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EULER CHARACTERISTIC AND LIPSCHITZ-KILLING

CURVATURES OF CLOSED SEMI-ALGEBRAIC SETS

NICOLAS DUTERTRE

Abstract. We prove a formula that relates the Euler-Poincaré charac-
teristic of a closed semi-algebraic set to its Lipchitz-Killing curvatures.

1. Introduction

In [Fu2], Fu developed integral geometry for compact subanalytic sets.
Using methods from geometric measure theory, he associated with every
compact subanalytic set X ⊂ R

n a sequence of curvature measures:

Λ0(X,−), . . . ,Λn(X,−),

called the Lipschitz-Killing measures and established several integral geom-
etry formulas. Among them, he proved the following Gauss-Bonnet formula:
Λ0(X,X) = χ(X). Another approach based on stratified Morse theory was
presented later by Broecker and Kuppe [BK].

In [Du], we extended the Gauss-Bonnet formula to closed semi-algebraic
sets. Let us describe it. Let X ⊂ R

n be a closed semi-algebraic set and
let (KR)R>0 be an exhaustive family of compact subsets of X. The limit
limR→+∞ Λ0(X,X∩KR) is finite and independent on the choice of the family.
We denote it by Λ0(X,X). In [Du] Corollary 5.7, we proved:

Λ0(X,X) = χ(X)−
1

2
χ(Lk∞(X)) −

1

2vol(Sn−1)

∫

Sn−1

χ(Lk∞(X ∩ v⊥))dv,

where Lk∞(X) = X ∩ Sn−1
R , R≫ 1, is the link at infinity of X.

In this paper, following a suggestion of Michel Coste, we continue the
study of the Lipschitz-Killing curvatures of closed semi-algebraic sets. Before
stating our main results, we need some notations:

• for k ∈ {0, . . . , n}, Gk
n is the Grassmann manifold of k-dimensional

linear subspaces in R
n and gkn is its volume,

• for k ∈ N, bk is the volume of the k-dimensional unit ball and sk is
the volume of the k-dimensional unit sphere,

• for R > 0, BR (resp. SR) will denote the ball (resp. the sphere)
centered at the origin of radius R in R

n. If R = 1, we will write Bn

(resp. Sn−1).
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Let X ⊂ R
n be a closed semi-algebraic set. We will prove (Theorem 3.7 and

Corollary 3.8):

lim
R→+∞

Λk(X,X ∩BR)

bkRk
= −

1

2gn−k−1
n

∫

Gn−k−1
n

χ(Lk∞(X ∩H))dH

+
1

2gn−k+1
n

∫

Gn−k+1
n

χ(Lk∞(X ∩ L))dL for k ∈ {1, . . . , n − 2},

and:

lim
R→+∞

Λn−1(X,X ∩BR)

bn−1Rn−1
=

1

2g2n

∫

G2
n

χ(Lk∞(X ∩H))dH,

lim
R→+∞

Λn(X,X ∩BR)

bnRn
=

1

2g1n

∫

G1
n

χ(Lk∞(X ∩H))dH.

One should mention that similar integral geometric formulas were obtained
for closed subanalytic germs in [CM].

Combining this with the above Gauss-Bonnet formula, we will obtain
(Theorem 3.9):

χ(X) = Λ0(X,X) +

n
∑

k=1

lim
R→+∞

Λk(X,X ∩BR)

bkRk
.

When X is smooth of dimension d, 0 < d < n, this last formula can be
reformulated in the following form (Theorem 4.3). If d is even, then we
have:

χ(X) =
1

sn−1

∫

X

Kd(x)dx+

d−2

2
∑

i=0

lim
R→+∞

1

sn−d+2i−1bd−2iRd−2i

∫

X∩BR

K2idx.

If d is odd, then we have:

χ(X) =

d−1

2
∑

i=0

lim
R→+∞

1

sn−d+2i−1bd−2iRd−2i

∫

X∩BR

K2idx.

Here the Ki’s are the classical Lipschitz-Killing-Weyl curvatures.
The paper is organized as follows: in Section 2, we give the definition of

the Lipschitz-Killing measures. In Section 3, we prove our main formulas,
first in the conic case and then in the general case. In Section 4, we focus
on the smooth case. We start recalling some Gauss-Bonnet formulas, due
to several authors, for complete manifolds. Then, applying the results of
Section 3, we generalize and improve these formulas in the case of smooth
closed semi-algebraic sets.

2. Lipschitz-Killing curvatures of semi-algebraic sets

The study of curvatures of subanalytic sets was started by Fu in [Fu2] .
Following ideas of Wintgen [Wi] and Zaehle [Za], he associated to a compact
subanalytic set X a current NC(X), called the normal cycle of X, which
enables him to define Lipschitz-Killing measures on X.
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Let X ⊂ R
n be a compact subanalytic set. There exists a subanalytic

function f : Rn → R such that f ≥ 0, X = f−1(0) and Xr := f−1([0, r]) is
a smooth compact manifold with boundary for r positive and small. Let Nr

be the outside pointing unit normal bundle of Xr:

Nr =

{

(x, v) | x ∈ f−1(r) and v =
∇f

‖∇f‖
(x)

}

.

