover, we can define a bounded operator

Φ : Hs(Tn)×Hs(Tn) → L2([0, T ];Hs(Tn))

such that for any (u0, u1) ∈ Hs(Tn)×Hs(Tn) it holds

W (T )u0 +

∫ T

0

W (T − τ)(G(Φ(u0, u1)))(·, τ)dτ = u1. (19)

The (small) control region is represented in Figure 1. Trapped rays are drawn to mean that the wave
equation fails to be controllable with such control regions.

Control region

x
2

x
1

Trapped rays

Figure 1: Internal control of the Schrödinger equation.

2.2 Boundary control

In this section Ω = (0, π)n, and Γ0 denotes an open set in ∂Ω.

2.2.1 Dirichlet boundary control

We first adopt the following definition.

Definition 2.3 The open set Γ0 ⊂ ∂Ω is called a Dirichlet control domain if given any u0, u1 ∈ H−1(Ω)
and any time T > 0, one may find a control h ∈ L2(0, T ;L2(Γ0)) such that the solution u = u(x, t) of





iut +∆u = 0 in Ω× (0, T )
u = 1Γ0

h(x, t) on ∂Ω× (0, T )
u(0) = u0

(20)

satisfies u(T ) = u1.

The following result provides Dirichlet control domains which are arbitrary small in any dimension n ≥ 2.
Note that the wave equation fails to be controllable with such control domains.

Theorem 2.4 Let Ω = (0, π)n, and let Γ0 ⊂ ∂Ω be any open set containing a vertex of ∂Ω. Then Γ0 is a
Dirichlet control domain.
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x
2

x
1

Control region

Figure 2: Boundary control of the Schrödinger equation.

By Dolecki-Russell test of controllability (or HUM), Theorem 2.4 is a direct consequence of the following
boundary observability result for the system





ivt +∆v = 0 in Ω× (0, T )
v = 0 on ∂Ω× (0, T )
v(0) = v0.

(21)

Proposition 2.5 Assume that the (open) control region Γ0 ⊂ ∂Ω contains a vertex of ∂Ω. Then for every
T > 0, there exists a constant c > 0 such that

||∇v0||
2
L2(Ω) ≤ c

∫ T

0

∫

Γ0

∣∣∣∣
∂v

∂ν

∣∣∣∣
2

dσdt (22)

for any solution v of (21) with v0 ∈ H1
0 (Ω).

Proof. We proceed in several steps.
Step 1. First, we prove an observability inequality in H1

0 (Ω) with an internal observation in an arbitrary
subdomain of Ω.

Lemma 2.6 Let ω ⊂ Ω be an arbitrary nonempty open set. Then there exists a constant c > 0 such that

||∇v0||
2
L2(Ω) ≤ c

∫ T

0

∫

ω

|∇v(x, t)|
2
dxdt (23)

for every solution v of (21) with v0 ∈ H1
0 (Ω).

Proof of Lemma 2.6. Extend v to (−π, π)n × (0, T ) in such a way that v is an odd function of xi for each
i = 1, ..., n, and extend the initial state v0 in a similar way. Then v solves (10). Writing v0 =

∑
k∈Zn cke

ik·x,
we have that

∇v(x, t) =
∑

k∈Zn

icke
i(k·x−|k|2t)k.
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It follows then from (12) that

||∇v0||
2
L2(Tn) =

n∑

j=1

∑

k∈Zn

|kj |
2|ck|

2

≤ c

n∑

j=1

∫ T

0

∫

ω

∣∣ ∑

k∈Zn

cke
i(k·x−|k|2t)kj

∣∣2dxdt

≤ c

∫ T

0

∫

ω

|∇v|2dxdt.

The lemma is proved.

Step 2. We use the multiplier method to reduce the boundary observation inequality to an internal observa-
tion inequality. Without loss of generality, we may assume that Γ0 is a (small) neighborhood of the vertex
M = (π, ..., π) defined as

Γ0 = {x ∈ ∂Ω; x1 + · · ·+ xn > nπ − ε},

where ε is a (possibly small) positive number. The following lemma is needed.

Lemma 2.7 There exists a nonnegative function θ ∈ C3(Rn) which is null on {x ∈ Rn; x1 ≤ 0} and strictly
convex on (0,+∞)n ∩B1(0).

Proof of Lemma 2.7. Set y+ = max(y, 0) for all y ∈ R. Let

θ(x1, ..., xn) = (x+1 )
4
(
1 + δ

n∑

j=2

(x+j )
4
)

where δ > 0 is a small number whose value will be specified later. Clearly, θ is a nonnegative function of
class C3 on Rn, which vanishes on the set {x1 ≤ 0}. To prove that θ is strictly convex on (0,+∞)n ∩B1(0),
it is sufficient to check that the Hessian matrix

H(x) =

(
∂2θ

∂xi∂xj
(x)

)
(24)

is positive definite for every x ∈ (0,+∞)n ∩B1(0). Simple computations give that for any ξ ∈ Rn,

ξTH(x)ξ = 12x21(1 + δ

n∑

j=2

x4j )ξ
2
1 + 12δx41

n∑

j=2

x2jξ
2
j + 32δx31ξ1

n∑

j=2

x3jξj .

From Young inequality, we obtain that

32|x31x
3
jξ1ξj | ≤ 26x21x

4
jξ

2
1 + 10x41x

2
jξ

2
j ,

therefore

ξTH(x)ξ ≥ (12− 26(n− 1)δ)x21ξ
2
1 + 2δx41

n∑

j=2

x2jξ
2
j ≥ c|ξ|2 (25)

if x ∈ (0,+∞)n ∩B1(0) and δ < (6/13)(n− 1)−1.
At this position, we need an identity from [37].

Lemma 2.8 [37, Lemma 2.2] For any q ∈ H2(Ω,Rn) and any solution v of (21) issued from v0 ∈ H1
0 (Ω),

it holds

1

2

∫ T

0

∫

∂Ω

(q · ν)

∣∣∣∣
∂v

∂ν

∣∣∣∣
2

dσdt =
1

2
Im

∫

Ω

(vq · ∇v̄)dx|T0

+
1

2
Re

∫ T

0

∫

Ω

(v∇(div q) · ∇v̄)dxdt +Re

∫ T

0

∫

Ω

n∑

j,k=1

∂qk
∂xj

∂v̄

∂xk

∂v

∂xj
dxdt. (26)
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Let
ω = {x ∈ Ω; x1 + · · ·+ xn > nπ − ε}.

We readily infer from Lemma 2.7 that there exists a convex function θ ∈ C3(Ω) which is strictly convex on
ω and null on Ω \ ω. Using (26) with q = ∇θ we obtain

∫ T

0

∫

ω

∇v̄(x)TH(x)∇v(x) dxdt ≤ c

∫ T

0

∫

Γ0

∣∣∣∣
∂v

∂ν

∣∣∣∣
2

dσdt+ Cδ

∫

Ω

|v0|
2dx+ δ

∫

Ω

|∇v0|
2dx, (27)

where δ > 0 is a small number and H(x) denotes the Hessian matrix given in (24). In (27), we used the fact
that both quantities ||v(t)||L2(Ω) and ||∇v(t)||L2(Ω) are conserved. Using Lemma 2.6 and the fact that the
Hessian matrix H(x) = (∂2θ/∂xi∂xj)(x) is positive definite on ω, we obtain

||∇v0||
2
L2(Ω) ≤ c

∫ T

0

∫

Γ0

∣∣∣∣
∂v

∂ν

∣∣∣∣
2

dσdt + Cδ

∫

Ω

|v0|
2dx. (28)

for a convenient choice of δ. The proof of the estimate

||v0||
2
L2(Ω) ≤ c

∫ T

0

∫

Γ0

∣∣∣∣
∂v

∂ν

∣∣∣∣
2

dσdt (29)

is classical (see e.g. [37, pp. 27-28]). Then (22) follows from (28)-(29). This completes the proof of Propo-
sition 2.5 and of Theorem 2.4.

Remark 2.9 (i) Theorem 2.4 is stated for a square Ω = (0, π)n, but it is valid (with the same proof) for
any rectangle Ω = (0, l1)× · · · × (0, ln).

(ii) Using a frequential criterion and number theoretic arguments, Ramdani et al. [43] proved that when
n = 2, Γ0 ⊂ ∂Ω is a Dirichlet control domain if and only if Γ0 has both a horizontal and a vertical
components. It is however unclear whether the approach in [43] can yield a similar result for n ≥ 3.

(iii) Using Theorem 2.2 on a rectangle Ω̃ = (−1, π) × (0, π)n−1 with a control input supported in Ω̃ \ Ω,
and next taking the restriction to Ω, we infer that the linear Schrödinger equation is controllable in
L2(Ω) with a control supported on a side. (This fact can also be deduced from the Carleman inequalities
established in [39].) This suggests that the condition for a domain to be a Dirichlet control domain is
less restrictive when the state space is smoothed.

We now aim to extend Theorem 2.4 to a control result in a space Hs(Ω), with s ≥ −1. We define

Hs
D(Ω) = D(A

s
2

D), where AD is the Dirichlet Laplacian; i.e., ADu = −∆u with domain D(AD) = H2(Ω) ∩
H1

0 (Ω) ⊂ L2(Ω). We first need to replace the characteristic function 1Γ0
by a smooth controller function

g ∈ L∞(∂Ω). We adopt the following

Definition 2.10 Let g ∈ L∞(∂Ω). We say that g is a smooth Dirichlet controller if

(i) there exists a constant C > 0 such that

||∇v0||
2
L2(Ω) ≤ C

∫ T

0

∫

∂Ω

g(x)

∣∣∣∣
∂v

∂ν

∣∣∣∣
2

dσdt (30)

for any solution v of (21) emanating from v0 ∈ H1
0 (Ω) at t = 0;

(i) for any face F of ∂Ω, gF = g|F ∈ C∞(F ) and for all k ≥ 0

∂2k+1gF
∂ν2k+1

= 0 on ∂F. (31)

Note that for any nonempty open set Γ0 ⊂ ∂Ω one can construct a smooth Dirichlet controller g supported
in Γ0. Consider for example a small neighborhood Γ0 = [0, ε]n∩∂Ω of 0 in ∂Ω. A smooth Dirichlet controller
g supported in Γ0 is given by

g(x1, ..., xn) =
n∏

i=1

ρ(xi)
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where ρ ∈ C∞(R) fulfills

ρ(s) =

{
1 if s ≤ ε

4 ,
0 if s ≥ ε

2 .

Note also that g ∈ C0(∂Ω) and that the set {x ∈ ∂Ω; g(x) > 0} is an open neighborhood of 0 in ∂Ω.
Let g be a smooth Dirichlet controller, and let S denote the bounded operator H1

0 (Ω) → H−1(Ω) defined
by Sv0 = u(T ), where u = u(x, t) solves





iut +∆u = 0 in Ω× (0, T )
u = g(x)h(x, t) on ∂Ω× (0, T )
u(0) = 0

(32)

with h(x, t) = (∂v/∂ν)(x, t), v =WD(t)v0 denoting the solution of




ivt +∆v = 0 in Ω× (0, T )
v = 0 on ∂Ω× (0, T )
v(0) = v0.

(33)

Applying HUM, we infer from the observability inequality (30) that S is invertible. We shall prove that a
similar result holds in more regular spaces.

Theorem 2.11 Pick any number s ∈ [−1, 12 ). Then S is an isomorphism from Hs+2
D (Ω) onto Hs

D(Ω). More
precisely, for any T > 0 and any uT ∈ Hs

D(Ω), if we set h(x, t) = (∂v/∂ν)(x, t) where v denotes the solution

of (33) with v0 = S−1uT , then v0 ∈ Hs+2
D (Ω), h ∈ H

s+1

2 (0, T ;L2(∂Ω)), and the solution u of (32) satisfies
u ∈ C([0, T ];Hs

D(Ω)) and u(T ) = uT .

Proof. Step 1. Let us first check that S−1 is a bounded operator from Hs
D(Ω) into Hs+2

D (Ω) for s ∈ [−1, 12 ).
The result is already known for s = −1. Assume first that −1 < s < 0, and pick any uT ∈ Hs

D(Ω)
decomposed as

uT (x) =
∑

p∈(N∗)n

uT,p sin(p1x1) · · · sin(pnxn),

with
∑

p∈(N∗)n |p|2s|uT,p|
2 <∞. Let v0 = S−1(uT ) ∈ H1

D(Ω) decomposed as

v0(x) =
∑

p∈(N∗)n

vp sin(p1x1) · · · sin(pnxn), (34)

and let v denote the solution of (33). The control given by HUM driving (32) from 0 to uT reads

h(x, t) := ∂v/∂ν =
∑

p∈(N∗)n

vpe
−i|p|2t ∂

∂ν
(sin(p1x1) · · · sin(pnxn)). (35)

Let us write the solution u = u(x, t) of (32) in the form

u(x, t) =
∑

p∈(N∗)n

up(t) sin(p1x1) · · · sin(pnxn). (36)

The moments {up(t)}p∈(N∗)n can be computed from the control input h by using duality. Scaling in (32) by
w, where w =WD(t)w0 is a smooth solution, we obtain

i

∫

Ω

u(x, t)w(x, t) dx =

∫ t

0

∫

∂Ω

g(x)h(x, t̃)
∂w

∂ν
dσ(x)dt̃.

