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Abstract In computational neuroscience, decision-making may be explained
analyzing models based on the evolution of the average firing rates of two
interacting neuron populations, e.g. in bistable visual perception problems.
These models typically lead to a multi-stable scenario for the concerned dy-
namical systems. Nevertheless, noise is an important feature of the model
taking into account both the finite-size effects and the decision’s robustness.
These stochastic dynamical systems can be analyzed by studying carefully
their associated Fokker-Planck partial differential equation. In particular, in
the Fokker-Planck setting, we analytically discuss the asymptotic behavior
for large times towards a unique probability distribution, and we propose a
numerical scheme capturing this convergence. These simulations are used to
validate deterministic moment methods recently applied to the stochastic dif-
ferential system. Further, proving the existence, positivity and uniqueness of
the probability density solution for the stationary equation, as well as for the
time evolving problem, we show that this stabilization does happen. Finally,
we discuss the convergence of the solution for large times to the stationary
state. Our approach leads to a more detailed analytical and numerical study
of decision-making models applied in computational neuroscience.
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1 Introduction

The derivation of biologically relevant models for the decision-making pro-
cesses done by animals and humans is an important question in neurophys-
iology and psychology. The choice between alternative behaviours based on
perceptual information is a typical example of a decision process. It is quite
common to observe bi-stability in several psychological experiments widely
used by neuroscientists. Archetypical examples of these multi-stable decision-
making processes are bistable visual perception, that is, two distinct possible
interpretations of the same unchanged physical retinal image: Necker cube,
Rubins face-vase, binocular rivalry and bistable apparent motion [6,12,20].

In order to explain these phenomena, biologically realistic noise-driven neu-
ral circuits have been proposed in the literature [9] and even used to qualita-
tively account for some experimental data [23]. The simplest model consists
of two interacting families of neurons, each one characterized by its averaged
firing rate (averaged number of spikes produced per time). Correlation of these
neuron families is bigger with their own behavior than with the others. More-
over, this mechanism is mediated by inhibition from the rest of the neurons
and the sensory input. The external stimuli may produce an increasing activ-
ity of one of the neuron families leading to a decision state in which we have a
high/low activity ratio of the firing rates. Decision-making in these models is
then understood as the fluctuation-driven transition from a spontaneous state
(similar firing rates of both families) to a decision state (high/low activity level
ratio between the two families).

As has already been explained and discussed in different works [11,12,22],
the theory of stochastic dynamical systems offers a useful framework for the
investigation of the neural computation involved in these cognitive processes.
Noise is an important ingredient in these models. In fact, such neural families
are comprised of a large number of spiking neurons, so that fluctuations arise
naturally through noisy input and/or disorder in the collective behaviour of the
network. Moreover, this is used to introduce a finite-size effect of the neuron
families as discussed in [11,12].

Many other works can be found in the recent literature concerning decision-
making stochastic differential models and the understanding of the evaluation
of a decision, see for instance [8] for a review paper, or [16] for a review on the
different ways to compute a decision at different biological levels. Moreover,
we refer to [10,15,24,27] for results concerning two choices task paradigm.
On the one hand, all these models give good approximations of the reaction
times (RT), but on the other hand, most of them consider linear or linearized
stochastic differential systems. Thus, it is possible to give explicitly their re-
duction to a one-dimensional drift-diffusion (or Fokker-Planck) equation, and
hence they can be explicitly solved as in the case of the Ornstein-Uhlenbeck
process.

The stochastic differential system we shall consider in the sequel is non-
linear, and the progressive Kolmogorov equation (or the Fokker-Planck) de-
scribing the probability density function, in the two dimensional parameter
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space, is characterized by a drift term not being the gradient of a potential.
The closest example in the literature to our approach is the numerical treat-
ment reported in [10, Section 3.3] for a nonlinear stochastic differential system.
As mentioned in [10], no explicit information is thus available on the behav-
ior of the solution, and no explicit reduction to a one-dimensional problem is
possible, as will be further discussed in Section 4.

Therefore, in this paper we want to focus on showing that for this class
of nonlinear stochastic dynamical systems, one can exhibit large time sta-
bilization at the level of the probability distribution given by its associated
Fokker-Planck equation. This fact is not at all obvious from the stochastic dy-
namical system and it is the main improvement with respect to the studies in
[11,10]. The analysis of the trend towards this stationary state is biologically
relevant. In particular, we can compute the probability of reaching a partic-
ular decision by integrating the stationary distribution function in a suitable
region around the particular decision state. Moreover, one can compute im-
portant information for the decision making problem such as reaction times,
i.e., the average time to reach a decision. This question can be related with
the rate of convergence towards equilibrium.

We will analyze this stabilization issue by numerical and analytical meth-
ods. We start by performing numerical simulations on the Fokker-Planck model
showing the large time behavior of the probability density. Moreover, we vali-
date the results obtained by [11] using a deterministic moment method for the
associated stochastic differential system. Finally, we will prove the existence
and uniqueness of the stationary probability distribution and its asymptotic
stability, that is, the convergence of the time dependent probability density to
the unique solution of the stationary problem.

The precise model considered in this work uses a Wilson-Cowan [25] type
system, describing the time evolution of two population of neurons firing rates
νi, i = 1, 2:

τ
dνi(t)

dt
= −νi(t) + φ

λi +
∑
j=1,2

wijνj(t)

+ ξi(t), i = 1, 2, (1)

where τ is the typical time relaxation and ξi(t), i = 1, 2, represent a white
noise of amplitude β, i.e., they correspond to independent brownian motions
with the same variance β2/2.