It is a subset of the sphere bundle SRn = R
n × Sn−1. Let D∗(SRn) be

the algebra of differentials forms on SRn and D∗(SR
n) be the space of all

currents with finite mass. The flat semi-norm on Dn−1(SR
n) is defined by:

‖C‖♭ :=
{

C(φ) | φ ∈ Dn−1(SRn), ‖φ‖ = 1, ‖dφ‖ = 1
}

,

where ‖ − ‖ is the comass. The topology on Dn−1(SR
n) induced by ‖ − ‖♭

is called the flat topology. The outside pointing unit normal bundle Nr of
Xr defines a current Ñr in Dn−1(SR

n). By the compactness Theorem of
Federer-Fleming ([Fe], 4.2.17), there is a sequence of positive real numbers

(rk)k∈N tending to 0, such that the sequence of currents Ñrk tends to a

rectifiable current Ñ0 in Dn−1(SR
n). Furthermore Ñ0 is a cycle i.e ∂Ñ0 = 0

and Ñ0xκ = 0 where κ is the canonical 1-form on SRn. Then Fu proved a
uniqueness theorem which shows that the limit cycle is independent of the
different choices. We call it the normal cycle of X and denote it by NC(X).
With this cycle, we can define Lipschitz-Killing measures on Borel sets of
X. Let (x, v) ∈ SRn = R

n × Sn−1. Let B = (b1 = v, b2, . . . , bn) be a direct
orthonormal basis of TxR

n and let B∗ = (σ1, . . . , σn) be its dual basis. Then
(b2, . . . , bn) is an orthonormal basis of TvS

n−1, its dual basis being denoted
by ω2, . . . , ωn. For k ∈ {0, . . . , n− 1}, we set:

ψk(x, v) =
1

sn−k−1

∑

τ

(−1)|τ |ωτ(2) ∧ · · · ∧ ωτ(n−k) ∧ στ(n−k−1) ∧ · · · ∧ στ(n),

where the summation runs over all permutations of {2, . . . , n}. Let π :
SRn → Sn−1 be the canonical projection on the unit sphere. For every
Borel set U of X and for k ∈ {0, . . . , n− 1}, let Λk(X,U) be defined by:

Λk(X,U) = NC(X)xπ−1(U)(ψk).

For k = n, we set Λn(X,U) = Ln(U), where Ln is the n-dimensional
Lebesgue measure in R

n. The measures Λk(X,−) are called the Lipschitz-
Killing measures of X. The numbers Λk(X,X) are the Lipschitz-Killing
curvatures of X. Using the Lipschitz-Killing curvatures, Fu established a
Gauss-Bonnet formula and a kinematic formula for compact subanalytic sets
(see [Fu2], Theorem 1.8 and Corollary 2.2.2).

In [BK] (see also [BB1] and [BB2]), the authors give a geometric definition
of the Lipschitz-Killing measures of closed semi-algebraic sets using stratified
Morse theory. Let X ⊂ R

n be a closed semi-algebraic set equipped with a
semi-algebraic Whitney stratification {Vα}α∈Λ.
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Let us fix a stratum V of X of dimension d with d < n. For x ∈ V ,
we denote by Sx the unit sphere of (TxV )⊥. For k ∈ {0, . . . , d}, let λVk be
defined on V by:

λVk (x) =
1

sn−k−1

∫

Sx

α(x, v)σd−k(IIx,v)dv,

where IIx,v is the second fundamental form of V in the direction of v and
σd−k is its (d − k)-th symmetric function. The index α(x, v) is the normal
Morse index at x of a function f : Rn → R such that f|X has a Morse critical
point at x and ∇f(x) = −v . This index is defined for almost all v ∈ Sx (see
[GMP, I.1.8] or [BK, Lemma 3.5]). For k ∈ {d+1, . . . , n}, we set λVk (x) = 0.

If V has dimension n then for all x ∈ V , we put λV0 (x) = . . . = λVn−1(x) =

0 and λVn (x) = 1. If V has dimension 0 then we set:

λV0 (x) =
1

sn−1

∫

Sn−1

α(x, v)dv,

and λVk (x) = 0 if k > 0.
For every Borel set U ⊂ X and for every k ∈ {0, . . . , n}, we define

Λ′
k(X,U) by:

Λ′
k(X,U) =

∑

α∈Λ

∫

Vα∩U
λVα

k (x)dx.

Of course, the measures Λ′
k(X,−) coincide with the measures Λk(X,−) de-

fined by Fu, as explained in [BB2]. From now on, we will keep the unique
notation Λk(X,−) for the Lipschitz-Killing curvatures.

3. Gauss-Bonnet formulas for closed semi-algebraic sets

In this section, we prove several Gauss-Bonnet type formulas for the
Lipschitz-Killing curvatures of a closed semi-algebraic set.