Pick any q ∈ (N∗)n and choose w0(x) = sin(q1x1) · · · sin(qnxn). We obtain from (35) that

(
π

2
)niei|q|

2tuq(t) =

∫ t

0

∫

∂Ω

g(x)h(x, t̃)ei|q|
2 t̃ ∂

∂ν
(sin(q1x1) · · · sin(qnxn))dσ(x)dt̃

=
∑

p∈(N∗)n

vp(

∫ t

0

ei(|q|
2−|p|2)t̃dt̃)

×

∫

∂Ω

g(x)
∂

∂ν
(sin(p1x1) · · · sin(pnxn))

∂

∂ν
(sin(q1x1) · · · sin(qnxn))dσ(x). (37)
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It follows that for t = T

S(v0) = uT = u(T ) =
∑

q∈(N∗)n


 ∑

p∈(N∗)n

aq,pvp


 sin(q1x1) · · · sin(qnxn) (38)

with

aq,p = −(
2

π
)n
e−i|p|2T − e−i|q|2T

|q|2 − |p|2

∫

∂Ω

g(x)
∂

∂ν
(sin(p1x1) · · · sin(pnxn))

∂

∂ν
(sin(q1x1) · · · sin(qnxn))dσ(x). (39)

In (39), we used the convention that

e−i|p|2t − e−i|q|2t

|q|2 − |p|2
= ite−i|q|2t for |p| = |q|. (40)

Introduce the operator Dσ defined by

Dσ


 ∑

p∈(N∗)n

cp sin(p1x1) · · · sin(pnxn)


 =

∑

p∈(N∗)n

|p|σcp sin(p1x1) · · · sin(pnxn).

In what follows,
∑

p and
∑

q will stand for
∑

p∈(N∗)n and
∑

q∈(N∗)n , respectively. We aim to prove that

v0 ∈ Hs+2
D (Ω) for uT ∈ Hs

D(Ω). For v0 given by (34), let

||v0||
2
s =

∑

p

|p|2s|vp|
2.

C denoting a constant varying from line to line, we have that

||v0||s+2 ≤ ||Ds+1v0||1

≤ C||S(Ds+1v0)||−1

≤ C
(
||Ds+1(Sv0)||−1 + ||[S,Ds+1]v0||−1

)

≤ C
(
||uT ||s + ||[S,Ds+1]v0||−1

)
. (41)

Clearly

[S,Ds+1]v0 =
∑

q

(∑

p

aq,p(|p|
s+1 − |q|s+1)vp

)
sin(q1x1) · · · sin(qnxn),

hence
||[S,Ds+1]v0||

2
−1 =

∑

q

|q|−2[
∑

p

aq,p(|p|
s+1 − |q|s+1)vp]

2.

Writing ∂Ω = ∪0≤l<2n−1Fl, where the Fl’s denote the faces of Ω, the integral term in (39) may be written∑
0≤l<2n−1 IFl

, with

IFl
:=

∫

Fl

g(x)
∂

∂ν
(sin(p1x1) · · · sin(pnxn))

∂

∂ν
(sin(q1x1) · · · sin(qnxn))dσ(x).

Let us estimate IFl
for F0 := {x ∈ ∂Ω;xn = 0} = [0, π]n−1 × {0}. Then

|IF0
| = pnqn

∣∣∣∣∣∣

∫

[0,π]n−1

g(x1, ..., xn−1, 0)[
n−1∏

j=1

sin(pjxj) sin(qjxj)]dx1 · · · dxn−1

∣∣∣∣∣∣

= pnqn

∣∣∣∣∣∣

∫

[0,π]n−1

g(x1, ..., xn−1, 0)[

n−1∏

j=1

1

2
(cos(pj − qj)xj − cos(pj + qj)xj)]dx1 · · · dxn−1

∣∣∣∣∣∣
.

Using (31) and integrations by parts, we see that for every k ∈ N, we have for some constant Ck > 0

|IF0
| ≤ Ckpnqn

n−1∏

j=1

〈pj − qj〉
−k. (42)
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The corresponding contribution in ||[S,Ds+1]v0||
2
−1 is therefore estimated by

AF0
=
∑

q

|q|−2


∑

p

pnqn(

n−1∏

j=1

〈pj − qj〉
−k)〈|q|2 − |p|2〉−1||p|s+1 − |q|s+1||vp|




2

.

Since
||p|s+1 − |q|s+1|

〈|q|2 − |p|2〉
≤ C

||p| − |q|| (|p|s + |q|s)

〈|q|2 − |p|2〉
≤ C

|p|s + |q|s

|p|+ |q|

we have by Cauchy-Schwarz

AF0
≤ C

∑

q

[
∑

p

pn(

n−1∏

j=1

〈pj − qj〉
−k)

|p|s + |q|s

|p|+ |q|
|vp|]

2

≤ C
∑

q


∑

p

|p|2s + |q|2s

(|p|+ |q|)2

n−1∏

j=1

〈pj − qj〉
−k


 ·


∑

p

p2n|vp|
2
n−1∏

j=1

〈pj − qj〉
−k


 (43)

Pick any k > 1. Then, as s < 0, if we choose k > 1

∑

qn

∑

p

|p|2s + |q|2s

(|p|+ |q|)2

n−1∏

j=1

〈pj − qj〉
−k ≤

∑

qn

∑

pn

p2sn + q2sn
(pn + qn)2

∑

p1,...,pn−1

n−1∏

j=1

〈pj − qj〉
−k <∞.

Therefore

AF0
≤ C

∑

q1,...,qn−1

∑

p

p2n|vp|
2
n−1∏

j=1

〈pj − qj〉
−k

≤ C
∑

p

|p|2|vp|
2

∑

q1,...,qn−1

n−1∏

j=1

〈pj − qj〉
−k

≤ C
∑

p

|p|2|vp|
2.

The estimate for another face Fl is similar. We conclude that

||[S,Ds+1]v0||
2
−1 ≤ C||v0||

2
1 ≤ C||uT ||

2
−1

hence, with (41), v0 ∈ Hs+2
D (Ω). Let us now assume that uT ∈ Hs

D(Ω) with 0 ≤ s < 1
2 . The proof is carried

out as above when −1 < s < 0, except for the estimate of AF0
in (43). We know from the lines above that

v0 ∈ Hσ
D(Ω) for any σ < 2. Then, by Cauchy-Schwarz inequality,

AF0
≤ C

∑

q


∑

p

pn

n−1∏

j=1

〈pj − qj〉
−k |p|

s + |q|s

|p|+ |q|
|vp|




2

(44)

≤ C
∑

q


∑

p

|p|2s + |q|2s

(|p|+ |q|)2
|p|−1

n−1∏

j=1

〈pj − qj〉
−k




∑

p

p2n|p||vp|
2
n−1∏

j=1

〈pj − qj〉
−k


 .

Note that
∑

qn


∑

p

|p|2s + |q|2s

(|p|+ |q|)2
|p|−1

n−1∏

j=1

〈pj − qj〉
−k


 ≤ C(S1 + S2 + S3)
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where

S1 =
∑

qn


∑

p

|p|2s−1

(|p|+ |q|)2

n−1∏

j=1

〈pj − qj〉
−k




S2 =
∑

qn


∑

p

q2sn |p|−1

(|p|+ |q|)2

n−1∏

j=1

〈pj − qj〉
−k




S3 =
∑

qn


∑

p

|q′|2s|p|−1

(|p|+ |q|)2

n−1∏

j=1

〈pj − qj〉
−k


 where q = (q′, qn).

Since 2s− 1 < 0,

S1 ≤
∑

qn


∑

p

p2s−1
n

(pn + qn)2

n−1∏

j=1

〈pj − qj〉
−k


 ≤ const <∞.

Also,

S2 ≤
∑

qn


∑

p

q2sn p
−1
n

(pn + qn)2

n−1∏

j=1

〈pj − qj〉
−k




≤ C
∑

pn

∑

qn

q2sn p
−1
n

(pn + qn)2

≤ C
∑

pn

(
1

pn(pn + 1)
+ p2s−3

n +

∫ ∞

1

x2s

pn(pn + x)2
dx

)

≤ C


1 +

∑

pn≥1

p2s−2
n

∫ +∞

0

y2s

(1 + y)2
dy




≤ const <∞.

Finally,

S3 ≤ |q′|2s
∑

qn

∑

p

p−1
n

(pn + qn)2

n−1∏

j=1

〈pj − qj〉
−k ≤ C|q′|2s.

It follows that

AF0
≤ C

∑

q1,...,qn−1

∑

p

p2n|p||vp|
2|q′|2s

n−1∏

j=1

〈pj − qj〉
−k.

Note that
∑

q1,...,qn−1

|q′|2s
n−1∏

j=1

〈pj − qj〉
−k ≤ C|p′|2s

since, for k > 2s+ 1, ∑

qj

q2sj 〈pj − qj〉
−k ≤ Cp2sj .

(Split the sum into one for qj ≤ 2pj, and another one for qj > 2pj.) Therefore, since 0 ≤ s < 1/2,

AF0
≤ C

∑

p

|p|3+2s|vp|
2 = ||v0||

2
s+ 3

2

≤ C||uT ||
2
s− 1

2

. (45)

Thus, we have proved that S−1 is bounded from Hs
D(Ω) into Hs+2

D (Ω) for −1 ≤ s < 1
2 . Note that, for

v0 ∈ Hs+2
D (Ω), h ∈ H

s+1

2 (T;L2(∂Ω)) by (35).
Step 2. Since S is an isomorphism from H1

D(Ω) onto H−1
D (Ω), it remains to prove that S maps Hs+2

D (Ω)
into Hs

D(Ω). The proof of Theorem 2.11 will thus be complete with the following result.
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Proposition 2.12 Let s ∈ [−1, 12 ) and T > 0. For any v0 ∈ Hs+2
D (Ω), let u = Γv0 denote the solution of

(32) associated with h = ∂v/∂ν, where v(t) = WD(t)v0. Then Γ is a bounded operator from Hs+2
D (Ω) into

C([0, T ];Hs
D(Ω)).

Proof of Proposition 2.12. It is well known that for any h ∈ L2(0, T ;L2(∂Ω)), there exists a unique solution
u ∈ C([0, T ];H−1(Ω)) in the transposition sense of (32) (see e.g. [37]). The result is therefore true for
s = −1. Let us now assume that s ∈ (−1, 1/2). From Step 1, we know that u is given by

u(t) = −

(
2

π

)n ∑

q∈(N∗)n


 ∑

p∈(N∗)n

vp
e−i|p|2t − e−i|q|2t

|q|2 − |p|2
I(g, p, q)


 sin(q1x1) · · · sin(qnxn) (46)

where

I(g, p, q) =

∫

∂Ω

g(x)
∂

∂ν
(sin(p1x1) · · · sin(pnxn))

∂

∂ν
(sin(q1x1) · · · sin(qnxn))dσ(x). (47)

Again I(g, p, q) =
∑

0≤l<2n−1 IFl
, where the Fl’s denote the faces of Ω and IFl

is given in (37). We have that

||Γv0||L∞(0,T ;Hs
D
(Ω)) = ||Ds+1(Γv0)||L∞(0,T ;H−1

D
(Ω))

≤ ||Γ(Ds+1v0)||L∞(0,T ;H−1

D
(Ω)) + ||[Γ, Ds+1]v0||L∞(0,T ;H−1

D
(Ω))·

Since
||Γ(Ds+1v0)||L∞(0,T ;H−1

D
(Ω)) ≤ C||Ds+1v0||1 ≤ C||v0||s+2,

it remains to estimate the commutator [Γ, Ds+1]v0. Clearly

([Γ, Ds+1]v0)(t) = −

(
2

π

)n∑

q


 ∑

p;|p|6=|q|

vp
|p|s+1 − |q|s+1

|q|2 − |p|2
(e−i|p|2t − e−i|q|2t)I(g, p, q)




n∏

j=1

sin(qjxj). (48)

The contribution in ||([Γ, Ds+1]v0)(t)||
2
−1 due to F0 = {x ∈ ∂Ω; xn = 0} is estimated with (42) by

BF0
≤ C

∑

q

|q|−2


 ∑

p,|p|6=|q|

|vp|
|p|s + |q|s

|p|+ |q|
|IF0

|




2

≤ C
∑

q


 ∑

p;|p|6=|q|

|vp|
|p|s + |q|s

|p|+ |q|
pn

n−1∏

j=1

〈pj − qj〉
−k




2

.

Therefore, using the estimation of the r.h.s. of (44) in (45), we conclude that for s < 1/2

BF0
≤ C||v0||

2
s+ 3

2

,

the constant C being uniform in t ∈ [0, T ]. Therefore

||[Γ, Ds+1]v0||L∞(0,T ;H−1

D
(Ω)) ≤ C||v0||s+2·

Thus, we have proved that
||u||L∞(0,T ;Hs

D
(Ω)) ≤ C||v0||Hs+2

D
(Ω)· (49)

Since u ∈ C([0, T ];H−1
D (Ω)), we conclude that u ∈ Cw([0, T ];H

s
D(Ω)). If we pick s̃ ∈ (s, 1/2) and

ṽ0 ∈ H s̃+2
D (Ω), the corresponding solution ũ belongs to Cw([0, T ];H

s̃
D(Ω)), hence to C([0, T ];Hs

D(Ω)), the
embedding H s̃

D(Ω) ⊂ Hs
D(Ω) being compact. It follows from (49) combined to the density of H s̃+2

D (Ω) in
Hs+2

D (Ω) that u ∈ C([0, T ];Hs
D(Ω)) for v0 ∈ Hs+2

D (Ω). In particular, u(T ) ∈ Hs
D(Ω), so that S is an iso-

morphism fromHs+2
D (Ω) ontoHs

D(Ω). This completes the proof of Proposition 2.12 and of Theorem 2.11.
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2.2.2 Neumann boundary control

We adopt the following definition.

Definition 2.13 The open set Γ0 ⊂ ∂Ω is called a Neumann control domain if given any u0, u1 ∈ L2(Ω)
and any time T > 0, one may find a control h ∈ L2(0, T ;L2(Γ0)) such that the solution u = u(x, t) of





iut +∆u = 0 in Ω× (0, T )
∂u
∂ν = 1Γ0

h(x, t) on ∂Ω× (0, T )
u(0) = u0

(50)

satisfies u(T ) = u1.

The following result provides Neumann control domains in any dimension n ≥ 2.