In (1) the function φ(x) has a sigmoidal shape determining the response
function of the neuron population to a mean excitation x given by xi(t) =
λi +

∑
j wijνj , i = 1, 2, in each population:

φ(x) =
νc

1 + exp(−α(x/νc − 1))
, (2)

where λi are the external stimuli applied to each neuron population and wij
are the connection coefficients. The parameter νc represents both the maximal
activity rate of the population and the frequency input needed to drive the
population to half of its maximal activity.
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Following [21,17,11], we assume that neurons within a specific population
are likely to correlate their activity, and to interact via strong recurrent exci-
tation with a dimensionless weight w+ > 1 greater than a reference baseline
value established to 1. Analogously, neurons in two different populations are
likely to have anti-correlated activity expressed by a excitatory weight lower
than baseline, w− < 1. Furthermore, we assume that there is global feedback
inhibition, as a result of which all neurons are mutually coupled to all other
neurons in an inhibitory fashion (we will denote this inhibitory weight by wI).
As a result, the synaptic connection coefficients wij , representing the interac-
tion between population i and j, are the elements of a 2×2 symmetric matrix
W given by

W =

[
w+ − wI w− − wI
w− − wI w+ − wI

]
,

The typical synaptic values considered in these works are such that w− <
wI < w+ leading to cross-inhibition and self-excitation.

Applying standard methods of Ito calculus, see for instance [14], we can
prove that the probability density p = p(t, ν) of finding the neurons of both
populations firing at averaged rates ν = (ν1, ν2) at t > 0, satisfies a Fokker-
Planck equation, also known as the forward Kolmogorov equation. Hence,
p(t, ν) must satisfy:

∂tp+∇ · ([−ν + Φ(Λ+W · ν)] p)− β2

2
∆p = 0 (3)

where ν ∈ Ω = [0, νm] × [0, νm], Λ = (λ1, λ2), Φ(x1, x2) = (φ(x1), φ(x2)),
∇ = (∂ν1 , ∂ν2) and ∆ = ∆ν . We choose to complete equation (3) by the
following no-flux boundary conditions:(

[−ν + Φ(Λ+W · ν)] p− β2

2
∇p
)
· n = 0 (4)

where n is the outward normal to the domain Ω. Physically, these boundary
conditions mean that neurons cannot spike with arbitrarily large firing rates
and thus there is a typical maximal value of the averaged firing rate νm and
that the solution to (3) is a probability density function, i.e.,∫

Ω

p(t, ν) dν = 1. (5)

In order to simplify notations, we will from now on consider the vector field
F = (F1, F2), representing the flux in the Fokker-Planck equation:

F = −ν + Φ(Λ+W · ν) =

(
−ν1 + φ(λ1 + w11ν1 + w12ν2)
−ν2 + φ(λ2 + w21ν1 + w22ν2)

)
(6)

then, equation (3) and boundary conditions (4) read:

∂tp+∇ ·
(
F p− β2

2
∇p
)

= 0 (7)
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F p− β2

2
∇p
)
· n = 0 (8)

In the absence of noise, the deterministic dynamical system corresponding
to (1) has a region of parameters exhibiting a multi-stable regime. In this
multi-stable framework, the relevant fixed-point solutions are the spontaneous
and the two decision states. Spontaneous state corresponds to the case in
which no decision is taken and without impulse neurons remains in this state,
see [12]. In particular, in the bistable case, the spontaneous state is unstable,
and only the two decision states are stable. For sufficiently strong inhibition
wI the two decision states are bistable with respect to one another. Indeed,
the deterministic dynamical system is not a gradient flow.

Section 2 is devoted to the numerical study of the model above, and to the
discussion of the numerical results and their relation with those of [22,11,12].
The only direct study of the Fokker-Planck approach that we are aware of has
been performed in [10]. It shows by direct finite element discretisation that
the evolution of a Fokker-Planck equation up to a fixed time can be useful
for computing reaction times. Still, the trend to equilibrium for large times is
neither shown nor analyzed.

Moreover, although the mathematical problem corresponding to (7)-(8) is
linear, it has not been dealt with in detail due to its non classical boundary
conditions. Despite the linearity of (7) in p, we cannot have an explicit solution
in exponential form to the associate steady state problem. Indeed, the drift
vector F is not the gradient of a potential V , as it can be easily checked.
Hence, it is not possible to give an explicit expression of the type exp(−2V/β2)
as for the Ornstein-Uhlenbeck process, of the steady states of equation (7).
Nevertheless, in Sect. 3.3 we will show that the steady state solution has an
exponential shape. This question is related to general problems of Fokker-
Planck equations with non-gradients drifts [2,3] arising also in polymer fluid
flow problems [4].

In fact, in a bounded domain Ω and under the assumption that the flux
F is regular enough and incoming in the domain F · n < 0, we will show the
existence of an unique positive normalized steady state p∞, or equilibrium
profile, for the problem (7)-(8). This assumption on the drift F is verified
in our particular computational neuroscience model for νm large enough. In
order to obtain this theorem, we use classical functional analysis theorems
via a variant of the Krein-Rutman theorem. This will be the first objective
of Section 3. We will also prove existence, uniqueness and positivity of the
probability density solution of the evolutionary Fokker-Planck equation, and
its convergence towards the unique normalized steady state. This result shows
the global asymptotic stability of this unique stationary state leading to the
final probability of the decision states in our neuroscience model. Rate of con-
vergence is an open problem directly related with estimating the spectral gap.
The estimation of the first positive eigenvalue for the Fokker-Planck equation
is directly linked to the reaction time estimation.
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2 Numerical Discretization and Large time Equilibrium

In this section, we will consider a particular relevant case of the neuroscience
model discussed in the introduction, exactly corresponding to the discussion
in [11]. We will consider the following values of the synaptic connection pa-
rameters: w+ = 2.35, wI = 1.9 and w− = 1 − r(w+ − 1)/(1 − r) , r = 0.3,
(which correspond to self-excitation and cross-inhibition between the two neu-
ron families). The sigmoidal response function is determined from α = 4 and
νc = 20Hz with external stimuli corresponding to two cases: λ1 = 15Hz and
λ2 = λ1 +∆λ, with ∆λ = 0 for the unbiased case or ∆λ = 0.1 for the biased
one; i.e. when one of the two decision states is highlighted with respect to the
other. In the unbiased case, the situation is completely symmetric, and so is
the solution. However, in the biased case only one of the two decision states
will be reached with large probability. The relaxation time for the system is
chosen to τ = 10−2s.