Let X ⊂ R
n be a closed semi-algebraic set. In [Du] Theorem 5.6 and

Corollary 5.7, we proved the following Gauss-Bonnet formula:

Λ0(X,X) = χ(X)−
1

2
χ(Lk∞(X)) −

1

2vol(Sn−1)

∫

Sn−1

χ(Lk∞(X ∩ v⊥))dv,

where Λ0(X,X) = limR→+∞ Λ0(X,X ∩ KR) with (KR)R>0 an exhaustive
family of compact subsets of X and Lk∞(X) = X ∩ Sn−1

R , R ≫ 1, is the
link at infinity of X.

Here we will express the limits limR→+∞
1

bkRkΛk(X,X ∩BR) in terms of

the mean-values 1
gkn

∫

Gk
n
χ(Lk∞(X ∩H))dH.

3.1. The conic case. Let X ⊂ R
n be a closed semi-algebraic cone. In

this case for all H ∈ Gk
n, χ(Lk

∞(X ∩ H)) = χ(X ∩ H ∩ Sn−1), and by
homogeneity of the Lipschitz-Killing measures:

1

Rk
Λk(X,X ∩BR) = Λk(X,X ∩Bn),
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for k ∈ {1, . . . , n}. We can equip X with a Whitney stratification:

X = ⊔Vα ⊔ {0},

where the Vα’s are semi-algebraic conic submanifolds. Since k > 0, we can
write:

Λk(X,X ∩Bn) =
∑

α∈Λ

∫

Vα∩Bn

λVα

k (x)dx.

Before computing these Lipschitz-Killing integrals, we need some notations
and definitions. Let X̃ be defined by X̃ = X∩Sn−1. It is a semi-algebraic set
of Sn−1 equipped with the Whitney stratification {Ṽ }α∈Λ where Ṽα = Vα ∩
Sn−1. Since Sn−1 is an analytic riemannian manifold of constant sectional
curvature equal to 1, one can associate relative Lipschitz-Killing curvatures
with X̃ (see [BB2]). Let Ṽ be a stratum of dimension d̃ with d̃ < n− 1, let

x̃ be a point in Ṽ and let Sx̃ be the unit sphere in (Tx̃Ṽ )⊥Sn−1

, the normal

space to Ṽ at x̃ in Sn−1. For k ∈ {0, . . . , d̃}, we set:

λ̃S̃k (x̃) =
1

sn−1−k−1

∫

Sx̃

α̃(x̃, ṽ)σd̃−k(IIx̃,ṽ)dṽ,

where IIx̃,ṽ is the second fundamental form of Ṽ in the direction ṽ and σd̃−k

its symmetric function of order d̃−k. The index α̃(x̃, ṽ) is the normal Morse
index at x of a function f : Sn−1 → R such that f|X̃ has a Morse critical

point at x and ∇f(x) = −ṽ . For k ∈ {d̃+ 1, . . . , n − 1}, we set λ̃Ṽk (x̃) = 0.

If Ṽ has dimension n − 1, then for all x̃ in Ṽ , we put λ̃Ṽ0 (x̃) = . . . =

λ̃Ṽn−2(x̃) = 0 and λ̃Ṽn−1(x̃) = 1. If Ṽ has dimension 0, then we set:

λṼ0 (x) =
1

sn−2

∫

Sx̃

α̃(x̃, ṽ)dv,

and λṼk (x) = 0 if k > 0.

For every Borel set U ⊂ X̃ and for every k ∈ {0, . . . , n− 1}, we define:

Λ̃k(X̃, U) =
∑

α∈Λ

∫

Ṽα∩U
λ̃Ṽα

k (x̃)dx̃.

Now let us go back to the curvatures Λk(X,X ∩Bn). Let us a fix a stratum

V of dimension d with d < n, let x be a point in V and let x̃ in Ṽ be defined
by x̃ = x

‖x‖ . Since V is conic, the normal space at x to V in R
n is the same

as the normal space at x̃ to Ṽ in Sn−1. This implies that for almost all v

in (TxV )⊥ = (Tx̃Ṽ )⊥Sn−1

, α(x, v) = α̃(x̃, v). Moreover, always by the conic
structure, it is not difficult to establish that σd−k(IIx,v) = 1

‖x‖σd−k(IIx̃,v)

for k ∈ {1, . . . , d} (see [CM] page 240, for a similar computation). Therefore,
we have:

λVk (x) =
1

‖x‖d−k
λ̃Ṽk−1

(

x

‖x‖

)

.
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If V is of dimension n then for k ∈ {1, . . . , n− 1}, λVk (x) = 0 = λ̃Ṽk−1

(

x
‖x‖

)

and λVn (x) = 1 = λ̃Ṽn−1

(

x
‖x‖

)

. Integrating λVk on V ∩Bn and using spherical

coordinates, we obtain:
∫

V ∩Bn

λVk (x)dx =
1

k

∫

Ṽ

λ̃Ṽk−1(x̃)dx̃,

and so Λk(X,X ∩Bn) = 1
k Λ̃k−1(X̃, X̃) for k ∈ {1, . . . , n}.