Proposition 2.14 Let Ω = (0, π)n, and let Γ0 ⊂ ∂Ω be a side of Ω. Then Γ0 is a Neumann control domain.

Proof. Assume e.g. that Γ0 = {0} × (0, π)n−1. By Dolecki-Russell criterion, we only have to check the
following observability inequality

||v0||
2
L2(Ω) ≤ C

∫ T

0

∫

Γ0

|v(x, t)|2dσdt (51)

where v0 is any function in L2(Ω) and v = v(x, t) solves





ivt +∆v = 0 in Ω× (0, T )
∂v
∂ν = 0 on ∂Ω× (0, T )
v(0) = v0.

(52)

Expanding v0 as

v0(x) =
∑

k∈Nn

ck cos(k1x1) · · · cos(knxn),

then the corresponding solution v(x, t) reads

v(x, t) =
∑

k∈Nn

cke
−i|k|2t cos(k1x1) · · · cos(knxn).

It follows that

∫ T

0

∫

Γ0

|v(x, t)|2dσdt =

∫ T

0

∫

(0,π)n−1

|
∑

k∈Nn

cke
−i|k|2t cos(k2x2) · · · cos(knxn)|

2dx2 · · · dxndt

∼
∑

k2,...,kn≥0

∫ T

0

∣∣∣∣∣∣
∑

k1≥0

cke
−ik2

1t

∣∣∣∣∣∣

2

dt ∼
∑

k∈Nn

|ck|
2 ∼ ||v0||

2
L2(Ω),

where we used the orthogonality of the functions cos(k2x2) · · · cos(knxn) in L
2(Γ0) and Ingham’s lemma.

We now aim to extend Proposition 2.14 to a control result in a space Hs(Ω), s > 0. We define Hs
N (Ω) =

D(A
s
2

N ), where AN is the Neumann Laplacian (i.e. ANu = u − ∆u with D(AN ) = {u ∈ H2(Ω), ∂u/∂ν =
0 on ∂Ω} ⊂ L2(Ω)). A result similar to Theorem 2.11 may be obtained along the same lines. We limit
ourselves to giving a weaker result with a very short proof.

Theorem 2.15 Let Γ0 be a Neumann control domain, T = 2π, s ∈ [0, 1) and u0, u1 ∈ Hs
N (Ω). Then there

exists a control input h ∈ H
s
2 (T;L2(∂Ω)) such that the solution u of (50) satisfies u(T ) = u1.

Proof. Without loss of generality, we may assume that u0 = 0. A direct computation shows that for any
(smooth) solution u of (50) emanating from u0 = 0 and any (smooth) solution v of (52), it holds

i

∫

Ω

u(x, T )v(x, T ) dx = −

∫ T

0

∫

∂Ω

1Γ0
h(x, t)vdσdt. (53)
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As usual, for any h ∈ L2(0, T ;L2(∂Ω)), the solution u ∈ C([0, T ];L2(Ω)) of (50) is defined by

i(u(t), v(t))L2(Ω) = −(h, 1Γ0
v)L2(0,t;L2(∂Ω)), ∀t ∈ [0, T ], ∀v0 ∈ L2(Ω) (54)

where v(t) solves (52).
Claim 1. If v0 ∈ H−s

N (Ω) for some s ∈ R, then v ∈ H− s
2 (T;L2(∂Ω)).

Indeed, if we write v0 =
∑

k∈Nn ck cos(k1x1) · · · cos(knxn) and

v(x, t) =
∑

k∈Nn

cke
−i|k|2t cos(k1x1) · · · cos(knxn)

then we have that
||v||2

H−
s
2 (T,L2(∂Ω))

∼
∑

k

(1 + |k|2)−s|ck|
2 ∼ ||v0||

2
H−s

N
(Ω)
. (55)

We may rewrite (53) in the form

i〈u(T ), v(T )〉Hs
N
,H−s

N
= −〈h, 1Γ0

v〉
H

s
2 (T;L2(∂Ω)),H−

s
2 (T;L2(∂Ω))

. (56)

Note that u ∈ C([0, T ];Hs
N(Ω)) if 0 ≤ s < 1. It remains to establish the following

Claim 2. (Observability inequality) The following estimate holds for the solutions of (52):

||1Γ0
v||2

H−
s
2 (T;L2(∂Ω))

≥ const||v0||
2
H−s

N
(Ω)

(57)

If (57) is not true, one can construct a sequence {vj} such that

j||1Γ0
vj ||

2

H−
s
2 (T;L2(∂Ω))

< ||vj(0)||
2
H−s

N
(Ω)

= 1. (58)

Let wj = (1− ∂2t )
− s

4
p vj , where for any σ ∈ R

(1− ∂2t )
σ
p

∑

l∈Z

cle
ilt =

∑

l∈Z

(1 + |l|2)σcle
ilt.

Then wj solves (52) with wj(0) substituted to v0, and from (58) we obtain

1Γ0
wj → 0 in L2(T;L2(∂Ω)). (59)

As Γ0 is a Neumann control domain, we infer that wj(0) → 0 in L2(Ω), hence

wj → 0 in L2(T;L2(∂Ω)).

This gives
vj → 0 in H− s

2 (T;L2(∂Ω)).

Using (55), we infer that vj(0) → 0 in H−s
N (Ω), which contradicts (58). This completes the proof of Theorem

2.15.

3 Nonlinear systems

3.1 Internal control

In this section we consider the following nonlinear control system




iut +∆u+N(u) = iGh = ia(x)h(x, t), x ∈ Tn, t > 0,

u(x, 0) = φ(x),
(60)

where a ∈ C∞(Tn), and the nonlinearity N(u) reads

N(u) = λuα1uα2 , α1 + α2 =: α+ 1 ≥ 2, (61)
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with λ ∈ R, and α, α1, α2 ∈ N. Note that for any α = 2β ∈ 2N∗, |u|αu = uβ+1uβ .
We introduce the number

sα,n =





n
2 − 1 if α = 1,
n
2 − 3

4 − 1
4(n−1) if α = 2,

n
2 − 2

α if α ≥ 3.

(62)

Thus sα,n = sc := n
2 − 2

α (the critical Sobolev exponent obtained by scaling in NLS) for α ≥ 3, while
sα,n > sc for α = 1, 2 (except for n = α = 2 where s2,2 = sc = 0).

By Corollary 3.5 (see below), the system (60) is locally well-posed in the space Hs(Tn) for α ≥ 1 and
s > sα,n with φ ∈ Hs(Tn) and h ∈ L2

loc(R, H
s(Tn)).

Our main concern is its exact controllability in the space Hs(Tn).

Theorem 3.1 For given n ≥ 2, α1, α2 ∈ N with α1 +α2 =: α+ 1 ≥ 2, and a 6≡ 0, the system (60) is locally
exactly controllable in the space Hs(Tn) for any s > sα,n. More precisely, for any given T > 0, there exists
a number δ > 0 depending on α, n, T and λ such that if φ, ψ ∈ Hs(Tn) satisfy

‖φ‖s ≤ δ, ‖ψ‖s ≤ δ,

then one can choose a control input h ∈ L2(0, T ;Hs(Tn)) such that the system (60) admits a solution
u ∈ C([0, T ];Hs(Tn)) satisfying

u(x, 0) = φ(x), u(x, T ) = ψ(x).

The system (60) can be rewritten in its equivalent integral form

u(t) =W (t)φ+ i

∫ t

0

W (t− τ)(N(u)(τ))dτ +

∫ t

0

W (t− τ)[Gh](τ)dτ. (63)

To prove Theorem 3.1, a smoothing property is needed for the operator from f to u, where

u(t) =

∫ t

0

W (t− τ)f(τ)dτ.

This needed smoothing property was provided in Bourgain’s work [8, 9] where he dealt with the Cauchy
problem for the periodic Schrödinger equation.

For given s, b ∈ R, the Bourgain space Xs,b is the space of functions u : Tn ×R → C for which the norm

||u||Xs,b
= ||W (−t)u(., t)||Hb

t (H
s
x)

is finite. Decomposing u as

u(x, t) =
∑

k∈Zn

∫

R

û(k, τ)ei(k·x+τt)dτ

we have that

||u||2Xs,b
=
∑

k∈Zn

∫

R

〈τ + |k|2〉2b〈k〉2s|û(k, τ)|2dτ

where 〈y〉 := (1 + |y|2)
1
2 . For given T > 0, XT

s,b is the restriction norm space

XT
s,b = {u|Tn×(0,T ); u ∈ Xs,b}

with the restriction norm

||u||XT
s,b

= inf{||ũ||Xs,b
; ũ ∈ Xs,b, ũ|Tn×(0,T ) = u}.

Before we proceed to show the exact controllability results, we present the two following technical lemmas
(see e.g. [50]) which play important roles in the proof of Theorem 3.1.

Lemma 3.2 For given T > 0 and s, b ∈ R, there exists a constant C > 0 such that

‖W (t)φ‖XT
s,b

≤ C‖φ‖s

for any φ ∈ Hs(Tn).
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Lemma 3.3 For given T > 0, b > 1/2, and s ∈ R, there exists a constant C > 0 such that

∥∥∥∥
∫ t

0

W (t− τ)f(τ)dτ

∥∥∥∥
XT

s,b

≤ C‖f‖XT
s,b−1

for any f ∈ XT
s,b−1.

The following multilinear estimate is crucial when applying the contraction mapping theorem.

Proposition 3.4 Let n ≥ 2, α ∈ N∗ and s > sα,n. Then there exist some numbers b ∈ (0, 12 ) and C > 0
such that

‖

α+1∏

i=1

ũi‖Xs,−b
≤ C

α+1∏

i=1

‖ui‖Xs,b
∀u1, ..., uα+1 ∈ Xs,b, (64)

where ũi denotes ui or ui.

Corollary 3.5 Let n ≥ 2, α ∈ N∗, and s > sα,n. Pick u0 ∈ Hs(Tn) and h ∈ Xs,0 = L2(R;Hs(Tn)). Then
there exist two numbers b > 1

2 and T = T (||u0||Hs(Tn), ||h||Xs,0
) so that the initial-value problem (60) admits

a unique solution u ∈ XT
s,b.

Remark 3.6 Proposition 3.4, which is proved in Appendix for the sake of completeness, is essentially due
to Bourgain. It was proved in [9] when α = n = 2, and in [8] in Besov-type spaces when s > sb, where

sb =





sc if n = 2,
max(sc,

3
4 ) if n = 3,

max(sc,
3n
n+4 ) if n ≥ 4.

(65)

Notice that sb > sc only for (α, n) ∈ {(2, 3), (2, 4), (2, 5), (3, 4)}. The corresponding values of sb, sc and sα,n
are reported in Table 1. On the other hand, sb = sc < sα,n for α = 2 and n ≥ 6. Sharp results for the

(α, n) (2, 3) (2, 4) (2, 5) (3, 4)

sb
3
4

3
2

5
3

3
2

sα,n
5
8

7
6

27
16

4
3

sc
1
2 1 3

2
4
3

Table 1: sb, sα,n and sc for (α, n) ∈ {(2, 3), (2, 4), (2, 5), (3, 4)}

local well-posedness of NLS on Tn are also given in [22] for α = n = 1, and in [17] for (α1, α2) = (0, 2) and
2 ≤ n ≤ 4.

It follows at once from Proposition 3.4 that for any T > 0, s > sα,n, and some b > 1/2, b′ > b − 1 we
have

‖N(v)−N(w)‖XT
s,b′

≤ C(||v||αXT
s,b

+ ||w||αXT
s,b
)||v − w||XT

s,b
∀v, w ∈ XT

s,b.

We are now in a position to give a proof of Theorem 3.1.

Proof of Theorem 3.1: Set

ω(v, T ) = i

∫ T

0

W (T − τ)N(v)(τ)dτ.

By Theorem 2.2, if we choose
h = Φ(φ, ψ − ω(v, T )),



18

then

W (t)φ+

∫ t

0

W (t− τ) (iN(v) +GΦ(φ, ψ − ω(v, T )) (τ)dτ

=





φ(x) in Tn when t = 0;

ψ(x)− ω(v, T ) + ω(v, T ) = ψ(x) in Tn, when t = T.

It suggests us to consider the nonlinear map:

Γ(v) =W (t)φ+ i

∫ t

0

W (t− τ) (iN(v) +GΦ(φ, ψ − ω(v, T )) (τ)dτ.

The proof would be complete if we can show that this map Γ has a fixed point in the space XT
s,b, with

b ∈ (12 , 1).
To this end, note that by using Lemma 3.2, Lemma 3.3 and Proposition 3.4, there exist a number

b ∈ (12 , 1) and some constants Cj , j = 1, 2, 3 such that

‖Γ(v)‖XT
s,b

≤ C1 (‖φ‖s + ‖ψ‖s + ‖ω(v, T )‖s) + C2‖v‖
α+1
XT

s,b

for any v ∈ XT
s,b and

‖Γ(v1)− Γ(v2)‖XT
s,b

≤ C1‖ω(v1, T )− ω(v2, T )‖s + C3

(
‖v1‖

α
XT

s,b

+ ‖v2‖
α
XT

s,b

)
‖v1 − v2‖XT

s,b

for any v1, v2 ∈ XT
s,b. Note that there exists a constant C4 > 0 such that

‖ω(v, T )‖s ≤ ‖

∫ t

0

W (t− τ)N(v)(τ)dτ‖C([0,T ];Hs(Tn))

≤ const‖

∫ t

0

W (t− τ)N(v)(τ)dτ‖XT
s,b

≤ C4‖v‖
α+1
XT

s,b

.

Similarly

‖ω(v1, T )− ω(v2, T )‖s ≤ C5

(
‖v1‖

α
XT

s,b

+ ‖v2‖
α
XT

s,b

)
‖v1 − v2‖XT

s,b
.