Fig. 1 Dynamics in the unbiased case of (1) in the deterministic system (straight lines) and
the stochastic system (wiggled line). Straight lines emphasize the location of the equilibrium
points over the slow-manifold of the system. The black bars are the equilibrium points of
the differential system (denote by Si with i = 1, 2, 3 in the sequel). The particle starts its
dynamics in point (5, 5), moves almost straight forward towards the slow-manifold, and then
slowly oscillates towards one of the stable points/decision states.
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By means of direct simulations of the stochastic differential system (1), it
can be shown that there is a slow-fast behavior of the solutions towards equi-
librium. More precisely, it is possible to show that system (1) is characterized
by two stable and one unstable equilibrium points, see [11]. For example, in
the unbiased case, if ∆λ = 0, the stable decision states are in S1 = (1.32, 5.97)
and its symmetric S3 = (5.97, 1.32), and the unstable spontaneous state is in
S2 = (3.19, 3.19). In contrast with this, in the biased case ∆λ = 0.1 the stable
decision states are in S1 = (1.09, 6.59) and S3 = (5.57, 1.53) and the unstable
spontaneous state is in S2 = (3.49, 3.08). Thus, in figure 1 we highlight, in
the unbiased case, the fast convergence of one realization of (1) towards the
slow-manifold to which the equilibrium points belong, and its very slow con-
vergence towards one of the two stable points. The discussion of this behaviour
is beyond the goal of this paper, and a possible way to use the slow-fast feature
of the differential system (1) will be investigated in future work.

We will now propose a numerical scheme to approximate the solution of the
Fokker-Planck equation (7). Let us first comment that a direct approximation
by simple finite differences has an important drawback in terms of computing
time. The main issue being this slow-fast feature of the system, producing
then a kind of metastable solution that takes a long time to evolve to the final
equilibrium solution concentrating its probability around the decision states.

In order to discretise and perform numerical simulations of equation (7), we
apply an explicit finite volume method on the bounded domain Ω = [0, νm]×
[0, νm]. In the following numerical simulations we choose νm=10, which is large
enough in order to verify the incoming flux condition: F · n < 0. In order to
simplify notations below, we have set τ = 1, but in the figures the time scale
has been adjusted to take into account the relaxation time τ in order to render
our results comparable to those in [11] discussed below.

Let i = 0...M1 − 1 and j = 0...M2 − 1, and consider the discrete variables:

ni = ν1(i) =

(
i+

1

2

)
∆ν1,

nj = ν2(j) =

(
j +

1

2

)
∆ν2,

where∆ν1 and∆ν2 are the mesh size along the ν1 and ν2 direction respectively:

∆νi =
νm
Mi

.

Thus, the discrete variables ni are defined at the centre of the squared cells.
Moreover, let ∆t be the time discretisation step, so that pk(i, j) represents
the distribution function p(k∆t, ni, nj). We note that pk(i, j) are the unknown
values of the discretized distribution function inside the meshes, whereas pk(i−
1
2 , j−

1
2 ) are the interpolated values at their interfaces. The discretized Fokker-

Planck equation is then given by:

pk+1(i, j) = pk(i, j) +∆tFk(i, j), (9)
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where :

Fk(i, j) =
1

∆ν1

(
F k
(
i+

1

2
, j

)
− F k

(
i− 1

2
, j

))
+

1

∆ν2

(
Gk
(
i, j +

1

2

)
−Gk

(
i, j − 1

2

))
,

with F k(i + 1
2 , j) and Gk(i, j + 1

2 ) the fluxes at the interfaces respectively
defined by :

F k
(
i+

1

2
, j

)
=
(
−ni+1/2 + φ(λ1 + w11ni+1/2 + w12nj)

)
pk
(
i+

1

2
, j

)
− β2

2∆ν1

(
pk(i+ 1, j)− pk(i, j)

)
,

Gk
(
i, j +

1

2

)
=
(
−nj+1/2 + φ(λ2 + w21ni + w22nj+1/2)

)
pk
(
i, j +

1

2

)
− β2

2∆ν2

(
pk(i, j + 1)− pk(i, j)

)
.

We choose the most simple interpolation at the interfaces:

pk
(
i+

1

2
, j

)
=
pk(i+ 1, j) + pk(i, j)

2
,

and

pk
(
i, j +

1

2

)
=
pk(i, j + 1) + pk(i, j)

2
.

Remark 1 Concerning the CFL condition and in order to diminish the com-
putational time, we compute an adaptive time step ∆t at every iteration. We
require, for example, that:

pk(i, j)

2
≤ pk+1(i, j) ≤ 3pk(i, j)

2
.

These conditions lead to the following time step bound:

∆t|Fk(i, j)| ≤ pk(i, j)

2
.

Finally we define at each iteration the following ∆t, for i, j such that pk(i, j) 6=
0 and Fk(i, j) 6= 0:

∆t = min
i,j

pk(i, j)

2|Fk(i, j)|
.

This adaptive time step condition gains a factor 100 in the time computations
with respect to the classical one, but it depends on the number of discretisation
points. For instance, in our simulations we need at least M1 = M2 = 200 in
order to capture the growth of the double picked distribution.



9

Finally, we choose to stop our computation when the difference between
two successive distribution profiles is smaller than 10−10, and we say in this
case that we have reached the equilibrium.

Using the above discretisation we compute various quantities as the marginals
N1(t, ν1) and N2(t, ν2) of the distribution function p:

N1(t, ν1) =

∫ νm

0

p(ν1, ν2, t)dν2,

N2(t, ν2) =

∫ νm

0

p(ν1, ν2, t)dν1,

representing the behaviour of each neuron population. We compute as well
the first µ1(t), µ2(t) and second γ11(t), γ12(t), γ22(t) moments associated to
the distribution function p. They are respectively given by:

µi(t) =

∫
Ω

νip(ν1, ν2, t)dν1dν2, i = 1, 2,

γij(t) =

∫
Ω

νiνjp(ν1, ν2, t)dν1dν2, i, j = 1, 2.

Moreover, we can compute the probabilities ρi(t) for a couple of firing rates
(ν1, ν2) to belong to some domains Ωi:

ρi(t) =

∫
Ωi

p(ν1, ν2, t)dν1dν2.

In particular, the domains Ωi will be three boxes centered at the three equi-
librium points: Ω1 = [0, 2]× [5, 10] and Ω3 = [5, 10]× [0, 2] for the two stable
points S1 and S3, Ω2 = [2, 5] × [2, 5] for the unstable one, S2. In fact, ρi(t)
represents the probability in time of reaching the decision state Si for i = 1
and i = 3, while ρ2(t) gives information about the probability in time to leave
the spontaneous state.