It remains to relate the relative Lipschitz-Killing curvatures to the mean-
values 1

gkn

∫

Gk
n
χ(X ∩H ∩ Sn−1)dH. For this, we use the kinematic formula

in Sn−1 (see [Fu1] and [BB2]) and the generalized Gauss-Bonnet formula
in the sphere (Theorem 1.2 in [BB2]). For H ∈ Gk

n, k ∈ {1, . . . , n − 1},
X ∩ H ∩ Sn−1 = X̃ ∩ EH where EH = H ∩ Sn−1 is a (k − 1)-dimensional
sphere of radius 1. By the generalized Gauss-Bonnet formula, we have:

χ(X̃ ∩ EH) =

n−1
∑

i=0,2,...

2

si
Λ̃i(X̃ ∩ EH).

Using the notations and the normalizations of [BB2] Theorem 4.1, we can
write that:

1

gkn

∫

Gk
n

χ(X̃ ∩ EH)dH =
1

sn−1

n−1
∑

i=0,2,...

2

si

∫

G

Λ̃i(X̃, X̃ ∩ σE)dσ,

where G is the isometry group of Sn−1 and E is a (k − 1)-dimensional unit

sphere in Sn−1. Since Λ̃k−1(E,E) = sk−1 and Λ̃i(E,E) = 0 for i 6= k − 1,
we find, applying the kinematic formula, that:

∫

G

Λ̃i(X̃, X̃ ∩ σE)dσ =
sn−1si
sn−k+i

Λ̃n−k+i(X̃, X̃).

Thus for k ∈ {1, . . . , n}, we have:

1

gkn

∫

Gk
n

χ(X̃ ∩H)dH =

n−1
∑

i=0,2,...

2

sn−k+i
Λ̃n−k+i(X̃, X̃).

When k = 1, this gives:

1

g1n

∫

G1
n

χ(X̃ ∩H)dH =
2

sn−1
Λ̃n−1(X̃, X̃).

When k = 2, this gives:

1

g2n

∫

G2
n

χ(X̃ ∩H)dH =
2

sn−2
Λ̃n−2(X̃, X̃).

For k ≥ 3, we have:

1

gk−2
n

∫

Gk−2
n

χ(X̃ ∩H)dH =

n−1
∑

i=0,2,...

2

sn−k+2+i
Λ̃n−k+2+i(X̃, X̃),



Euler characteristic and Lipschitz-Killing curvatures of closed semi-algebraic sets 7

=

n−1
∑

i=2,4,...

2

sn−k+i
Λ̃n−k+i(X̃, X̃),

and so:

2

sn−k
Λ̃n−k(X̃, X̃) =

1

gkn

∫

Gk
n

χ(X̃ ∩H)dH −
1

gk−2
n

∫

Gk−2
n

χ(X̃ ∩H)dH.

Since Λn−k+1(X,X∩Bn) = 1
n−k+1Λ̃n−k(X̃, X̃) and sn−k = (n−k+1)bn−k+1,

we obtain the following proposition:

Proposition 3.1. Let X ⊂ Rn be a closed semi-algebraic cone and let

X̃ = X ∩ Sn−1. Then we have:

Λn(X,X ∩Bn)

bn
=

1

2g1n

∫

G1
n

χ(X̃ ∩H)dH,

Λn−1(X,X ∩Bn)

bn−1
=

1

2g2n

∫

G2
n

χ(X̃ ∩H)dH,

and:

Λn−k(X,X ∩Bn)

bn−k
=

1

2gk+1
n

∫

Gk+1
n

χ(X̃ ∩H)dH

−
1

2gk−1
n

∫

Gk−1
n

χ(X̃ ∩H)dH,

for k ∈ {2, . . . , n− 1}, or equivalently:

Λk(X,X ∩Bn)

bk
= −

1

2gn−k−1
n

∫

Gn−k−1
n

χ(X̃ ∩H)dH

+
1

2gn−k+1
n

∫

Gn−k+1
n

χ(X̃ ∩H)dH,

for k ∈ {1, . . . , n− 2}.

3.2. The general case. We use the same procedure as we did in [Du]. We
will treat first the case when X ⊂ R

n is a closed semi-algebraic of positive
codimension. Consider the set:

X1 = {(tx, t) | x ∈ X, t ∈]0, 1]} ⊂ R
n ×R.

For each t ∈ [0, 1], put Xt := πRn(X1 ∩ π
−1
R

(t)), where πRn : Rn × R → R
n

and πR : Rn × R → R are the obvious projections. It is easy to see that X0

is a conic semi-algebraic set. It can be viewed as a tangent cone at infinity
of the set X. As in Theorem 3.7 of [FM], for each p ∈ X0, there is an ε0 > 0
such that if 0 < ε < ε0, then the limit :

φ0 · 1Xt∩Bn(p) := lim
t→0

χ(1Xt∩Bn · 1Bε(p))

exists and is independent of ε, where Bε(p) is the ball of radius ε centered
at p. This resulting function φ0 · 1Xt∩Bn is a semialgebraically constructible
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function supported on X0 ∩ B
n. It is called the specialization of the char-

acteristic function of the family Xt ∩ Bn at t = 0. We will denote it by
φX .