As a result, by increasing the constants C2 and C3, we obtain

‖Γ(v)‖XT
s,b

≤ C1(‖φ‖s + ‖ψ‖s) + C2‖v‖
α+1
XT

s,b

for any v ∈ XT
s,b and

‖Γ(v1)− Γ(v2)‖XT
s.b

≤ C3

(
‖v1‖

α
XT

s,b

+ ‖v2‖
α
XT

s,b

)
‖v1 − v2‖XT

s,b

for any v1, v2 ∈ XT
s,b. Pick δ > 0, φ, ψ ∈ Hs(Tn) with ‖φ‖s + ‖ψ‖s ≤ δ, and set M = 2C1δ. If ‖v‖XT

s,b
≤M

and
‖vj‖XT

s,b
≤M, j = 1, 2,

then

‖Γ(v)‖XT
s,b

≤ C1δ + C2M
α+1

≤ 2C1δ =M

as long as

C2M
α ≤

1

2
·
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Choose δ > 0 so that M = 2C1δ fulfills

C2M
α ≤

1

2
and C3M

α ≤
1

4
,

and let BM be the ball in the space XT
s,b centered at the origin of radius M . For given φ, ψ ∈ Hs(Tn) with

‖φ‖s + ‖ψ‖s ≤ δ, we have
‖Γ(v)‖XT

s,b
≤M

for any v ∈ BM and

‖Γ(v1)− Γ(v2)‖XT
s,b

≤
1

2
‖v1 − v2‖XT

s,b

for any v1, v2 ∈ BM . That is to say, Γ is a contraction in the ball BM . The proof is complete.

Let us now consider the Schrödinger equation posed on a cube Ω = (0, π)n

iut +∆u+N(u) = ia(x)h(x, t), x ∈ Ω, t ∈ (0, T ) (66)

with either the homogeneous Dirichlet boundary conditions

u(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ) (67)

or the homogeneous Neumann boundary conditions

∂u

∂ν
(x, t) = 0 (x, t) ∈ ∂Ω× (0, T ). (68)

The nonlinearity N(u) is still as in (61).
It is remarkable that internal control results with Dirichlet (resp. Neumann) homogeneous boundary

conditions can be deduced from those already proved for periodic boundary conditions.

Corollary 3.7 For given n ≥ 2, α1, α2 ∈ N with α1 + α2 =: α + 1 ≥ 2 and α even, and a 6≡ 0, the system
(66)-(67) is locally exactly controllable in the space Hs

D(Ω) for any s > sα,n. More precisely, for any given
T > 0, there exists a number δ > 0 depending on α, n, T and λ such that if φ, ψ ∈ Hs

D(Ω) satisfy

‖φ‖Hs
D
(Ω) ≤ δ, ‖ψ‖Hs

D
(Ω) ≤ δ,

then one can choose a control input h ∈ L2(0, T ;Hs
D(Ω)) such that the system (66)-(67) admits a solution

u ∈ C([0, T ];Hs
D(Ω)) satisfying

u(x, 0) = φ(x), u(x, T ) = ψ(x).

Corollary 3.8 For given n ≥ 2, α1, α2 ∈ N with α1 + α2 =: α + 1 ≥ 2 and a 6≡ 0, the system (66)-(68) is
locally exactly controllable in the space Hs

N (Ω) for any s > sα,n. More precisely, for any given T > 0, there
exists a number δ > 0 depending on α, n, T and λ such that if φ, ψ ∈ Hs

N (Ω) satisfy

‖φ‖Hs
N
(Ω) ≤ δ, ‖ψ‖Hs

N
(Ω) ≤ δ,

then one can choose a control input h ∈ L2(0, T ;Hs
N(Ω)) such that the system (66)-(68) admits a solution

u ∈ C([0, T ];Hs
N(Ω)) satisfying

u(x, 0) = φ(x), u(x, T ) = ψ(x).

We shall say that a function from (−π, π)n to C is odd (resp. even), if it is odd with respect to each coordinate
xi, 1 ≤ i ≤ n. The proof relies on the basic, but crucial observation that the functions in Hs

D(Ω) (resp.
Hs

N (Ω)) coincide with the restrictions to Ω of the functions in Hs(Tn) which are odd (resp. even). The
issue is therefore reduced to an extension of Theorem 3.1 in the framework of odd (resp. even) functions
in Hs(Tn). Extending the function a in (66) to Tn as an even function, we notice that the control input
h in Theorem 2.2 can be chosen odd (resp. even) if the functions φ, ψ are odd (resp. even). Indeed, the
observability inequality holds as well in the subspaces

Hs
odd(T

n) = {u ∈ Hs
p(T

n); u(x1, ..., xi−1,−xi, xi+1, ..., xn) = −u(x) ∀x ∈ Tn, ∀i},

Hs
even(T

n) = {u ∈ Hs
p(T

n); u(x1, ..., xi−1,−xi, xi+1, ..., xn) = u(x) ∀x ∈ Tn, ∀i}

of Hs(Tn) for s ≤ 0. On the other hand, since u and N(u) are simultaneously odd (resp. even), we see that
the contraction mapping theorem can be applied in a space of odd (resp. even) trajectories to derive the
result in Corollary 3.7 (resp. 3.8). Full details are provided in [46] for n = 1.
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3.2 Boundary control

In this section we consider the Schrödinger equation posed on a rectangle Ω = (0, l1)× · · · × (0, ln)

iut +∆u+N(u) = 0, x ∈ Ω, t ∈ (0, T ) (69)

with either the Dirichlet boundary conditions

u(x, t) = 1Γ0
h(x, t) (x, t) ∈ ∂Ω× (0, T ) (70)

or the Neumann boundary conditions

∂u

∂ν
(x, t) = 1Γ0

h(x, t) (x, t) ∈ ∂Ω× (0, T ). (71)

When we shall consider a smooth Dirichlet controller g, then the boundary condition (70) will be replaced
by

u(x, t) = g(x)h(x, t) (x, t) ∈ ∂Ω× (0, T ). (72)

N(u) still stands for the nonlinear term in NLS. We first give a result (with a small control region)
providing precise informations on the smoothness of the control input and of the trajectories when N(u) is
weakly nonlinear. To simplify the exposition, we assume here that

Ω = (0, π)n.

We denote by u =WD(t)u0 the solution of (20) for h = 0. For given s, b ∈ R, Xs,b(Ω) denotes the Bourgain
space of functions u : Ω× R → C for which the norm

||u||Xs,b(Ω) = c||WD(−t)u(., t)||Hb(R;Hs
D
(Ω))

is finite. Decomposing u as

u(x, t) =
∑

k∈(N∗)n

∫

R

û(k, τ)eiτt sin(k1x1) · · · sin(knxn)dτ

we can choose the constant c so that

||u||2Xs,b(Ω) =
∑

k∈(N∗)n

∫

R

〈τ + |k|2〉2b〈k〉2s|û(k, τ)|2dτ <∞.

The restriction norm space XT
s,b(Ω) is defined in the usual way (see above the definition of XT

s,b). For
u ∈ Hs

D(Ω) given, we denote by ũ its odd extension to Tn = (−π, π)n; i.e., ũ|(0,π)n = u, and ũ is odd with
respect to each coordinate xi. Note that ũ ∈ Hs(Tn) and ||ũ||s ∼ ||u||Hs

D
(Ω). Defining ũ(., t) from u(., t) in

a similar way, we observe that
||ũ||XT

s,b
∼ ||u||XT

s,b
(Ω).

It is then clear that Lemmas 3.2 and 3.3 hold true with WD(t), Hs
D(Ω) and XT

s,b(Ω) substituted to W (t),

Hs(Tn) and XT
s,b, respectively. We shall assume that the nonlinear term N(u) satisfies the following multi-

linear estimate
||N(u)−N(v)||Xs,b′ (Ω) ≤ c(u, v) ||u− v||Xs,b(Ω) (73)

where s ∈ R, −1/2 < b′ < b ≤ b′ + 1 and c(u, v) → 0 as u→ 0, v → 0 in Xs,b(Ω).
Theorem 2.11 can be extended to a semilinear context as follows.

Theorem 3.9 Let g be a smooth Dirichlet controller, and let the nonlinearity N(u) satisfy (61) and (73)
with s ∈ [−1, 12 ), b > 0 and s + 2b < 1

2 . Pick any T > 0. Then there exists δ > 0 such that for any
u0, uT ∈ Hs

D(Ω) satisfying
||u0||Hs

D
(Ω) ≤ δ, ||uT ||Hs

D
(Ω) ≤ δ

one may find a control input h ∈ H
s+1

2 (T;L2(∂Ω)) and a solution u ∈ C([0, T ];Hs
D(Ω)) ∩XT

s,b of (69) and
(72) such that u(0) = u0 and u(T ) = uT .
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Proof. For uT ∈ Hs
D(Ω), let h be the control given by HUM which steers (32) from 0 to uT , namely h =

∂v/∂ν with v =WD(t)v0 and v0 = S−1uT ∈ Hs+2
D (Ω) (cf. Theorem 2.11). Recall that h ∈ H

s+1
2 (T;L2(∂Ω))

by (35). We set u = ΛuT = ΓS−1uT . The regularity of u is depicted in the following proposition.

Proposition 3.10 Assume that −1 ≤ s < 1/2 and s + 2b < 1/2. Then Λ maps continuously Hs
D(Ω) into

C([0, T ];Hs
D(Ω)) ∩X

T
s,b(Ω).

Proof of Proposition 3.10. It follows from Proposition 2.12 and Theorem 2.11 that Λ maps continuously
Hs

D(Ω) into C([0, T ];Hs
D(Ω)). Let us turn our attention to the Bourgain space XT

s,b(Ω).
Step 1. We prove several claims used thereafter.
Claim 3. For any γ > 1/2, it holds

sup
λ∈R

∑

k∈Z

〈λ2 − k2〉−γ <∞.

In what follows, C denotes a constant independent of λ and k which may vary from line to line. Pick λ ∈ R+.
For 0 ≤ λ ≤ 1

〈λ2 − k2〉−γ ≤ 〈k2〉−γ + 〈1− k2〉−γ

and the result is then obvious. For λ > 1, we have

∑

k∈Z

〈λ2 − k2〉−γ ≤ C

(∫ λ−1

0

|λ2 − x2|−γdx+

∫ ∞

λ+1

|x2 − λ2|−γdx + 1

)

= Cλ1−2γ

(∫ 1−λ−1

0

|1− y2|−γdy +

∫ +∞

1+λ−1

|y2 − 1|−γdy + 1

)

≤ Cλ1−2γ

(∫ 1−λ−1

0

|1− y|−γdy +

∫ 2

1+λ−1

|y − 1|−γdy + 1

)

≤

{
Cλ1−2γ(λ−1+γ + 1) if γ 6= 1;
Cλ−1(ln λ+ 1) if γ = 1

and the claim follows.
Claim 4. If s ≥ −1, 0 < δ < 1, s+ 2δ < 1/2, and k > 1 + 2(s+ 1), then for some constant C > 0

S(p) :=
∑

q;|q|6=|p|

q2s+2
n

||q|2 − |p|2|2(1−δ)

n−1∏

j=1

〈pj − qj〉
−k ≤ C〈p〉2s+2.

Write S(p) = S1(p)+S2(p), where the sum S1(p) is restricted to the q = (q′, qn) with |q′| ≥ |p| and |q| 6= |p|.
Noticing that |q|2 − |p|2 = q2n + |q′|2 − |p|2 ≥ q2n for such q, we obtain that

S1(p) ≤
∑

qn

q2s+4δ−2
n

∑

q′

n−1∏

j=1

〈pj − qj〉
−k ≤ C ≤ C〈p〉2s+2

To bound S2(p), we fix any q′ ∈ (N∗)n−1 with |q′| < |p| and set

λ =
√
|p|2 − |q′|2 ≥ 1.

We have that

∑

qn;|q2n−λ2|≥1

q2s+2
n

|q2n − λ2|2(1−δ)
≤ C

(∫

|x2−λ2|≥1

x2s+2

|x2 − λ2|2(1−δ)
dx+ λ2s+2

)

≤ C

(
λ2s+4δ−1

∫

|y2−1|≥λ−2

y2s+2

|y2 − 1|2(1−δ)
dy + λ2s+2

)

≤ C(λ2s+4δ−1 · λ2−4δ · lnλ+ λ2s+2)

≤ C
(
p2s+2
n +

n−1∑

j=1

〈p2j − q2j 〉
s+1
)
.
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It follows that

S2(p) ≤ C
∑

q′

(p2s+2
n +

n−1∑

j=1

〈p2j − q2j 〉
s+1)

n−1∏

l=1

〈pl − ql〉
−k

≤ C
(
p2s+2
n +

n−1∑

j=1

∑

qj≥1

〈p2j − q2j 〉
s+1〈pj − qj〉

−k
)

≤ C
(
p2s+2
n +

n−1∑

j=1

∑

qj≥1

〈pj + qj〉
s+1〈qj − pj〉

−(k−s−1)
)
.

To complete the proof of Claim 4, we need the following
Claim 5. Let σ ≥ 0 and k > σ + 1. Then there exists a constant C > 0 such that

∑

m≥1

〈m+ n〉σ〈m− n〉−k ≤ Cnσ ∀n ≥ 1.

Split the sum into Σ1 +Σ2 where Σ1 =
∑

1≤m≤3n〈m+ n〉σ〈m− n〉−k. Note that

Σ1 ≤ 〈4n〉σ
∑

l∈Z

〈l〉−k ≤ C〈n〉σ

since k > 1. On the other hand, noticing that m− n > (m+ n)/2 for m > 3n, we have that

Σ2 ≤
∑

m>3n

〈2(m− n)〉σ〈m− n〉−k ≤ C
∑

m>3n

〈m− n〉−(k−σ) ≤ C.

Claim 5 is proved. Pick k > 1 + 2(s+ 1) ≥ 1. It follows from Claim 5 that

∑

qj

〈pj + qj〉
s+1〈pj − qj〉

−(k−s−1) ≤ Cps+1
j .