We present now some numerical results, obtained starting from an initial
condition given by a Gaussian centered at (3, 3), near the unstable position
S2, as in [11]. We considered here both the unbiased (∆λ = 0) and the biased
(∆λ = 0.1) case, both with a standard deviation β = 0.1.

In figure 2 we represent the evolution in time of the marginal N1(t). In
the unbiased case (left), it is clearly shown the convergence of the density
probability function towards an equilibrium with a double pick distribution.
Moreover, we remark the slow-fast behaviour of the distribution when evolving
in time: fast diffusion, and slow growth of the two picks. In the biased case
(right), the distribution function at equilibrium is mostly concentrated around
one of the two decision points. The bias is strong enough to make converge
the firing rates, almost instantaneously, to only one of the two decision states.

In figure 3 we show the contour levels of the density p∞(ν1, ν2) at equi-
librium in the unbiased case (left) and the biased case (right). We note that
there are two points of mass concentration around S1 and S3 which are the
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Fig. 2 Time evolution for the marginals N1(t, ν1). Left: unbiased case. Right: biased case;
the curve for 1.44 sec and the final one at 3.41 seconds overlaps since we have almost reached
the equilibrium profile.
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Fig. 3 Contour level for the equilibrium solution. Left: unbiased case. Right: biased case.

stable equilibrium points of system (1). We remark that, in the unbiased case
the probability density is symmetrically distributed along the slow-manifold.
In contrast with this, in the biased case there is no symmetry: almost a zero
proportion of the population is still concentrated around one of the stable
points, namely S3. This is due to the slow behavior of the system, and one
should wait for a very long time in order to have all the population of neurons
centered around the S1 decision state.

In figure 4 we show, only for the unbiased case, the evolution in time of
the moments of order one, µ1 and µ2 (on the left), and two, γ11, γ12 and γ22

(on the right).
This computation recovers in a exact manner the approximation on the

evolution of moments done in [11]. The moment method has been used in the
computational neuroscience community [22,11,12] in order to approximate
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Fig. 4 Moments µ1, µ2, γ11, γ12, γ22 with respect to time, in the unbiased case.

the collective averaged quantities of the stochastic differential system (1) by
solving deterministic systems.

These moment methods need a closure assumption in order to give closed
systems of equations and, therefore, they have inherent errors in their approx-
imation. Nevertheless, in this particular case they lead to good qualitative
approximations comparing our results to the ones in [11], whose detailed nu-
merical study is currently under way.
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Fig. 5 Evolution in time of the densities ρi(t). Left: unbiased case; we note that ρ1 and ρ3
perfectly overlap. Right: biased case.

In figure 5 we show the evolution in time of three probabilities, ρi for i =
1, 2, 3, of finding the firing rates in three different domains Ω1 = [0, 2]× [5, 10],
Ω2 = [2, 5]× [2, 5] and Ω3 = [5, 10]× [0, 2], respectively in the unbiased (left)
and biased (right) cases. We note that each domain contains one of the three
equilibrium points and thus we can refer to ρ1 and ρ3 as the probabilities of
each decision states and to ρ2 as the probability of the spontaneous state. The
initial condition we consider implies ρ1(0) = ρ3(0) ' 0 and ρ2(0) ' 1. More-
over, in the unbiased case, the symmetry of the problem leads to ρ1(t) = ρ3(t)
for every t ≥ 0, i.e., the two decision states are taken with equal probability.
However, in the biased case, ρ3 remains very small and the decision state S1

is obtained with a probability almost equal to 1.
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Fig. 6 Zoom in of the densities in the biased case

In figure 6 we show a zoom for the ρi densities of the biased case. We can
see that ρ3 rises up in the first seconds, and then slowly decreases. Letting the
computation evolving for a longer time the density ρ3 will converge to zero.
But this will take a very long time due to the metastability of the system.
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Fig. 7 Convergence toward the stationary solution, in the unbiased case. Right: in loga-
rithmic scale

In figure 7 we show the convergence of the solution of the Fokker-Planck
equation to its stationary state in L2 norm. On the left we present the conver-
gence with respect to time and on the right the same result but in logarithmic
scale. We remark that a linear regression done on the second half of the curve
has a slope of -0.19 with a standard deviation of 0.031, and a linear regres-
sion done on the last quarter of the curve has a slope of -0.08 with a standard
deviation of 0.004. This means that after a small transition period, the conver-
gence of the solution towards its stationary state has an exponential behavior.
This estimate of the slope of the trend to equilibrium, denoted by Θ later on,
helps obtain a direct estimate of the reaction time. We may define the reaction
time as the time for stabilization to achieve certain threshold or tolerance. For
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instance, we can define it as the time such that:

max (|ρ1(t)− ρ1(∞)|, |ρ3(t)− ρ3(∞)|) ≤ ‖p(t)− p∞‖L1(Ω) ' Ce−Θt ≤ Tol.

Finally, we perform a different numerical test, intended to be a first step in
the study of the escaping time problem (or first passage problem). We consider
only the unbiased case, because we know that for a time large enough the
probability function p must be distributed in equal parts on both the domains
Ω1 and Ω3, no matter the initial condition. We let the diffusion coefficient β
vary in the set (0.2, ..., 1), see table 1, and choose as initial data a Gaussian
distribution centered near the stable point S1, hence in the domain Ω1. We
then stop the numerical simulation when half of the mass has arrived in the
Ω3 domain, that is when ρ1(T ) < 2ρ3(T ). We shall call escaping time, the
smallest time T at which the above condition is verified. In table 1, we give
the values of the escaping time T (expressed in seconds) for different values
of the diffusion coefficient β. As one may expect, the bigger the diffusion
coefficient, the smaller the escaping time T .

Table 1 Escaping Time.