Since any two sets Xt and Xt′ , where t and t′ are different from 0,
are homothetic, it is not difficult to see that the function φX is conic, i.e
φX(λ.x) = φX(x) if x 6= 0 and λ is a real different from 0. Furthermore, as
in Theorem 3.7 [FM], one has :

NC(φX) = lim
t→0

NC(Xt ∩B
n),

where NC(φX) is the normal cycle of the constructible function φX (for the
definition of the normal cycle of a constructible function, see [Be] or [FM]).

For any semi-algebraically constructible function ψ, let Lk∞(ψ) be the
function 1Sn−1 ·ψ. We know that Lk∞(φX) = φ0·1Xt∩Sn−1 , the specialization
at 0 of the characteristic function of the family Xt ∩S

n−1 (see [Du], Lemma
5.3). We need auxiliary lemmas.

Lemma 3.2. Let S ⊂ R
n be a semi-algebraic smooth manifold. There exists

a semi-algebraic set Σ′
k ⊂ Gk

n, k ∈ {1, . . . , n − 1}, of positive codimension

such that if H /∈ Σ′
k, H intersects S \ {0} transversally.

Proof. Assume that S has dimension d and fix k ∈ {1, . . . , n− 1}. Let W
be defined by:

W =
{

(x, v1, . . . , vn−k) ∈ R
n × (Rn)n−k |

x ∈ S \ {0} and 〈x, v1〉 = · · · = 〈x, vn−k〉 = 0
}

.

It is a smooth semi-algebraic manifold of dimension d+ (n− 1)(n− k). Let
π2 be the following projection:

π2 :W → (Rn)n−k, (x, v1, . . . , vn−k) 7→ (v1, . . . , vn−k).

Bertini-Sard’s theorem implies that the set of critical values of π2 is a semi-
algebraic set of positive codimension. �

Now we can compare the sets (X ∩H)0 and X0 ∩H. First, let us equip
X1 with a Whitney stratification compatible with X0 ×{0}. This induces a
Whitney stratification Σ on X0.

Lemma 3.3. Let k ∈ {1, . . . , n − 1} and let H ∈ Gk
n. If H intersects X0

equipped with the stratification Σ transversally then (X ∩H)0 = X0 ∩H.

Proof. The inclusion (X ∩ H)0 ⊂ X0 ∩ H is clear because X1 ∩H ⊂
X1∩H×R. If X0∩H = {0} then the result is trivial. If X0∩H 6= {0} then
let us choose a point x 6= 0 inX0∩H. If S is the stratum that contains x then
H×R intersects S×{0} transversally in R

n×R. By the Whitney condition
(a), it intersects also transversally around x the strata that contains S×{0}
in their closure. Since (x, 0) belongs to X1, there exists at least one stratum
T ⊂ X1 that contains S × {0} in its closure. Hence we can find a sequence
of points in T ∩H of the form (tnyn, tn), yn ∈ X, tn ∈]0, 1], that converges
to (x, 0). Since H is a linear subspace, yn ∈ H and so x ∈ (X ∩H)0. �
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For any k ∈ {1, . . . , n−1}, for any H ∈ Gk
n and for any semi-algebraically

constructible function ψ, we denote by ψH the semi-algebraically constructi-
ble function ψ · 1H .

Lemma 3.4. Let k ∈ {1, . . . , n − 1} and let H ∈ Gk
n. If H intersects X0

equipped with Σ transversally then Lk∞ [(φX)H ] is the specialization of the

family H ∩Xt ∩ S
n−1 at 0.

Proof. We prove the lemma by induction. For k = n − 1, this lemma
is true by Lemmas 5.3 and 5.4 in [Du]. Let us assume that it is true for
k ∈ {2, . . . , n − 1} and let H ∈ Gk−1

n be a (k − 1)-plane that intersects X0

transversally. We have to prove that:

lim
t→0

χ(Xt ∩B
n ∩Bε(p)) = lim

t→0
χ(Xt ∩H ∩ Sn−1 ∩Bε(p)),

for every p in X0 ∩H ∩ Sn−1. If H ∩ X0 \ {0} is empty then the result is
true. If H ∩X0 \ {0} 6= ∅ then let L be a k-plane that contains H. Then L
intersects X0 transversally and so, by the induction hypothesis, we have:

lim
t→0

χ(Xt ∩B
n ∩Bε(p)) = lim

t→0
χ(Xt ∩ L ∩ Sn−1 ∩Bε(p)),

for every p in X0 ∩ L ∩ Sn−1. Let v be an unit vector in L such that
H = L ∩ v⊥. Applying Lemma 5.4 in [Du] to X ∩ L, we find that:

lim
t→0

χ((X ∩ L)t ∩B
n ∩Bε(p)) = lim

t→0
χ((X ∩ L)t ∩ v

⊥ ∩ Sn−1 ∩Bε(p)),

for every p in (X∩L)0∩v
⊥∩Sn−1. We conclude with the fact that for t 6= 0,

(X ∩ L)t = Xt ∩ L and the fact that (X ∩ L)0 = X0 ∩ L, by the previous
lemma. �

Combining this lemma with Lemma 3.2, we get:

Corollary 3.5. Let k ∈ {1, . . . , n}. For almost all H ∈ Gk
n, Lk

∞ [(φX)H ]
is the specialization of the family H ∩Xt ∩ S

n−1 at 0.