Since s+ 1 ≥ 0 and pj ≥ 1, we conclude that

S(p) ≤ C(p2s+2
n + 〈p′〉s+1) ≤ C〈p〉2s+2.

This completes the proof of Claim 4.
Step 2. Assume that s < 0 and s+ 2b < 1/2, and pick any uT ∈ Hs

D(Ω) and any η ∈ C∞
0 (R) with η(t) = 1

for 0 ≤ t ≤ T . Let v0 = S−1uT ∈ Hs+2
D (Ω) be decomposed as in (34). Let us prove that u = ΛuT ∈ XT

s,b. It
is sufficient to prove that

||η(t)u||Xs,b
≤ C||v0||Hs+2

D
(Ω).

Recall that u is given by (46)-(47), and that u(t) may be defined this way for all t ∈ R . Again, we can limit
ourselves to proving that uF0

∈ XT
s,b, where uF0

is the contribution due to F0 = {x ∈ ∂Ω; xn = 0} in u. uF0

is decomposed as

uF0
=

∑

q∈(N∗)n

uq(t) sin(q1x1) · · · sin(qnxn)

where

uq(t) = −

(
2

π

)n ∑

p∈(N∗)n

vp
e−i|p|2t − e−i|q|2t

|q|2 − |p|2
IF0

with the convention (40). .̂ denoting time Fourier transform, an application of the elementary property

̂eirtη(t)(τ) = η̂(τ − r)

yields

η̂uq(τ) = −

(
2

π

)n

 ∑

p;|p|6=|q|

vp
η̂(τ + |p|2)− η̂(τ + |q|2)

|q|2 − |p|2
IF0

+
∑

p;|p|=|q|

ivpt̂η(t)(τ + |q|2)IF0


 .
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For a function w decomposed as

w(x, t) =
∑

q∈(N∗)n

wq(t) sin(q1x1) · · · sin(qnxn)

we recall that

||w||2Xs,b(Ω) =
∑

q∈(N∗)n

∫
dτ〈τ + |q|2〉2b〈q〉2s|ŵq(τ)|

2

Therefore, it is sufficient to check that

I :=
∑

q∈(N∗)n

∫
dτ〈q〉2s〈τ + |q|2〉2b|η̂uq(τ)|

2 ≤ c
∑

p

〈p〉2s+4|vp|
2.

Using (42), we may write
I ≤ c(I1 + I2 + I3)

where

I1 =
∑

q

∫
dτ〈q〉2s〈τ + |q|2〉2b


 ∑

p;|p|=|q|

|vp t̂η(t)(τ + |q|2)|pnqn

n−1∏

j=1

〈pj − qj〉
−k




2

I2 =
∑

q

∫
dτ〈q〉2s〈τ + |q|2〉2b


 ∑

p;|p|6=|q|

∣∣∣∣vp
η̂(τ + |q|2)

|q|2 − |p|2

∣∣∣∣ pnqn
n−1∏

j=1

〈pj − qj〉
−k




2

I3 =
∑

q

∫
dτ〈q〉2s〈τ + |q|2〉2b


 ∑

p;|p|6=|q|

∣∣∣∣vp
η̂(τ + |p|2)

|q|2 − |p|2

∣∣∣∣ pnqn
n−1∏

j=1

〈pj − qj〉
−k




2

We bound separately I1, I2 and I3.
1.

I1 ≤ C(

∫
dσ〈σ〉2b|t̂η(t)(σ)|2)

∑

q

〈q〉2sq2n


 ∑

p;|p|=|q|

|vp|pn

n−1∏

j=1

〈pj − qj〉
−k




2

≤ C
∑

q

〈q〉2sq2n


 ∑

p;|p|=|q|

|vp|
2p2n

n−1∏

j=1

〈pj − qj〉
−k




 ∑

p;|p|=|q|

n−1∏

j=1

〈pj − qj〉
−k




where we used successively a change of variables in the integral term, the fact that η ∈ S(R) and Cauchy-
Schwarz inequality. From

∑

p;|p|=|q|

n−1∏

j=1

〈pj − qj〉
−k ≤

∑

p1,...,pn−1




n−1∏

j=1

〈pj − qj〉
−k

∑

pn;|p|=|q|

1


 ≤

n−1∏

j=1

∑

pj∈Z

〈pj〉
−k <∞

we deduce that

I1 ≤ C
∑

p

|vp|
2|p|2

∑

q;|q|=|p|

〈q〉2s+2
n−1∏

j=1

〈pj − qj〉
−k

≤ C
∑

p

|vp|
2|p|2s+4.

2.

I2 = C(

∫
dσ〈σ〉2b|η̂(σ)|2)

∑

q

〈q〉2sq2n


 ∑

p;|p|6=|q|

∣∣∣∣
vp

|q|2 − |p|2

∣∣∣∣ pn
n−1∏

j=1

〈pj − qj〉
−k




2

≤ c
∑

q

〈q〉2sq2n


 ∑

p;|p|6=|q|

|vp|
2p2n

||q|2 − |p|2|2(1−δ)

n−1∏

j=1

〈pj − qj〉
−k




 ∑

p;|p|6=|q|

||q|2 − |p|2|−2δ
n−1∏

j=1

〈pj − qj〉
−k



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where we used Cauchy-Schwarz inequality, and δ > 1/4 was chosen so that s+ 2δ < 1/2. From Claim 3, we
obtain that

∑

p;|p|6=|q|

||q|2 − |p|2|−2δ
n−1∏

j=1

〈pj − qj〉
−k ≤ C

∑

p′

n−1∏

j=1

〈pj − qj〉
−k

∑

pn;|p|6=|q|

〈|q|2 − |p|2〉−2δ < const.

Therefore, since s < 0, we see that

I2 ≤ C
∑

q

q2s+2
n

∑

p;|p|6=|q|

|vp|
2p2n

||q|2 − |p|2|2(1−δ)

n−1∑

j=1

〈pj − qj〉
−k

and from Claim 4
I2 ≤ C

∑

p

|vp|
2|p|2s+4.

3. From the elementary estimate

〈τ + |q|2〉 ≤ c〈τ + |p|2〉〈|q|2 − |p|2〉

we infer that

I3 ≤ C
∑

q

∫
dτ〈q〉2s|qn|

2


 ∑

p;|p|6=|q|

|vp|
|η̂(τ + |p|2)|〈τ + |p|2〉b

||q|2 − |p|2|1−b
pn

n−1∏

j=1

〈pj − qj〉
−k




2

. (74)

For any fixed γ > 1, we have that for some constant c > 0

〈σ〉b|η̂(σ)| ≤ c〈σ〉−γ ∀σ ∈ R.

Expanding the squared term in (74) results in

I3 ≤ C
∑

q

〈q〉2s|qn|
2
∑

p;|p|6=|q|

∑

p̃;|p̃|6=|q|

|vp| |vp̃|pnp̃n
||q|2 − |p|2|1−b||q|2 − |p̃|2|1−b

×(
n−1∏

j=1

〈pj − qj〉
−k〈p̃j − qj〉

−k)

∫
dτ〈τ + |p|2〉−γ〈τ + |p̃|2〉−γ

≤ C
∑

q

〈q〉2s|qn|
2
∑

p;|p|6=|q|

∑

p̃;|p̃|6=|q|

|vp| |vp̃|pnp̃n
||q|2 − |p|2|1−b||q|2 − |p̃|2|1−b

×(

n−1∏

j=1

〈pj − qj〉
−k〈p̃j − qj〉

−k)〈|p|2 − |p̃|2〉−γ

where we used the following estimate valid for γ > 1 (see e.g. [33, Lemma 7.34])

∫
dτ〈τ + τ1〉

−γ〈τ + τ2〉
−γ ≤ c〈τ1 − τ2〉

−γ .

Thus

I3 ≤ C
∑

q

〈q〉2sq2n
∑

p;|p|6=|q|

|vp|
2p2n

||q|2 − |p|2|2(1−b)
(

n−1∏

j=1

〈pj − qj〉
−k)

∑

p̃;|p̃|6=|q|

n−1∏

j=1

〈p̃j − qj〉
−k〈|p|2 − |p̃|2〉−γ .

Since γ > 1/2, it follows from Claim 3 that

∑

p̃

n−1∏

j=1

〈p̃j − qj〉
−k〈|p|2 − |p̃|〉−γ ≤

∑

p̃1,...,p̃n−1

n−1∏

j=1

〈p̃j − qj〉
−k
∑

p̃n

〈p̃2n + |p̃′|2 − |p|2〉−γ < const.
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Thus

I3 ≤ C
∑

q

〈q〉2sq2n
∑

p;|p|6=|q|

|vp|
2p2n

||q|2 − |p|2|2(1−b)

n−1∏

j=1

〈pj − qj〉
−k.

Using Claim 4 and the fact that s ∈ [−1, 0), we have that

I3 ≤ C
∑

p

|vp|
2|p|2

∑

q;|q|6=|p|

q2s+2
n

||q|2 − |p|2|2(1−b)

n−1∏

j=1

〈pj − qj〉
−k ≤

∑

p

|vp|
2|p|2s+4.

Step 3. Assume that s+ 2b < 1/2 with s ∈ [0, 1/2). Let uT , v0, u and η be as in Step 2. Then

||η(t)Γv0||Xs,b
≤ C||ηDs+1Γv0||X−1,b

≤ C
(
||η(t)Γ(Ds+1v0)||X−1,b

+ ||η(t)[Γ, Ds+1]v0||X−1,b

)
. (75)

According to Step 2, the first term in the r.h.s. of (75) is less than C||Ds+1v0||1 ≤ C||v0||s+2, for −1+ 2b <
1/2. The contribution due to F0 = {x ∈ ∂Ω; xn = 0} in ||η(t)[Γ, Ds+1]v0||

2
−1,b is estimated by

CF0
≤

∑

q

∫
dτ〈q〉−2〈τ + |q|2〉2b

∣∣∣∣∣∣
∑

p;|p|6=|q|

vp
|p|s+1 − |q|s+1

|q|2 − |p|2
(η̂(τ + |p|2)− η̂(τ + |q|2))IF0

∣∣∣∣∣∣

2

≤ C(I ′2 + I ′3)

where

I ′2 =
∑

q

∫
dτ〈q〉−2〈τ + |q|2〉2b


 ∑

p;|p|6=|q|

|vpη̂(τ + |q|2)|
|p|s + |q|s

|p|+ |q|
pnqn

n−1∏

j=1

〈pj − qj〉
−k




2

,

I ′3 =
∑

q

∫
dτ〈q〉−2〈τ + |q|2〉2b


 ∑

p;|p|6=|q|

|vpη̂(τ + |p|2)|
|p|s + |q|s

|p|+ |q|
pnqn

n−1∏

j=1

〈pj − qj〉
−k




2

.

We bound separately I ′2 and I ′3.
1. We have that

I ′2 ≤ C
( ∫

dσ〈σ〉2b|η̂(σ)|2
)∑

q

〈q〉−2|qn|
2

∣∣∣∣∣∣
∑

p;|p|6=|q|

|vp|
|p|s + |q|s

|p|+ |q|
pn

n−1∏

j=1

〈pj − qj〉
−k

∣∣∣∣∣∣

2

≤ C
∑

q

∣∣∣∣∣∣
∑

p

|vp|
|p|s + |q|s

|p|+ |q|
pn

n−1∏

j=1

〈pj − qj〉
−k

∣∣∣∣∣∣

2

≤ C
∑

p

|p|3+2s|vp|
2

≤ C||v0||
2
s+ 3

2

.

where we used (44)-(45).
2. Doing computations similar to those performed in Step 2, we obtain that

I ′3 ≤ C
∑

q

〈q〉−2q2n
∑

p;|p|6=|q|

|vp|
2p2n

|p|2s + |q|2s

(|p|+ |q|)2
∣∣|q|2 − |p|2

∣∣2b
n−1∏

j=1

〈pj − qj〉
−k

≤ C
∑

p

|vp|
2|p|2

∑

q;|q|6=|p|

(|p|+ |q|)2s+4b−2
n−1∏

j=1

〈pj − qj〉
−k

≤ C||v0||
2
1

where we used the fact that s+ 2b < 1/2. Since s+ 2 ≥ 1, we finally have that

CF0
≤ C||v0||

2
Hs+2

D
(Ω)
.
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This completes the proof of Proposition 3.10.
We can now complete the proof of Theorem 3.9. Let s, b, u0 and uT be as in the statement of the theorem.
Using Proposition 3.10 and proceeding as in the proof of Theorem 3.1, one can show that the map

Γ(v) =WD(t)u0 + i

∫ t

0

WD(t− τ)N(v)(τ) dτ + Λ(uT −WD(T )u0 − ω(v, T )) (76)

has a fixed-point Γ(v) = v in some closed ball BM ⊂ XT
s,b(Ω) provided that ||u0||Hs

D
(Ω) + ||uT ||Hs

D
(Ω) is

small enough. Such a trajectory v fulfills all the requirements of Theorem 3.9. In particular, v ∈ XT
s,b(Ω) ∩

C([0, T ];Hs
D(Ω)). The smoothness of the last term in (76) follows from Proposition 3.10. In (76), we used

the notation

ω(v, T ) = i

∫ T

0

WD(T − τ)N(v)(τ)dτ.

Note that
∫ t

0
WD(t− τ)N(v)(τ) dτ ∈ XT

s,b′+1(Ω) ⊂ C([0, T ];Hs
D(Ω)), by Lemma 3.3, (73), and the fact that

b′ > −1/2. In particular, ω(v, T ) ∈ Hs
D(Ω). The proof of Theorem 3.9 is achieved.