β 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T 12.91 3.33 1.70 1.12 0.80 0.60 0.49 0.37 0.30

It is well known, see for example [14], for one dimensional problems, that
the expectation of a first passage problem is given by the Kramers law, E(t) =
exp

(
H/β2

)
, where H represents the potential gap and β the diffusion coeffi-

cient.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
!1.4

!1.2

!1.0

!0.8

!0.6

!0.4

!0.2

0.0

0.2

Fig. 8 The value β2 log(T ) with respect to the diffusion coefficient β in log scale. When β
goes to zero, the value converges to 0.1.

In figure 8 we plot the value of β2 log(T ) with respect to β. We observe
that, when β goes to zero, this value has a finite limit (close to 0.1). Hence,
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we can deduce an exponential behavior for the escaping time. In the poten-
tial flux situation the above limit corresponds to the maximal bound of the
potential gap, H. Let us recall that in our case the flux F is not the gradient
of a potential. This kind of behavior (exponential decay of the escaping time
versus the noise) has been proved also for some particular multi-dimensional
problems. Nevertheless, to our knowledge, there is no proof that for general
multi-dimensional problems the expectation of the escaping time has such an
exponential behaviour.

3 Existence, Uniqueness and Asymptotic Stability of the
Stationary Solution

In this section we first study the existence, uniqueness and positivity of the
solution of the associated stationary problem, see subsection 3.1. Then we
prove the existence and uniqueness of the solution for the evolutionary Fokker-
Planck model (7)-(8), see subsection 3.2. Finally, in subsection 3.3, within the
framework of the general relative entropy theory [18,19], we show the decay
of the relative entropy. As a consequence, we can prove the convergence of
the solution of (7)-(8) towards the unique positive normalized solution of the
stationary problem associated to it.

Let us set the notation for this section. We will first assume we have a
bounded domain Ω ⊂ R2 for which the divergence theorem and the standard
trace theorems for Sobolev functions, for instance the embedding from H2(Ω)
onto H3/2(∂Ω), are valid. Moreover, we need the strong maximum principle to
apply, and thus, we will assume Ω ∈ C2. Obviously, this is not true for square
like domains as in the computational neuroscience model at the origin of this
work. However, it is true for smooth approximations of rectangular domains
which avoid the corners in the domain of interest. As announced, we assume
that the flux function satisfies

F ∈ C1(Ω̄,R2) with F · n < 0 on ∂Ω, (10)

being n the outwards unit normal to ∂Ω.
Let us, define the following linear operator A, for every given u ∈ H2(Ω):

Au = −β
2

2
∆u+∇ · (Fu).

Then, the Fokker-Planck problem (7)-(8) for the distribution function p(t, ν)
is just a particular case of the general Fokker-Planck equation for u(ν, t) with
non-gradient drift that reads:

∂u

∂t
+Au = 0 in Ω × (0, T )(

Fu− β2

2
∇u
)
· n = 0 on ∂Ω × (0, T )

, (11)
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and we endow the parabolic system (11) by the initial condition u(·, 0) =
u0(·) ∈ L2(Ω).

Concerning the stationary problem associated with (11), in subsection 3.1
we will consider the elliptic problem:

Au+ ξu = f in Ω(
Fu− β2

2
∇u
)
· n = 0 on ∂Ω ,

(12)

with f a given function in L2(Ω) and ξ ∈ R conveniently chosen, under the
assumptions (10) and (5).

Finally, in subsection 3.3 we deal with problem (11), and its dual form:
∂v

∂t
= −F · ∇v +

β2

2
∆v, in Ω × (0, T )

∂v

∂n
= 0, on ∂Ω × (0, T )

(13)

associated to the initial conditions: v0(·) = v(0, ·).

3.1 Stationary problem

We consider here the stationary problem (12) and the bilinear form associated
with A :

a(u, v) =

∫
Ω

β2

2
∇u · ∇v dν −

∫
Ω

uF · ∇v dν , ∀u, v ∈ H1(Ω) . (14)

It is easy to check that:

Lemma 1 The bilinear form a(u, v) satisfies:

i. a(u, v) is continuous:

|a(u, v)| ≤M ||u||H1 ||v||H1 , ∀u, v ∈ H1(Ω),

with M = β2

2 + ||F ||∞.

ii. a(u, v) is ”coercive”, that is, it verifies:

a(u, u) + ρ||u||2L2 ≥ θ||u||H1 ∀u ∈ H1(Ω) ,

with ρ = C + θ with C =
1√
2β2

and θ = β2/4.
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Proof. i. We have, from (14):

|a(u, v)| ≤ β2

2

∫
Ω

|∇u||∇v| dν + ‖F‖∞
∫
Ω

|u| |∇v| dν ≤

≤
(
β2

2
+ ‖F‖∞

)
‖u‖H1‖v‖H1 ,

where ||F ||∞ corresponds to the maximum of |F | in Ω̄.
ii. We have, from (14):

β2

2

∫
Ω

|∇u|2 dν ≤ a(u, u) + ‖F‖∞
∫
Ω

|u||∇u| dν.

Now, from the following inequality ab ≤ εa2 + b2/4ε, with a, b, ε > 0, we get:∫
Ω

|∇u||u| dν ≤ ε
∫
Ω

|∇u|2 dν +
1

4ε

∫
Ω

|u|2 dν.

Then choosing ε so small that: ε‖F‖∞ ≤ β2/4, e.g. ε = β2

8‖F‖∞ we have:

β2

4

∫
Ω

|∇u|2 dν ≤ a(u, u) + C

∫
Ω

|u|2 dν

with

C =
1√
2β2

.

Finally, from this we obtain:

a(u, u) +

(
C +

β2

4

)
||u||2L2 ≥

β2

4
||u||2H1 ,

which ends the proof. �

Lemma 2 For each f ∈ L2(Ω), problem (12) has an unique solution in
H2(Ω) for ξ ≥ ρ.