Proposition 3.6. We have, for k ∈ {1, . . . , n− 2}:

1

bk
NC(φX)xπ−1(B̊n)(ψk) = −

1

2gn−k−1
n

∫

Gn−k−1
n

χ(LK∞[(φX)H ])dH

+
1

2gn−k+1
n

∫

Gn−k+1
n

χ(LK∞[(φX)L])dL,

and:

1

bn−1
NC(φX)xπ−1(B̊n)(ψn−1) =

1

2g2n

∫

G2
n

χ(LK∞[(φX)H ])dH,

1

bn
NC(φX)xπ−1(B̊n)(ψn) =

1

2g1n

∫

G1
n

χ(LK∞[(φX)H ])dH,

where B̊n is the interior of Bn.
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Proof. We prove the equality for k ∈ {1, . . . , n − 2}. Since the two sides
of the equality are linear over Z in the constructible function φX supported
on Bn, it is enough to establish the equality for the function 1X∩Bn where
X is a closed semi-algebraic cone. In this case, we have to prove:

1

bk
NC(X∩Bn)xπ−1(B̊n)(ψk) = −

1

2gn−k−1
n

∫

Gn−k−1
n

χ(LK∞(X∩H))dH

+
1

2gn−k+1
n

∫

Gn−k+1
n

χ(LK∞(X ∩ L))dL.

This is exactly the formula proved in Proposition 3.1. �

Theorem 3.7. Let X ⊂ R
n be a closed semi-algebraic set of positive codi-

mension. For k ∈ {1, . . . , n− 2}, we have:

lim
R→+∞

Λk(X,X ∩BR)

bkRk
= −

1

2gn−k−1
n

∫

Gn−k−1
n

χ(Lk∞(X ∩H))dH

+
1

2gn−k+1
n

∫

Gn−k+1
n

χ(Lk∞(X ∩ L))dL.

and:

lim
R→+∞

Λn−1(X,X ∩BR)

bn−1Rn−1
=

1

2g2n

∫

G2
n

χ(Lk∞(X ∩H))dH,

lim
R→+∞

Λn(X,X ∩BR)

bnRn
=

1

2g1n

∫

G1
n

χ(Lk∞(X ∩H))dH.

Proof. The last equality is clearly true because by the assumption on the
codimension of X, both sides vanish.

Let k ∈ {1, . . . , n−1}. First remark that Λk(X,X∩BR) = Λk(X,X∩B̊R).
On the one hand, the homogeneity of the Lipschitz-Killing measures implies
that:

Λk(X,X ∩ B̊R)

Rk
= Λk(X 1

R
,X 1

R
∩ B̊n) = NC(X 1

R
∩Bn)xπ−1(B̊n)(ψk).

Since NC(φX) = limR→+∞NC(X 1

R
∩Bn), we obtain that:

lim
R→+∞

Λk(X,X ∩BR)

bkRk
=

1

bk
NC(φX)xπ−1(B̊n)(ψk).

On the other hand, for almost all H in Gn−k−1
n , Lk∞(φX)H is the special-

ization at 0 of the characteristic function of the family Xt ∩H ∩ Sn−1 at 0.
Therefore:

χ(Lk∞(φX)H) = NC(Lk∞(φX)H)(ψ0) = lim
t→0

NC(Xt ∩H ∩ Sn−1)(ψ0) =

lim
t→0

χ(Xt ∩H ∩ Sn−1) = χ(Lk∞(X ∩H)).

�
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Corollary 3.8. Let X ⊂ R
n be a closed semi-algebraic set. For k ∈

{1, . . . , n− 2}, we have:

lim
R→+∞

Λk(X,X ∩BR)

bkRk
= −

1

2gn−k−1
n

∫

Gn−k−1
n

χ(Lk∞(X ∩H))dH

+
1

2gn−k+1
n

∫

Gn−k+1
n

χ(Lk∞(X ∩ L))dL.

and:

lim
R→+∞

Λn−1(X,X ∩BR)

bn−1Rn−1
=

1

2g2n

∫

G2
n

χ(Lk∞(X ∩H))dH,

lim
R→+∞

Λn(X,X ∩BR)

bnRn
=

1

2g1n

∫

G1
n

χ(Lk∞(X ∩H))dH.

Proof. It remains to prove the case when X has dimension n. We proceed
as in [Du], Corollary 5.7. Let i : Rn → R

n+1 be the natural embedding of
R
n in R

n+1. For k ∈ {1, . . . , n}, let us denote by Λn
k (respectively Λn+1

k ) the
Lipschitz-Killing measure of X as a semi-algebraic set in R

n (respectively
R
n+1). Since i is a semi-algebraic isometry, by Theorem 5.0 in [Fu2] or

Proposition 9.2 in [BK], one has:

Λn
k(X,X ∩Bn

R) = Λn+1
k (X,X ∩Bn+1

R ).