Remark 3.11 (a) Using ideas from [8], it is likely that Theorem 3.9 may be applied when n ≥ 2, Γ0 is a
neighborhood of a vertex, and N(u) = λ|u|αu with α > 0 small enough.
(b) The condition s+2b < 1/2 in Proposition 3.10 is actually sharp. Indeed, let us take n = 1 and pick any
p ∈ N∗ and any η ∈ S(R) with |η̂(τ)| > 1 for −1 ≤ τ ≤ 1. Set v0(x) = sin(px) for x ∈ Ω = (0, π). With
Γ0 = {0}, we have that IF0

= pq with

η̂uq(τ) =





−
2i

π
t̂η(t)(τ + p2)p2 if q = p;

−
2

π

η̂(τ + p2)− η̂(τ + q2)

q2 − p2
pq if q 6= p.

Therefore

π2

4
||ηu||2Xs,b(Ω) =

∫
dτ
∑

q;q 6=p

〈q〉2s〈τ + q2〉2b
∣∣∣∣
η̂(τ + p2)− η̂(τ + q2)

q2 − p2

∣∣∣∣
2

p2q2

+(

∫
dτ〈τ + p2〉2b|t̂η(t)(τ + p2)|2)〈p〉2sp4

=

∫
dτ
∑

q;q 6=p

〈q〉2s〈τ + q2〉2b
|η̂(τ + p2)|2

|q2 − p2|2
p2q2 + J(p)

where |J(p)| ≤ Cp2s+4 ≤ C||v0||
2
s+2, according to the estimations of I1, I2, and the fact that

∫
dτ〈τ + q2〉2b|η̂(τ + p2)η̂(τ + q2)| dτ ≤ const <∞.

Since for q 6= p ∫
dτ〈τ + q2〉2b|η̂(τ + p2)|2 ≥

∫ −p2+1

−p2−1

dτ〈τ + q2〉2b ≥ C|q2 − p2|2b

we have that for s+ 2b ≥ 1/2,

∫
dτ
∑

q;q 6=p

〈q〉2s〈τ + q2〉2b
|η̂(τ + p2)|2

|q2 − p2|2
p2q2 ≥ Cp2

∑

q;q>p

|q2 − p2|2b−2〈q〉2sq2 = ∞,

therefore ηu 6∈ Xs,b(Ω). The condition s + 2b < 1/2 seems related to the fact that any smooth function on
Tn with nonnull boundary values belongs to the space Hs

D(Ω) for s < 1/2 only. Better results will probably
require to consider other Bourgain spaces than Xs,b(Ω).
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Corollary 3.12 Let n = 1, Ω = (0, π), Γ0 = {0}, and let the nonlinear term N(u) satisfy

|N(u)−N(v)| ≤ C(|u|α + |v|α)|u − v|, ∀u, v ∈ R.

for some α ∈ [0, 5/4). Let p = 4
3 (α + 1) < 3. Then there exists a number δ > 0 such that for any

u0, uT ∈ L2(Ω) satisfying
||u0||L2(Ω) < δ, ||uT ||L2(Ω) < δ

one may find a function h ∈ H
1
2 (0, T ) and a solution u ∈ C([0, T ];L2(Ω)) ∩ Lp(0, T ;Lp(Ω)) of (69)-(70)

such that u(0) = u0 and u(T ) = uT .

For instance, N1(u) = λ|u|αu with 0 ≤ α < 5/4, and N2(u) of the form (61) with α = 1 are concerned.
Proof. From the classical Strichartz estimate (see e.g. [50])

||u||L4(R;L4(T)) ≤ C||u||X
0, 3

8

we obtain at once the following estimates involving the spaces XT
s,b(Ω)

||u||L4(0,T ;L4(Ω)) ≤ C||u||XT

0, 3
8

(Ω)

||u||XT

0,− 3
8

(Ω) ≤ C||u||
L

4
3 (0,T ;L

4
3 (Ω))

.

Notice that for v ∈ Lp(0, T ;Lp(Ω)), we have that

∫ t

0

WD(t− τ)N(v)(τ)dτ ∈ XT
0, 5

8

(Ω) ⊂ C([0, T ];L2(Ω)) ∩ Lp(0, T ;Lp(Ω)).

Indeed,

||

∫ t

0

WD(t− τ)N(v)(τ)dτ ||XT

0, 5
8

(Ω) ≤ C||N(v)||XT

0,− 3
8

(Ω)

≤ C||N(v)||
L

4
3 (0,T ;L

4
3 (Ω))

≤ C||v||α+1
Lp(0,T ;Lp(Ω)) <∞·

In particular, ω(v, T ) = i
∫ T

0 WD(T − τ)N(v)(τ)dτ ∈ L2(Ω). On the other hand, by Proposition 3.10, Λ
maps continuously L2(Ω) into C([0, T ];L2(Ω)) ∩XT

0,b(Ω) for any b < 1/4. Interpolating between

X0, 3
8
⊂ L4(R;L4(T)) and X0,0 = L2(R;L2(T))

we obtain that

X0,b ⊂ Lp(R;Lp(T)) for b =
3

2
(
1

2
−

1

p
) <

1

4
·

Therefore
Λ(L2(Ω)) ⊂ C([0, T ];L2(Ω)) ∩ Lp(0, T ;Lp(Ω)).

It follows that the map

Γ(v) =WD(t)u0 + i

∫ t

0

WD(t− τ)N(v)(τ) dτ + Λ(uT −WD(T )u0 − ω(v, T ))

is well defined from Lp(0, T ;Lp(Ω)) into C([0, T ];L2(Ω)) ∩ Lp(0, T ;Lp(Ω)). Using the computations above,
one readily sees that Γ contracts in some ball BM ⊂ Lp(0, T ;Lp(Ω)), provided that ||u0||L2(Ω) + ||uT ||L2(Ω)

is small enough.

Corollary 3.13 Theorem 3.9 may be applied when n = 2, Ω = (0, π)2, g is a smooth Dirichlet controller,
N(u) = u2, s ∈ (− 3

8 ,−
1
3 ), b ∈ (38 ,

1
2 ) with s+ 2b < 1

2 , and b
′ > − 1

2 is sufficiently close to − 1
2 .

Corollary 3.13 is a direct consequence of Theorem 3.9 and of the following result, whose proof is postponed
in Appendix.
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Proposition 3.14 Let s ∈ (− 3
8 ,−

1
3 ) and b ∈ (38 ,

1
2 ). Then there exists b′ ∈ (− 1

2 ,−
5
12 ) and C > 0 such that

||v1v2||Xs,b′ (T
2) ≤ C||v1||Xs,b(T2)||v2||Xs,b(T2), ∀v1, v2 ∈ Xs,b(T

2), (77)

||u1u2||Xs,b′ (Ω) ≤ C||u1||Xs,b(Ω)||u2||Xs,b(Ω), ∀u1, u2 ∈ Xs,b(Ω). (78)

Notice that if we increase the value of s, the state space in which the controllability result holds has to
take into account the fact that the value (or the normal derivative) of the function vanishes on ∂Ω \ Γ0. To
state a result of this kind, we limit ourselves to the situation when Γ0 is a side, e.g.

Γ0 = {0} × (0, l2)× · · · × (0, ln).

Introduce the domain Ω̃ = (−1, l1) × (0, l2) · · · × (0, ln) and a function a ∈ C∞
0 (Ω̃ \ Ω), and consider the

internal control problem

iut +∆u+N(u) = ia(x)h(x, t), x ∈ Ω̃, t ∈ (0, T ). (79)

Taking the restriction to Ω × (0, T ) of solutions of (79), we obtain as a corollary of Theorem 3.1 that both
systems (69)-(70) and (69)-(71) are locally exactly controllable in some subspace of Hs(Ω) for any s > sα,n.

Corollary 3.15 For given α ≥ 1, n ≥ 2, λ ∈ R, s > sα,n and T > 0, there exists a constant δ > 0 such that
for any u0, u1 ∈ Hs(Ω) satisfying

‖ui‖Hs(Ω) ≤ δ, i = 0, 1

and

ui = ∆ui = · · · = ∆pui = 0 x ∈ ∂Ω \ Γ0, p ≤

[
2s− 1

4

]
, i = 0, 1

(resp.
∂ui
∂ν

=
∂∆ui
∂ν

= · · · =
∂∆pui
∂ν

= 0 x ∈ ∂Ω \ Γ0, p ≤

[
2s− 3

4

]
, i = 0, 1),

then one can choose a control input h such that system (69)-(70) (resp. system (69)-(71)) admits a solution
u ∈ C([0, T ];Hs(Ω)) with

u(x, 0) = u0(x), u(x, T ) = u1(x).

Remark 3.16 By using the same extension and restriction argument, one can derive a local controllability
result in the space Hs(Ω) when s > sα,n and for any given bounded smooth set Ω, provided that the control
is applied on the whole boundary (i.e. Γ0 = ∂Ω). A result of this kind for which the critical Sobolev exponent
s = sc = s2,2 = 0 is reached, is given in [47].

4 Stabilization

In this section we focus on the internal stabilization of the semilinear Schrödinger equation on the torus Tn

iut +∆u+N(u) = −ia2(x)u, x ∈ Tn (80)

where a is any smooth real function with a 6≡ 0.
We have the following local exponential stability result which does not require the Geometric Control

Condition.

Theorem 4.1 Let a ∈ C∞
0 (Tn), a 6≡ 0, and let s > sα,N . Then there exist some constants ν, C such that

every solution u of (80) issued from the initial state u0 ∈ Hs(Tn) satisfies

||u(t)||s ≤ Ce−νt||u0||s ∀t ≥ 0. (81)

Proof. We proceed as in [46]. The operator Aa = i∆ − a2 with domain D(Aa) = Hs+2(Tn) generates
a continuous group (Wa(t))t∈R of operators on Hs(Tn). The first step is to check that the semigroup
(Wa(t))t∈R+ is exponentially stable in Hs(Tn). This is done in the following
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Proposition 4.2 There exist positive constants C > 0 and ν > 0 such that

||Wa(t)u0||s ≤ Ce−νt||u0||s ∀t ≥ 0. (82)

Proof. When s = 0, the exponential stability of (Wa(t))t∈R+ is a direct consequence of Theorem 2.2,
according to [36]. To prove (82) when s = 2, we pick any u0 ∈ H2(Tn) and set v := ut. Then v solves the
system {

vt = i∆v − a2(x)v, x ∈ Tn,
v(x, 0) = v0(x) := i∆u0(x)− a2(x)u0(x).

(83)

By the property (82) established when s = 0, we have

||u(t)||0 ≤ Ce−νt||u0||0, ||v(t)||0 ≤ Ce−νt||v0||0.

Since i∆u = v + a2u, we conclude that

||u(t)||2 ≤ Ce−νt||u0||2 ∀t ≥ 0.

An easy induction yields (82) for any s ∈ 2N. The proposition then follows by a classical interpolation
argument.

Let us now turn our attention to the stability properties of the nonlinear system

ut = Aau+ iN(u), u(., 0) = u0

that we shall write in its integral form

u(t) =Wa(t)u0 + i

∫ t

0

Wa(t− τ)N(u)(τ)dτ. (84)

At this point, we need to establish linear estimates when Wa is substituted to W .

Lemma 4.3 Let T > 0, s ≥ 0 and 0 ≤ b ≤ 1 be given. Then there exists a constant C > 0 depending only
on T , s and b such that

‖Wa(t)φ‖XT
s,b

≤ C‖φ‖s

for any φ ∈ Hs(Tn)

Proof. An application of Duhamel formula gives

Wa(t)φ =W (t)φ −

∫ t

0

W (t− τ)(a2Wa(τ)φ)dτ. (85)

It follows that

||Wa(t)φ||XT
s,b

≤ ||W (t)φ||XT
s,b

+ ||

∫ t

0

W (t− τ)(a2Wa(τ)φ)dτ ||XT
s,b

≤ C||φ||s + C||a2Wa(t)φ||XT
s,b−1

≤ C||φ||s + C||Wa(t)φ||L2(0,T ;Hs(Tn)) (as b− 1 ≤ 0)

≤ C||φ||s,

as desired.

Lemma 4.4 Let T > 0, s ≥ 0, and b ∈ (12 , 1) be given. Then there exists a constant C > 0 depending only
on T , s and b such that ∥∥∥∥

∫ t

0

Wa(t− τ)f(τ)dτ

∥∥∥∥
XT

s,b

≤ C‖f‖XT
s,b−1

for any f ∈ XT
s,b−1.
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Proof. It follows from (85) that

∫ t

0

Wa(t− τ)f(τ)dτ =

∫ t

0

W (t− τ)f(τ)dτ −

∫ t

0

W (t− τ)a2
(∫ τ

0

Wa(τ − s)f(s)ds

)
dτ,

hence

||

∫ t

0

Wa(t− τ)f(τ)dτ ||XT
s,b

≤ C||f ||XT
s,b−1

+ C||a2
∫ t

0

Wa(t− s)f(s)ds||XT
s,b−1

≤ C||f ||XT
s,b−1

+ C||

∫ t

0

Wa(t− s)f(s)ds||XT
s,0

≤ C||f ||XT
s,b−1

+ CTα||

∫ t

0

Wa(t− s)f(s) ds||XT
s,b

for some constant α > 0, by virtue of Lemmas 3.2 and [50, Lemma 2.11]. The result follows at once if T is
small enough, say T < T0. For T ≥ T0, the result follows from Lemma 4.3 and an easy induction.

Let us now proceed to the proof of the exponential stability of the system (80). Pick a number s ≥ 0.
According to Proposition 4.2, there exist positive constants C, ν such that

||Wa(t)u0||s ≤ Ce−νt||u0||s ∀t ≥ 0.