Proof. Applying Lemma 1 we have that a(u, v) + ξ 〈u, v〉L2 is continuous and
coercive, for ξ ≥ ρ. Then, applying Lax-Milgram theorem, we have that, for
each f ∈ L2(Ω), there exists an unique u ∈ H1(Ω) such that, ∀ v ∈ H1(Ω) :∫

Ω

(
β2

2
∇u · ∇v − uF · ∇v + ξuv

)
dν =

∫
Ω

fv dν. (15)

By regularity, since f ∈ L2(Ω) then we have u ∈ H2(Ω) with traces for u
and its derivatives on the boundary. Thus, integrating by parts (15), we get,
∀v ∈ H1(Ω) :∫

Ω

(
∇ · (Fu)− β2

2
∆u + ξu− f

)
v dν +

∫
∂Ω

(Fu− β2∇u) · n v dσ = 0. (16)
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If in (16), we choose v ∈ C∞c (Ω), we get in distributional sense:∫
Ω

(
∇ · (Fu)− β2

2
∆u+ ξu− f

)
v dν = 0 ∀v ∈ C∞c (Ω) .

Hence:

∇ · (Fu)− β2

2
∆u+ ξu− f = 0 in L2(Ω). (17)

Moreover, replacing (17) in (16), we have:∫
∂Ω

(
Fu− β2

2
∇u
)
· n v dσ = 0 ,∀v ∈ H1(Ω),

which implies: (
Fu− β2

2
∇u
)
· n = 0 on ∂Ω ,

that is, u satisfies the boundary conditions. �
Let us now define the linear operator:

Tξ : L2(Ω)→ L2(Ω), Tξf = u, ∀f ∈ L2(Ω) and ∀ξ ≥ ρ

with u the unique solution of (12). In particular, we can prove that:

Lemma 3 The operator Tξ : H2(Ω) → H2(Ω) is a compact operator for all
ξ ≥ ρ.

Proof. We have that there exists u = Tξf solution of (12), for any f ∈
H2(Ω). By regularity, we have u ∈ H4(Ω) and from the estimate ‖u‖H4(Ω) ≤
C‖f‖H2(Ω), we get that Tξ maps H2(Ω) onto itself. Moreover, the compactness
of the imbedding, H4(Ω) ↪→ H2(Ω) implies that Tξ is a compact operator. �

Consider now the cone K:

K = H2
+(Ω) =

{
u ∈ H2(Ω) |u(ν) ≥ 0 a.e ν ∈ Ω

}
,

we remark that it has non-empty interior, see [1, Page 360] and it corresponds
to everywhere positive functions in Ω. To prove the existence of solution to our
problem, we shall use the following theorem derived from the Krein-Rutman
theorem:

Theorem 1 (Krein-Rutman) Let X be a Banach space, K ⊂ X a solid
cone (i.e the cone has non-empty interior K0), T : X → X a compact linear
operator which is strongly positive, i.e, Tf ∈ K0 if f ∈ K\{0}. Then, r(T ) >
0, and r(T ) is a simple eigenvalue with an eigenvector v ∈ K0; there is no
other eigenvalue with positive eigenvector.

Lemma 4 The operator Tξ is strongly positive in H2
+(Ω) under the assump-

tion ξ ≥ max(ρ, ‖(∇ · F )−‖L∞(Ω)).
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Proof. We first start by defining the operator L as follows:

Lu = Au+ ξu ,

then, Lu = f ≥ 0 if u = Tξf . Under the assumptions on ξ, we have that the
operator has a zero order term given by ξ + ∇ · F ≥ 0 on Ω. Thus, we can
apply the weak maximum principle to L, see [13, page 329] deducing that

min
ν∈Ω̄

u = − max
ν∈∂Ω

u−.

Now, assume that the minimum of u in Ω is negative, then it is achieved at a
ν0 ∈ ∂Ω such that u(ν0) < 0. Using (10) we get

β2

2

∂u

∂n
(ν0) = u(ν0)F · n > 0 ,

contradicting the fact that ν0 is a minimum at the boundary. Thus, we have
proved u ≥ 0 and that Tξ maps nonnegative functions into itself: Tξ : H2

+(Ω)→
H2

+(Ω).
Suppose now f ∈ K\{0} and u = Tξf . Moreover, if there exists ν0 ∈ Ω,

such that u(ν0) = 0, then

min
Ω

u = u(ν0) = 0,

because u(ν) ≥ 0, ∀ν ∈ Ω. Therefore, by the strong maximum principle, we
have u = C constant and thus, u = 0. This is a contradiction because f 6= 0.
Then, we have

u(ν) > 0 , ∀ν ∈ Ω.

Consider now ν0 ∈ ∂Ω, we will prove that u(ν0) > 0. If u(ν0) = 0, then it
is a strict minimum of u at the boundary, and thus

∂u

∂n
(ν0) < 0.

by Hopf’s lemma [13, page 330]. Using (10), we have

β2

2

∂u

∂n
(ν0) = u(ν0)F · n = 0,

which is in contradiction. Thus, u(ν) > 0, ∀ν ∈ Ω̄, i.e. u ∈ K0. �
We can now prove the main theorem :

Theorem 2 Under assumptions (10), there exists an unique probability den-
sity function u∞ ∈ H4(Ω), u∞(ν) > 0 in Ω̄ satisfying:

Au = 0 in Ω(
Fu− β2

2
∇u
)
· n = 0 on ∂Ω

. (18)
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Proof. (a) Existence and positivity
Using Lemma 3 and 4, we have that Tξ satisfies the hypothesis in Theorem 1
for ξ large enough. Therefore, r(Tξ) > 0 and there exists a positive eigenvector
v such that Tξv = r(Tξ)v, i.e.,

A(r(Tξ)v) + ξ r(Tξ)v = v.

Let u = r(Tξ)v, then u satisfies the boundary conditions in (12) and,

Au+ ξu = λu with λ =
1

r(Tξ)
.

equivalent to,

Au = (λ− ξ)u. (19)

Multiplying by ϕ ∈ H1(Ω) on both sides of (19) and integrating by parts, we
obtain: ∫

Ω

β2

2
∇u · ∇ϕdν −

∫
Ω

uF · ∇ϕdν = (λ− ξ)
∫
Ω

uϕdν.

Then, choosing ϕ = 1, we get:

(λ− ξ)
∫
Ω

u dν = 0.

But u > 0, because u = r(Tξ)v > 0 , thus ξ = λ = 1
r(Tξ)

. Therefore, the

existence and positivity of a stationary state, i.e., Au = 0 are obtained, since
we can choose any multiple of u, we take the one satisfying the normalization
condition (5).