Let us assume that k ∈ {1, . . . , n−2} and let us apply the previous theorem
to Λn+1

k . We find:

lim
R→+∞

Λn+1
k (X,X ∩BR)

bkRk
= −

1

2gn−k
n

∫

Gn−k
n

χ(Lk∞n+1(X ∩H))dH

+
1

2gn−k+2
n

∫

Gn−k+2
n

χ(Lk∞n+1(X ∩ L))dL,

where Lk∞n+1(−) denotes the link at infinity in R
n+1. It is clear that:

Lk∞n+1(X) = Lk∞n (X) = Lk∞(X),

because X ⊂ R
n. Let us compare now 1

g
q
n

∫

G
q
n
χ(Lk∞(X ∩ H))dH and

1
g
q+1

n+1

∫

G
q+1

n+1

χ(Lk∞(X ∩H))dH for 0 < q < n. We can write:

∫

G
q
n

χ(Lk∞(X ∩H))dH =
m
∑

i=1

χivol(Ai),

where the Ai’s are open semi-algebraic sets of Gq
n. Therefore:

∫

G
q+1

n+1

χ(Lk∞(X ∩H))dH =

m
∑

i=1

χivol(Ãi),

where Ãi = {L ∈ Gq+1
n+1 | L ∩ R

n ∈ Ai}. We conclude remarking that

vol(Ai) =
vol(Gq

n)

vol(Gq+1

n+1
)
· vol(Ãi). �
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Combining Corollary 3.9 with Corollary 5.7 of [Du], we obtain the follow-
ing Gauss-Bonnet type formula which relates the Euler characteristic of a
closed semi-algebraic set to the Lipschitz-Killing curvatures.

Theorem 3.9. Let X ⊂ R
n be a closed semi-algebraic set. We have:

χ(X) = Λ0(X,X) +

n
∑

k=1

lim
R→+∞

Λk(X,X ∩BR)

bkRk
.

�

It is worth remarking that in all these results, the choice of the origin in
R
n does not matter. Namely if x0 is a point in R

n, BR(x0) (resp. SR(x0)) is
the ball x0 +BR (resp. the sphere x0 + SR), Hx0

is the affine space x0 +H
and Lk∞x0

(X) = X ∩ SR(x0) with R≫ 1, then the following formulas hold:

Λ0(X,X) = χ(X)−
1

2
χ(Lk∞x0

(X))

−
1

2gn−1
n

∫

Gn−1
n

χ(Lk∞x0
(X ∩Hx0

))dH,

and for k ∈ {1, . . . , n − 2}:

lim
R→+∞

Λk(X,X ∩BR(x0))

bkRk
= −

1

2gn−k−1
n

∫

Gn−k−1
n

χ(Lk∞x0
(X ∩Hx0

))dH

+
1

2gn−k+1
n

∫

Gn−k+1
n

χ(Lk∞x0
(X ∩ Lx0

))dL.

and:

lim
R→+∞

Λn−1(X,X ∩BR(x0))

bn−1Rn−1
=

1

2g2n

∫

G2
n

χ(Lk∞x0
(X ∩Hx0

))dH,

lim
R→+∞

Λn(X,X ∩BR(x0))

bnRn
=

1

2g1n

∫

G1
n

χ(Lk∞x0
(X ∩Hx0

))dH.

Therefore, we also have:

χ(X) = Λ0(X,X) +

n
∑

k=1

lim
R→+∞

Λk(X,X ∩BR(x0))

bkRk
.

4. Application to the smooth case

Let us recall first some results about complete manifolds. The first one
is the well-known Cohn-Vossen inequality [Co]. It states that if (M,g) is
a complete connected oriented riemannian surface of finite topological type
and with absolute integral Gauss curvature K then :

2πχ(M)−

∫

M

Kdx ≥ 0.
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In [Sh], Shiohama made this phenomena more precise and gave a geometric
expression for the Gauss-Bonnet defect. Namely he proved that:

2πχ(M)−

∫

M

Kdx = lim
t→+∞

L(t)

t
= lim

t→+∞

A(t)

t2
,

where L(t) denotes the length of the geodesic distance circle in distance t
and A(t) denotes the area of the geodesic disc with radius t, the center of
the disc being arbitrary.

For higher dimensional complete manifolds, the situation is much less
understood. In [DK], Dillen and Kuehnel study submanifolds of Rn that they
call submanifolds with cone-like ends (see Definition 5.3 in [DK]). Roughly
speaking, a submanifold M in R

n is with cone-like ends if it admits a finite
number of ends and each end is “close” to an open subset of a cone. One can
say that somehow it behaves at infinity like a semi-algebraic set. Moreover
one can associate with such a manifold M a submanifoldM∞ ⊂ Sn−1 called
the set of limit directions. It can be viewed as a kind of link at infinity of
the manifold M . If d is the dimension of M , then M∞ has dimension d− 1.
Dillen and Kuehnel proved that if M is complete then:

χ(M)−
1

sn−1

∫

M

K0dx =
∑

0≤2i≤d−1

1

sn−d+2i−1sd−1−2i

∫

M∞

K̃2idx̃,

where K0 is the Lipschitz-Killing curvature of M and the K̃2i are the spher-
ical Lipschitz-Killing curvature of M∞ (see [So] for an hyperbolic version of
this result). We refer to [DK] for an account on Gauss-Bonnet formulas for
complete manifolds.