Pick a time T > 0 such that

Ce−νT <
1

4

and fix a number b ∈ (12 , 1). We seek a solution u of the integral equation (84) in the form of a fixed point
of the map

Γ(u) =Wa(t)u0 + i

∫ t

0

Wa(t− τ)N(u)(τ)dτ

in some ball BM of the space XT
s,b. This will be done provided that ||u0||s ≤ δ where δ is a small number

to be determined. Furthermore, to ensure the exponential stability, δ and M will be chosen in such a way
that ||u(T )||s ≤ ||u0||s/2. Pick for the moment any δ > 0 and M > 0, and let u0 ∈ Hs(Tn) be such that
||u0||s ≤ δ. By computations similar to those displayed in the proof of Theorem 3.1 with Wa(t) substituted
to W (t), we arrive to

||Γ(u)||XT
s,b

≤ c||u0||s + cMα+1 ∀u ∈ BM

and
||Γ(u)− Γ(v)||XT

s,b
≤ cMα||u− v||XT

s,b
∀u, v ∈ BM

for some constant c > 0 independent of δ, M , and u0. On the other hand, using the estimate of ||ω(T, u)||s
in the proof of Theorem 3.1, we obtain

||Γ(u)(T )||s ≤ ||Wa(T )u0||s + ||

∫ T

0

Wa(T − t)N(u)(t)dt||s

≤
1

4
||u0||s + cMα+1.

Pick δ = 4cMα+1 where M > 0 is chosen so that

(4c2 + c)Mα+1 ≤M and cMα ≤
1

2
.

Then we have

||Γ(u)||XT
s,b

≤ M ∀u ∈ BM

||Γ(u)− Γ(v)||XT
s,b

≤
1

2
||u− v||XT

s,b
∀u, v ∈ BM .

Thus the map Γ, which is a contraction in BM , has a fixed point u ∈ BM . By construction, u fulfills

||u(T )||s = ||Γ(u)(T )||s ≤
δ

2
.
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Assume now that 0 < ||u0||s < δ. Changing δ into δ′ := ||u0||s and M into M ′ := (δ′/δ)
1

α+1M , we
obtain that ||u(T )||s ≤ ||u0||s/2, and an obvious induction yields ||u(kT )||s ≤ 2−k||u0||s for any k ≥ 0. As

XT
s,b ⊂ C([0, T ];Hs(Tn)) for b > 1/2, and ||u||XT

s,b
≤ M = (δ/(4c))

1
α+1 , we infer by the semigroup property

that there exist some constants C′ > 0, ν′ > 0 such that

||u(t)||s ≤ C′e−ν′t||u0||s.

The proof is complete.

5 Appendix

5.1 Proof of Proposition 3.4.

We proceed as in [9, pp. 115-118]. We first introduce some notations. Let |x|∞ := sup1≤i≤n |xi| for
x = (xi)1≤i≤n ∈ Rn. We introduce a dyadic partition of Rn

Zn = ∪j≥0Dj,

where D0 = {0}, and Dj = {k ∈ Zn; 2j−1 ≤ |k|∞ < 2j} for j ≥ 1. For any Hölder exponent p, q ∈ [1,+∞],
we write Lp

tL
q
x for Lp(Rt, L

q(Tn
x)). The (discrete) cube of center x0 ∈ Rn and sidelength 2R > 0 is

Q(x0, R) = {k ∈ Zn; |k − x0|∞ ≤ R}.

The Strichartz estimate ([8],[16])

||u||L4
tL

4
x
≤ c||u||Xs,b

, s >
n

2
−
n+ 2

4
, b >

1

2
,

when combined with the standard estimates

||u||L∞

t L2
x

≤ c||u||X0,b
, b >

1

2
||u||L2

tL
2
x

= ||u||X0,0

and Sobolev embedding theorem, gives by interpolation the following result.

Lemma 5.1 ([16, cor. 2.2]) Let n ≥ 2.
(i) For all p, q, s satisfying

0 <
1

p
≤

1

4
, 0 <

1

q
≤

1

2
−

1

p
, s >

n

2
−

2

p
−
n

q
, (86)

there exists a number b ∈ (0, 12 ) such that for all u ∈ Xs,b, it holds

||u||Lp
tL

q
x
≤ c||u||Xs,b

(87)

(ii) For all p, q, s, b satisfying

0 ≤
1

p
≤

1

q
≤

1

2
≤

1

p
+

1

q
≤ 1, s > (n− 2)(

1

2
−

1

q
), and b > 1−

1

p
−

1

q
(88)

then for all u ∈ Xs,b, (87) holds.

Let Fx denote the Fourier transform in x, and let 1Q denote the characteristic function of the cube Q. The
following result, inspired by an observation made in [8], indicates that for a function spatially supported in
a cube, only the sidelength of the cube (not its center) comes into play in (87).

Lemma 5.2 ([16, Lemma 2.4]) Assume that for p, q, s, b the estimate (87) is valid. Then there exists a
constant c > 0 such that for any cube Q of center x0 ∈ Rn and sidelength R > 0 it holds

||(F−1
x 1QFx)u||Lp

tL
q
x
≤ cRs||u||X0,b

· (89)
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It follows that if (86) (or (88)) holds and if u = u(x, t) is a function decomposed as

u(x, t) =
∑

|k−x0|∞≤R

∫

R

û(k, τ)ei(k·x+τt)dτ

then

||u||Lp
tL

q
x
≤ cRs||u||X0,b

= cRs


 ∑

|k−x0|∞≤R

∫

R

〈τ + |k|2〉2b|û(k, τ)|2dτ




1
2

. (90)

Let the functions u1, ..., uα+1 ∈ Xs,b be given, where s and b denote some positive numbers, and let us set

u = ũ1ũ2 · · · ũα+1

where ũi is ui or ui. To estimate ||u||Xs,−b
we proceed by duality, estimating the integral

∫
R

∫
Tn uvdxdt for

any v ∈ X−s,b with ||v||X−s,b
≤ 1. By Plancherel theorem

∫

R

∫

Tn

uv dxdt =
∑

k∈Zn

∫

R

û(k, τ)v̂(k, τ)dτ

=
∑

k1···kα+1

∫

τ1···τα+1

〈k〉s
( α+1∏

i=1

ˆ̃ui(ki, τi)
)
〈k〉−sv̂(k, τ)

where k = k1 + · · · + kα+1 and τ = τ1 + · · ·+ τα+1. Notice that û(ki, τi) = ûi(−ki,−τi). Writing ki ∈ Dji ,
ji ≥ 0, we obtain

|

∫

R

∫

Tn

uv dxdt| ≤
∑

j1···jα+1

∑

ki∈Dji

∫

τ1···τα+1

〈k〉s(
α+1∏

i=1

|ûi(ki, τi)|)〈k〉
−s|v̂(k, τ)|,

where now k = ±k1 · · · ± kα+1, τ = ±τ1 · · · ± τα+1 (+ki if ũi = ui, −ki if ũi = ui, and the same for ±τi).
We shall focus on the sum Σ =

∑
j1≥j2≥···≥jα+1

, the other contributions leading to similar bounds. As

|ki|∞ ≤ 2|k1|∞ for i ≥ 2, we have that

Σ ≤ c
∑

j1≥···≥jα+1

2j1s
∑

ki∈Dji

∫

τ1···τα+1

(

α+1∏

i=1

|ûi(ki, τi)|)〈k〉
−s|v̂(k, τ)|.

Pick γ ∈ N∗ with
α ≤ 2γ−2

and split Σ into Σ1 +Σ2 where Σ1 corresponds to the j1, ..., jα+1 for which

j1 ≥ j2 + γ + 2 ≥ j2 ≥ j3 ≥ · · · ≥ jα+1.

Consider a “partition” of Dj1 into a collection of cubes Ql of sidelength 2j2

Dj1 = ∪lQl.

Note that each k ∈ Dj1 belongs to at most 2n cubes Ql. For any l, we denote by Q̃l the cube of sidelength
2j2+γ with the same center as Ql if k = k1 ± k2 · · · , and with center the opposite of that of Ql if k =
−k1 ± k2 · · · . We claim that k ∈ Q̃l when k1 ∈ Ql and ki ∈ Dji for i ≥ 2. Indeed

|k2|∞ + · · ·+ |kα+1|∞ ≤ α2j2 ≤ 2j2+γ−2, (91)

hence if Ql = Q(x0, 2
j2−1)

| ± x0 − k|∞ ≤ | ± x0 −±k1|∞ + |k2|∞ + · · ·+ |kα+1|∞ ≤ 2j2−1 + 2j2+γ−2 ≤ 2j2+γ−1.
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Notice also that Q̃l ⊂ Dj1−1 ∪ Dj1 ∪ Dj1+1 since the sidelength of Q̃l is at most 2j1−2 and Ql ⊂ Dj1 . It
follows that

Σ1 ≤ c
∑

j1≥j2+γ+2

j2≥j3≥···≥jα+1

2j1s
∑

l

∑

k1∈Ql

∑

k2∈Dj2
,

kα+1∈Djα+1

∫

τ1···τα+1

(

α+1∏

i=1

|ûi(ki, τi)|)1Q̃l
(k)〈k〉−s|v̂(k, τ)|.

Let us introduce the functions

fl(x, t) =
∑

k∈Ql

∫

R

|û1(k, τ)|e
i(k·x+τt)dτ

gl(x, t) =
∑

k∈Q̃l

∫

R

〈k〉−s|v̂(k, τ)|ei(k·x+τt)dτ

and

hi(x, t) =
∑

k∈Dji

∫

R

|ûi(k, τ)|e
i(k·x+τt)dτ for i = 2, ..., α+ 1.

By Plancherel theorem

Σ1 ≤ c
∑

j1≥j2+γ+2

j2≥j3≥···≥jα+1

2j1s
∑

l

∫

R

∫

Tn

|flh2 · · ·hα+1gl| dxdt.

Pick Hölder exponents p1, q1, p2, q2 ∈ [1,∞) such that

3

p1
+
α− 1

p2
= 1 (92)

3

q1
+
α− 1

q2
= 1 (93)

We have that

∫

R

∫

Tn

|flh2 · · ·hα+1gl|dxdt ≤ ||fl||Lp1
t L

q1
x
||gl||Lp1

t L
q1
x
||h2||Lp1

t L
q1
x

α+1∏

i=3

||hi||Lp2
t L

q2
x
.

Assume that for some exponents s1, b1, s2, b2 the following estimates hold

||u||Lp1
t L

q1
x

≤ c||u||Xs1,b1
, (94)

||u||Lp2
t L

q2
x

≤ c||u||Xs2,b2
. (95)

Then, by (90) and the fact that the sidelength of Ql (resp. Q̃l) is 2
j2 (resp. 2j2+γ), we have

||fl||Lp1
t L

q1
x

≤ c2j2s1
( ∑

k∈Ql

∫

τ

〈τ + |k|2〉2b1 |û1|
2
) 1

2 (96)

||gl||Lp1
t L

q1
x

≤ c2j2s1
( ∑

k∈Q̃l

∫

τ

〈τ + |k|2〉2b1〈k〉−2s|v̂|2
) 1

2 (97)

||h2||Lp1
t L

q1
x

≤ c2j2s1
( ∑

k∈Dj2

∫

τ

〈τ + |k|2〉2b1 |û2|
2
) 1

2 (98)

and for i = 3, ..., α+ 1

||hi||Lp2
t L

q2
x

≤ c2jis2
( ∑

k∈Dji

∫

τ

〈τ + |k|2〉2b2 |ûi|
2
) 1

2

≤ c
( ∑

k∈Dji

∫

τ

〈τ + |k|2〉2b2〈k〉2s2 |ûi|
2
) 1

2 . (99)



34

Using Cauchy-Schwarz in
∑

l, we obtain

Σ1 ≤ c
∑

j1≥j2+γ+2

j2≥j3≥···≥jα+1

2j1s+3j2s1
(∑

l

∑

k∈Ql

∫

τ

〈τ + |k|2〉2b1 |û1|
2
) 1

2
(∑

l

∑

k∈Q̃l

∫

τ

〈τ + |k|2〉2b1〈k〉−2s|v̂|2
) 1

2

( ∑

k∈Dj2

∫

τ

〈τ + |k|2〉2b1 |û2|
2
) 1

2

α+1∏

i=3

( ∑

k∈Dji

∫

τ

〈τ + |k|2〉2b2〈k〉2s2 |ûi|
2
) 1

2

≤ c
∑

j1≥j2+γ+2

j2≥j3≥···≥jα+1

( ∑

k∈Dj1

∫

τ

〈τ + |k|2〉2b1〈k〉2s|û1|
2
) 1

2
( ∑

k∈Dj1−1∪Dj1
∪Dj1+1

∫

τ

〈τ + |k|2〉2b1〈k〉−2s|v̂|2
) 1

2

( ∑

k∈Dj2

∫

τ

〈τ + |k|2〉2b1 〈k〉6s1 |û2|
2
) 1

2

α+1∏

i=3

( ∑

k∈Dji

∫

τ

〈τ + |k|2〉2b2〈k〉2s2 |ûi|
2
) 1

2 .

We used the fact that a point k ∈ Dj1−1 ∪ Dj1 ∪ Dj1+1 belongs to (at most) a finite number of cubes Q̃l,

bounded by (2γ+2+1)n. A sum
∑

ji≥0

(∑
k∈Dji

∫
τ
〈τ+|k|2〉2b2 〈k〉2s2 |ûi|

2
) 1

2 can be estimated by c||ui||Xs2+ε,b2

for any ε > 0 thanks to Cauchy-Schwarz. Summing successively in kα+1, ..., k1, we arrive at

Σ1 ≤ c||u1||Xs,b1
||v||X−s,b1

||u2||X3s1+ε,b1

α+1∏

i=3

||ui||Xs2+ε,b2
.