(b) Uniqueness
Let u1 > 0 satisfies (18). By standard regularity theory, u1 ∈ H2(Ω) and then
u1 ∈ K. Hence, we have:

Au1 + ξu1 =
1

r(Tξ)
u1

by recalling that ξ = 1
r(Tξ)

. This implies A(r(Tξ)u1) + ξr(Tξ)u1 = u1. On the

other hand, by definition of Tξ, we also have A(Tξu1)+ξTξu1 = u1. Therefore,
Tξu1 = r(Tξ)u1.

Recalling that r(Tξ) is a simple eigenvalue, we obtain u1 = cu. By means
of the normalization hypothesis (5), we finally prove the uniqueness of the
solution. By Hopf’s Lemma proceeding as in the last part of Lemma 4, we
deduce the strict positivity of u∞. �
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3.2 Time evolution problem

Let us first consider the bilinear form associated to A:

a(t, u, v) =

∫
Ω

β2

2
∇u · ∇v dν −

∫
Ω

uF · ∇v dν , ∀u, v ∈ H1(Ω) , (20)

It is easy to check that :

i. Let T ∈ R∗+, then the mapping t 7→ a(t, u, v) is measurable on [0, T ], for
fixed u, v ∈ H1(Ω) since it is constant in time.

ii. The bilinear form a(t, u, v) is continuous:

|a(t, u, v)| ≤M ||u||H1 ||v||H1 , ∀ t ∈ [0, T ], u, v ∈ H1(Ω) ,

and coercive

a(t, u, u) + ρ||u||2L2 ≥ θ||u||H1 ∀ t ∈ [0, T ], u ∈ H1(Ω)

with M > 0, θ and ρ given in Lemma 1.

We say that u is a weak solution of (11) if u ∈ L2(0, T ;H1(Ω)) and satisfies:

d

dt

∫
Ω

uv dν + a(t, u, v) =

∫
Ω

fv dν. (21)

Theorem 3 Problem (11) has an unique strong solution.

Proof. The existence of an unique weak solution to (11) is proved applying
[26, Theorem 27.3]. Moreover, the weak solution u belongs to L2(0, T ;H2(Ω)),
see [26, Theorem 27.5]. Now, integrating by parts (21), with f = 0, we get:∫

Ω

(
∂u

∂t
− β2

2
∆u+∇ · (Fu)

)
v dν +

∫
∂Ω

(
Fu− β2

2
∇u
)
· n v dσ = 0 , (22)

for all v ∈ H1(Ω). Choosing v ∈ C∞c (Ω), we obtain, in the distributional
sense:

∂u

∂t
− β2

2
∆u+∇ · (Fu) = 0, (23)

which is equivalent to ∂tu+Au = 0. Finally, replacing (23) in (22), we have:∫
∂Ω

(
Fu− β2

2
∇u
)
· n v dσ = 0 ∀ v ∈ H1(Ω),

yielding to:
(
Fu− β2

2 ∇u
)
·n = 0 on ∂Ω. Hence the weak solution u is in fact

a strong solution. �
Concerning the positivity of the solution of (11), we remark that since the

flux F has negative divergence, the maximum principle does not hold in our
case. Nevertheless, it is possible to prove the positivity for the solution using
the relative entropy decay, as shown in the next section. Concerning the dual
problem (13), it is a standard evolution problem with Neumann boundary
conditions for which classical references apply, see [13].
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3.3 Convergence to steady state

In order to show the positivity of the solution of problem (11) and the con-
vergence to the stationary solution, u∞ of problem (18), we need to prove the
decay of the relative entropy, see [19]. We will hence consider problems (11)
and (13). We first prove the following conservation result:

Lemma 5 Given any strong solution of (11) with normalized initial data,
then the solution satisfies mass conservation, that is:∫

Ω

u(t, ν) dν =

∫
Ω

u0(ν) dν = 1. (24)

Proof. Let us consider the product of u and v, respectively solutions to
(11) and (13). Integrating over the phase space Ω the derivative in time of uv,
and using (11) and (13), we get:

d

dt

∫
Ω

uv dν = −
∫
Ω

(
−Fu+

β2

2
∇u
)
· ∇v dν +

∫
Ω

u
∂v

∂t
dν =

=

∫
Ω

uF · ∇v dν − β2

2

∫
Ω

u∆v dν +

∫
Ω

u
∂v

∂t
dν = 0.

Hence, ∫
Ω

uv dν =

∫
Ω

u0v0 dν

and the result follows by considering that constant functions are solutions of
(13). �

Given any convex function H = H (ω), where ω = u2/u1 and u1 and u2

are strong solutions of (11) with u1 > 0 in Ω̄, we have the following:

Lemma 6 For any u1 and u2 strong solutions of (11), and v strong solution
of (13) with u1, v > 0 in Ω̄, then:

d

dt
[vu1H (ω)] =

β2

2

(
∇ ·
[
v2∇

(u1

v
H (ω)

)]
− vu1H

′′ (ω) |∇ (ω)|2
)

−∇ · [Fvu1H (ω)] (25)

Proof. Let us develop the left hand side of (25), using (11) and (13):

d

dt
[vu1H (ω)] = −∇ · [Fu1vH (ω)] + u1F · ∇ (vH (ω))

− u1H (ω)F · ∇v +
u2

u1
vH ′ (ω)∇ · (u1F )

− vH ′ (ω)∇ · (u2F )− β2

2
u1H (ω)∆v

+
β2

2

[
vH (ω)− u2

u1
vH ′ (ω)

]
∆u1 +

β2

2
vH ′ (ω)∆u2 .
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We separate now the computation in two parts: the one concerning first order
derivatives (I) and the one concerning second order derivatives (II). We start by
computing (I). Leaving the first term unchanged and developing the following
ones, we get:

(I) = −∇ · [Fu1vH (ω)] + u1H (ω)F · ∇v

+ vH ′ (ω)F ·
(
∇u2 −

u2

u1
∇u1

)
− u1H (ω)F · ∇v

+
u2

u1
vH ′ (ω)∇u1 · F + vH ′ (ω)u2∇ · F

− vH ′ (ω)∇u2 · F − vH ′ (ω)u2∇ · F = −∇ · [Fu1vH (ω)] .