In the sequel, we will apply the results of Section 3 to the smooth case to
get new Gauss-Bonnet formulas for smooth closed semi-algebraic sets. Let
X ⊂ R

n be a closed semi-algebraic set which is a manifold of dimension d,
1 ≤ d ≤ n − 1. In this situation, there is only one stratum X and for each
k ∈ {0, . . . , d} and each x ∈ X:

λXk (x) =
1

sn−k−1

∫

Sx

σd−k(IIx,v)dv,

where IIx,v is the second fundamental form of X in the direction of v and
σd−k is its (d−k)-th symmetric function. Furthermore for k > d, λXk (x) = 0.

Let us denote by Ki(x) the real number
∫

Sx
σi(IIx,v)dv, i ∈ {0, . . . , d}.

We remark that Ki(x) = 0 if i is odd because σi(IIx,−v) = (−1)iσi(IIx,v).
Moreover Kd(x) = 2LK(x) where LK is defined in [Du] or [La]. TheKi’s are
the classical Lipschitz-Killing-Weyl curvatures. When i is even, 1

sn−d+i−1
Ki

is an intrinsic quantity, namely it depends only on the inner metric on X (see
[DK]). With these notations, Theorem 3.7 can be restated in the following
form:
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Theorem 4.1. Let X ⊂ R
n be a closed semi-algebraic set which is a smooth

submanifold of dimension d, 1 ≤ d ≤ n− 1. We have, for i ∈ {1, . . . , d− 1}:

lim
R→+∞

∫

X∩BR
Kidx

sn−d+i−1bd−iRd−i
= −

1

2gn−d+i−1
n

∫

Gn−d+i−1
n

χ(Lk∞(X ∩H))dH

+
1

2gn−d+i+1
n

∫

Gn−d+i+1
n

χ(Lk∞(X ∩ L))dL,

and:

lim
R→+∞

vol(X ∩BR)

bdRd
=

1

2gn−d+1
n

∫

Gn−d+1
n

χ(Lk∞(X ∩H))dH.

Proof. We apply Theorem 3.7. For i = 0, we remark that for almost all
H ∈ Gn−d−1

n , the set X ∩H is empty. �

Note that when i is odd, the equality is trivial because for almost all
L ∈ Gn−d+i−1

n (resp. H ∈ Gn−d+i+1
n ), Lk∞(X ∩L) (resp. Lk∞(X ∩H)) is a

compact odd dimensional manifold (or empty). Since X is smooth, X ∩H
is generically smooth and when it is odd dimensional, χ(Lk∞(X ∩ H)) =
2χ(X ∩H). Hence, we can reformulate Theorem 4.1 as follows:

Theorem 4.2. Let X ⊂ R
n be a closed semi-algebraic set which is a smooth

submanifold of dimension d, 1 ≤ d ≤ n− 1. We have, for i ∈ {1, . . . , d− 1}
and i even:

lim
R→+∞

∫

X∩BR
Kidx

sn−d+i−1bd−iRd−i
= −

1

gn−d+i−1
n

∫

Gn−d+i−1
n

χ(X ∩H)dH

+
1

gn−d+i+1
n

∫

Gn−d+i+1
n

χ(X ∩ L)dL,

and:

lim
R→+∞

vol(X ∩BR)

bdRd
=

1

gn−d+1
n

∫

Gn−d+1
n

χ(X ∩H)dH.

�

It is interesting to see that if we apply this theorem to the case d odd and
i = d− 1, we get the following equality:

χ(X) = lim
R→+∞

∫

X∩BR
Kd−1dx

sn−2b1R
+

1

gn−2
n

∫

Gn−2
n

χ(X ∩H)dH,

which is a kind of Gauss-Bonnet formula for odd-dimensional closed semi-
algebraic manifolds.

When we apply Theorem 3.9, we get another Gauss-Bonnet type formula
for closed semi-algebraic submanifolds.

Theorem 4.3. Let X ⊂ R
n be a closed semi-algebraic set which is a smooth

submanifold of dimension d, 1 ≤ d ≤ n− 1. If d is even, we have:

χ(X) =
1

sn−1

∫

X

Kd(x)dx+

d−2

2
∑

i=0

lim
R→+∞

1

sn−d+2i−1bd−2iRd−2i

∫

X∩BR

K2idx.
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If d is odd, we have:

χ(X) =

d−1

2
∑

i=0

lim
R→+∞

1

sn−d+2i−1bd−2iRd−2i

∫

X∩BR

K2idx.

�

As in the general case, the choice of the origin does not matter. This the-
orem gives an answer to Question 2, p.197 in [DK] for closed semi-algebraic
submanifolds of the euclidian space. It is also a generalization of Shio-
hama’s formula. It would be interesting to enlarge the class of submanifolds
for which this Gauss-Bonnet formula is satisfied.
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