The same bound for Σ2 can be obtained by a more simple analysis. Indeed, as j1 ≤ j2 + γ + 1 in the sum
over j1, ..., jα+1, we obtain

Σ2 ≤ c
∑

j1≤j2+γ+1

j2≥j3≥···≥jα+1

2j1s
∫

R

∫

Tn

|fh2 · · ·hα+1g|dxdt,

where

f(x, t) =
∑

k∈Dj1

∫

R

|û1(k, τ)|e
i(k·x+τt)dτ

g(x, t) =
∑

|k|≤(2γ+1+α)2j2

∫

R

〈k〉−s|v̂(k, τ)|ei(k·x+τt)dτ

and h2, ..., hα+1 as above. Since 2j1s1 ≤ c2j2s1 , we still have

||f ||Lp1
t L

q1
x

≤ c2j2s1
( ∑

k∈Dj1

∫

τ

〈τ + |k|2〉2b1 |û1|
2
) 1

2

||g||Lp1
t L

q1
x

≤ c2j2s1
( ∑

k∈Zn

∫

τ

〈τ + |k|2〉2b1〈k〉−2s|v̂|2
) 1

2

Next, Σ2 is estimated as Σ1 (see above). At this stage, we have proved that

Σ ≤ c||u1||Xs,b1
||v||X−s,b1

||u2||X3s1+ε,b1

α+1∏

i=3

||ui||Xs2+ε,b2 (100)

where ε > 0 is arbitrary small, the exponents s1, b1, s2, b2 are taken so that (94)-(95) are satisfied, with the
Hölder exponents p1, q1, p2, q2 satisfying (92)-(93). The proof will be complete if, in addition, we have

s ≥ sup{3s1 + ε, s2 + ε}, b1 <
1

2
, b2 <

1

2
.
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We distinguish three cases: (i) α ≥ 3; (ii) α = 2; (iii) α = 1.
(i) α ≥ 3
We aim to reach any value s > sc. To find the sets of exponents (p1, q1, s1, b1), (p2, q2, s2, b2) satisfying (86),
(92) and (93), and leading to the “smallest” value of s, we are let to minimize the functional sup{3σ1, σ2},
where

σ1 =
n

2
− (

2

p1
+
n

q1
) (101)

σ2 =
n

2
− (

2

p2
+
n

q2
) (102)

under the constraints

4 ≤ p1 <∞ (103)

0 <
1

q1
≤

1

2
−

1

p1
(104)

4 ≤ p2 <∞ (105)

0 <
1

q2
≤

1

2
−

1

p2
(106)

3

p1
+
α− 1

p2
= 1 (107)

3

q1
+
α− 1

q2
= 1. (108)

At this point, it is convenient to introduce the numbers r1, r2 with

1

r1
=

2

p1
+
n

q1
(109)

1

r2
=

2

p2
+
n

q2
· (110)

Note that, by (107)-(108),
3

r1
+
α− 1

r2
= n+ 2. (111)

Therefore, 3σ1 = n
2 − 2 + α−1

r2
(resp. σ2 = n

2 − 1
r2
) is a nonincreasing function (resp. a nondecreasing

function) of r2. Thus the least value of sup{3σ1, σ2} is achieved when 3σ1 = σ2, which yields

r2 =
α

2
, r1 = 3(n+

2

α
)−1, 3σ1 = σ2 =

n

2
−

2

α
· (112)

It remains to find p1, q1, p2, q2 satisfying (103)-(110). Note first that (108) is satisfied whenever (107) is, by
(111). Taking p1 as variable, we infer from (107), (109) and (110) that

1

p2
=

1

α− 1
(1 −

3

p1
),

1

q1
=

1

3
(1 +

2

nα
)−

2

np1
,

1

q2
=

2

n(α− 1)
(
3

p1
−

1

α
).

The constraints (105), (104) and (106) are found to be respectively equivalent to

p1 ≤ 3(1−
α− 1

4
)−1(for α ≤ 4), p1 ≥ sup

{
6(n+

2

α
)−1, 6(1−

2

n
)(1−

4

nα
)−1
}
, p1 < 3α. (113)

The value p1 = 6 fulfills all the requirements in (113). Let now s > n
2 − 2

α be given. Choose ε > 0 such
that 4ε < s− (n2 − 2

α ), and pick s1 ∈ (σ1, σ1 + ε), and s2 ∈ (σ2, σ2 + ε). Then (94) and (95) hold for some
numbers b1 <

1
2 , b2 <

1
2 , according to Lemma 5.1. Set finally b = sup{b1, b2}. Then we have

Σ ≤ c
( α+1∏

i=1

||ui||Xs,b

)
||v||X−s,b

which gives (64).
(ii) α = 2
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Observe first that the approach followed in (i) does not work for n > 2. Indeed, the constraints (103)-(112)
impose p1 = p2 = q1 = q2 = 4, and the equation 3σ1 = σ2 is then satisfied only for n = 2. Assume n ≥ 3.
We now search a couple (p1, q1) satisfying

0 <
1

p1
≤

1

q1
≤

1

2
≤

1

p1
+

1

q1
≤ 1, s1 > (n− 2)(

1

2
−

1

q1
), b1 > 1−

1

p1
−

1

q1
, (114)

while (p2, q2) still satisfies

0 <
1

p2
≤

1

4
, 0 ≤

1

q2
≤

1

2
−

1

p2
, s2 >

n

2
−

2

p2
−
n

q2
· (115)

The Hölder exponents (p1, q1) and (p2, q2) have to satisfy the relations

3

p1
+

1

p2
= 1, (116)

3

q1
+

1

q2
= 1. (117)

We still minimize the functional sup{3σ1, σ2}, where

σ1 = (n− 2)(
1

2
−

1

q1
), σ2 =

n

2
−

2

p2
−
n

q2
=
n

2
−

2

p2
− n(1−

3

q1
)

by solving in q1 the equation 3σ1 = σ2. Taking p2 = 4 to produce the least value of σ2, we find as solution
q1 = 3(1 + 1

4n−5 ) ∈ (3, 4), which yields p1 = 4 and q2 = 4(n− 1) by (116)-(117), and

3σ1 = σ2 =
n

2
−

3

4
−

1

4(n− 1)
·

The constraints on p1, q1, p2, q2 in (114)-(115) are clearly fulfilled, for n > 2. Pick now any s > n
2 −

3
4−

1
4(n−1)

and ε > 0 such that 4ε < s − (n2 − 3
4 − 1

4(n−1) ). We next pick s1 ∈ (σ1, σ1 + ε), s2 ∈ (σ2, σ2 + ε),

b1 ∈ (1 − 1
p1

− 1
q1
, 12 ), and b2 <

1
2 so that (87) holds. Then (64) follows with b = sup{b1, b2}.

(iii) α = 1
In this case, we have with p1 = q1 = 3

Σ ≤ c||u1||Xs,b1
||u2||X3s1+ε,b1

||v||X−s,b1

provided that (114) is satisfied, i.e.

s1 > σ1 =
n− 2

6
, b1 >

1

3
·

Therefore, if s > n
2 − 1, taking ε > 0 such that 4ε < s− (n2 − 1), s1 ∈ (σ1, σ1 + ε), and b = b1 ∈ (13 ,

1
2 ), we

conclude that
Σ ≤ c||u1||Xs,b

||u2||Xs,b
||v||X−s,b

and (64) follows.

5.2 Proof of Proposition 3.14.

We begin with the proof of (77) by following closely [17]. Note, however, that the main concern here is
to have the condition s + 2b < 1/2 fulfilled. Let s, b be as in the statement of Proposition 3.14, and let
v1, v2 ∈ Xs,b be decomposed as

vi(x, t) =

∫

R

∑

k∈Z2

Fvi(k, τ)e
i(k·x+τt)dτ i = 1, 2.

(Here, we use the symbol F instead of ·̂ to denote Fourier transform in space and time.) Let

fi(k, τ) = 〈k〉s〈τ − |k|2〉bF vi(k, τ), i = 1, 2.



37

Then

||v1v2||Xs,b′
= ||〈k〉s〈τ + |k|2〉b

′

∫

τ1+τ2=τ

∑

k1+k2=k

2∏

i=1

〈ki〉
−s〈τi − |ki|

2〉−bfi||L2
k,τ

(118)

where
∫
τ1+τ2=τ

∑
k1+k2=k stands for

∫
R
dτ1
∑

k1∈Z2 with the relations τ1 + τ2 = τ and k1 + k2 = k satisfied.

Let A0 (resp. Ai, i = 1, 2) denote the region where the largest number among 〈τ + |k|2〉, 〈τ1 − |k1|
2〉 and

〈τ2 − |k2|
2〉, is 〈τ + |k|2〉 (resp. 〈τi − |ki|

2〉, i = 1, 2). We infer from the relation

τ + |k|2 −

2∑

i=1

(τi − |ki|
2) = |k|2 +

2∑

i=1

|ki|
2

that

〈k〉2 +

2∑

i=1

〈ki〉
2 ≤ C

(
〈τ + |k|2〉+

2∑

i=1

〈τi − |ki|
2〉

)
(119)

Let us begin with the regionA0. (119) gives, with 0 < ε < inf{ 1
2 (

1
2−|s|), 2(b−|s|)} and−b′ := 1

2 (
1
2−s)+ε <

1
2

〈k〉
1
2
+s

2∏

i=1

〈ki〉
−s+ε ≤ C〈τ + |k|2〉−b′ .

The contribution in (118) due to A0 is therefore bounded by

C||〈k〉−
1
2

∫

τ1+τ2=τ

∑

k1+k2=k

〈ki〉
−ε〈τi − |ki|

2〉−b|fi|||L2
k,τ

= C||〈k〉−
1
2

∫

τ1+τ2=τ

∑

k1+k2=k

〈ki〉
s−ε|F vi|||L2

k,τ

= C||

2∏

i=1

Js−εF−1|F vi|||
L2

tH
−

1
2

x

≤ C||

2∏

i=1

Js−εF−1|F vi|||L2
tL

q
x
, q >

4

3

≤ C

2∏

i=1

||Js−εF−1|F vi|||L4
tL

2q
x
, q >

4

3

≤ C

2∏

i=1

||Js−εF−1|F vi|||X−

ε,b

≤ C

2∏

i=1

||vi||Xs,b

where we used the fact that Lq(T2) ⊂ H− 1
2 (T2) for q > 4/3 (by dualizing the Sobolev embedding H

1
2 (T2) ⊂

Lp(T2) for p < 4), Hölder inequality, and (87)-(88). We also used the notation

||u||X−

s,b
= (

∫

R

∑

k∈Z2

〈k〉2s〈τ − |k|2〉2b|Fu(k, τ)|2dτ)
1
2 = ||u||Xs,b

borrowed from [16]. It remains to estimate the contributions in (118) due to the regions A1 and A2. By
symmetry, we can consider only the region A1. In A1, since −s+ ε

2 < b, we have that

〈k2〉
−s+ε〈k1〉

−s ≤ C〈τ1 − |k1|
2〉−s+ ε

2 ≤ C〈τ1 − |k1|
2〉b

and therefore the contribution in (118) is bounded by

||〈k〉s〈τ + |k|2〉b
′

∫

τ1+τ2=τ

∑

k1+k2=k

|f1|〈k2〉
−ε〈τ2 − |k2|

2〉−b|f2|||L2
k,τ

= C||F−1|f1|J
s−εF−1|F v2|||Xs,b′

.
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By (86)-(87) with −s > 1/3 and −b′ chosen sufficiently close to 1
2 , we have that

X−s,−b′ ⊂ L6(R;L6(T2)), hence L
6
5 (R;L

6
5 (T2)) ⊂ Xs,b′ .

It follows that

||F−1|f1|J
s−εF−1|F v2|||Xs,b′

≤ C||F−1|f1|J
s−εF−1|F v2|||

L
6
5
t L

6
5
x

≤ C||F−1|f1|||L2
tL

2
x
||Js−εF−1|F v2|||L3

tL
3
x

≤ C||v1||X−

s,b
||Js−εF−1|F v2|||X−

ε,b

≤ C||v1||Xs,b
||v2||Xs,b

where we used Hölder inequality and (87)-(88) with p = q = 3. This completes the proof of (77).
To derive (78) from (77), we consider two functions u1, u2 in X0,b(Ω) ⊂ Xs,b(Ω), and consider their odd

extensions v1, v2 to (−π, π)2; i.e., vi(ǫ1x1, ǫ2x2) = ǫ1ǫ2ui(x1, x2) for x = (x1, x2) ∈ Ω and ǫi = ±1. Note that
v1, v2 ∈ X0,b and that u1u2 = (v1v2)|Ω . For any function w =

∑
k∈N2

∫
R
Fw(k, τ)eiτt cos(k1x1) cos(k2x2)dτ ,

we set

||w||2Xs,b(Ω)N
=
∑

k∈N2

∫

R

〈τ + |k|2〉2b〈k〉2s|Fw(k, τ)|2dτ.

The Bourgain space Xs,b(Ω)N (with Neumann boundary conditions) is defined as the space of the w’s for
which the norm ||w||Xs,b(Ω)N is finite. Since the function v1v2 is even with respect to both x1 and x2, we
have that

||u1u2||Xs,b′ (Ω)N ∼ C||v1v2||Xs,b′
≤ C||v1||Xs,b

||v2||Xs,b
≤ C||u1||Xs,b(Ω)||u2||Xs,b(Ω)·

We claim that Xs,b(Ω) = Xs,b(Ω)N for |s| < 1/2 and |b| ≤ 1. Note first that this is true for |s| < 1
2 and

b = 0, since
Xs,0(Ω) = L2(R;Hs(Ω)) = Xs,0(Ω)N .

The claim is also true for |s| < 1/2 and b = 1, since

u ∈ Xs,1(Ω) ⇐⇒ u ∈ Xs,0(Ω) and iut +∆u ∈ Xs,0(Ω)

and since a similar criterion may be written for Xs,1(Ω)N . The claim is also true for |s| < 1/2 and 0 ≤ b ≤ 1
by interpolation, and for |s| < 1/2 and |b| ≤ 1 by duality. (78) follows for u1, u2 ∈ X0,b(Ω), and also for
u1, u2 ∈ Xs,b(Ω) by density. This completes the proof of Proposition 3.14.
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