Concerning the second part (II), we start developing ∇·
[
v2∇

(
u1

v H (ω)
)]

, and
find that:

∇ ·
[
v2∇

(u1

v
H (ω)

)]
=− u1H (ω)∆v +

[
vH (ω)− u2

u1
vH ′ (ω)

]
∆u1

+ vH ′ (ω)∆u2 −∇vH ′ (ω)

(
∇u2 −

u2

u1
∇u1

)
+H ′ (ω)∇u2 · ∇v + vH ′′ (ω)∇u2 · ∇ (ω)

− u2

u1
H ′ (ω)∇u1 · ∇v −

u2

u1
vH ′′ (ω)∇u1 · ∇ (ω) .

Multiplying by β2

2 , recalling part (II) of our development and that u1∇ (ω) =
∇u2 − u2

u1
∇u1, we then get:

β2

2
∇ ·
[
v2∇

(u1

v
H (ω)

)]
= (II) +

β2

2
vu1 |∇ (ω)|2H ′′ (ω) ,

which completes the proof in the case H is smooth. �
Let us now define the relative entropy operator:

Hv(u2|u1) =

∫
Ω

vu1H (ω) dν (26)

and the decay operator:

Dv(u2|u1) =

∫
Ω

vu1H
′′ (ω)

∣∣∣∣∇(u2

u1

)∣∣∣∣2 dν. (27)

Then we have the following:

Theorem 4 For any u1 and u2 strong solutions of (11), and v strong solution
of (13) with u1, v > 0 in Ω̄, if H is a smooth convex function then, the relative
entropy is decreasing in time and

d

dt
Hv(u2|u1) = −β

2

2
Dv(u2|u1) ≤ 0. (28)
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Proof. Integrating (25) over the domain Ω, we get:

d

dt

∫
Ω

vu1H (ω) dν =− β2

2

∫
Ω

vu1H
′′ (ω) |∇ (ω)|2 dν −

∫
∂Ω

(F · n)vu1H (ω) dσ

+
β2

2

∫
∂Ω

v2∇
(u1

v
H (ω)

)
· ndσ .

We just have to show that the integration on the boundaries are equal to zero.
Developing the last term, we get:∫

∂Ω

(F · n)vu1H (ω) dσ+
β2

2

∫
∂Ω

v2∇
(u1

v
H (ω)

)
· ndσ =∫

∂Ω

(F · n)vu1H (ω) +
β2

2

∂u1

∂n
vH (ω) dσ

+

∫
∂Ω

β2

2
u1
∂v

∂n
H (ω) +

β2

2
vH ′ (ω)u1

∂ω

∂n
dσ.

Then, applying boundary conditions in (11) and (13), we have:

(F · n)vu1H (ω)− β2

2

∂u1

∂n
vH (ω) = 0,

β2

2
u1
∂v

∂n
vH (ω) = 0.

Finally, recalling that ω = u2/u1, that from (11) we have

F · n =
β2

2

1

u1

∂u1

∂n
,

and applying (13), we obtain:∫
∂Ω

β2

2
vH ′ (ω)u1

∂ω

∂n
dσ =

∫
∂Ω

β2

2

(
vH ′ (ω)

∂u2

∂n
− vH ′ (ω)

∂u1

∂n

u2

u1

)
dσ =

∫
∂Ω

β2

2
vH ′ (ω)

∂u2

∂n
− vH ′ (ω) (F · n)u2 dσ = 0,

and the theorem is proved. �
We can now prove the positivity of the solution of the evolution problem

for the linear Fokker-Planck equation (11).

Theorem 5 If u0 is nonnegative, then the solution u of problem (11) is non-
negative.
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Proof. Consider the operators (26) and (27), and let u1 be the stationary
solution u∞ of problem (12), and v a positive constant, say v = 1. We re-
call that, u∞ > 0 in Ω̄ and that constants are solution to (13). Moreover, let
H(ω) = ω−, the negative part of ω, ω− = max(−ω, 0). Then H(ω) is a posi-
tive and convex function than can be approximated easily by smooth convex
positive functions Hδ(ω). Thus, we can obtain

d

dt

∫
Ω

u∞Hδ

(
u2

u∞

)
dν ≤ 0.

and by approximation δ → 0, we deduce

h(t) :=

∫
Ω

u∞H

(
u2(t, ν)

u∞

)
dν ≤

∫
Ω

u∞H

(
u2(0, ν)

u∞

)
dν , (29)

for all t ≥ 0. Here, u2 is any solution of (11) endowed by the positive initial
condition u2(t = 0, ν1, ν2) = u0(ν1, ν2) ≥ 0. Hence, the function h(t) ≥ 0
is decreasing in time, because of (29), and at the initial time t = 0, h(0) =
0. Therefore, h(t) = 0 for all t ≥ 0, and, as u∞ is positive, u2 must be
nonnegative. �

The consequences of the existence of this family of Liapunov functionals
given in Theorem 4 for (11) have already been explored for several equations
in [18,19] where they have been called general relative entropy (GRE) inequal-
ities. The same conclusions apply here.

Corollary 1 Given F satisfying (10) and any solution u with normalized ini-
tial data u0 to (11), then the following properties hold:

i) Contraction principle:∫
Ω

|u(t, ν)| dν ≤
∫
Ω

|u0(ν)| dν. (30)

ii) Lp bounds, 1 < p <∞:∫
Ω

u∞(ν)

∣∣∣∣u(t, ν)

u∞(ν)

∣∣∣∣p dν ≤ ∫
Ω

u∞(ν)

∣∣∣∣ u0(ν)

u∞(ν)

∣∣∣∣p dν. (31)

iii) Pointwise estimates:

inf
ν∈Ω

u0(ν)

u∞(ν)
≤ u(t, ν)

u∞(ν)
≤ sup
ν∈Ω

u0(ν)

u∞(ν)
. (32)

This corollary is a consequence of the GRE inequality in Theorem 4 with
H(s) = |s|, H(s) = |s|p, and H(s) = (s − k)2

+ respectively by approxima-
tion from smooth convex functions. Moreover, the GRE inequality gives the
convergence of the solution u(t) to the stationary state u∞.
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Corollary 2 (Long time asymptotic) Given F satisfying (10) and any
solution u with normalized initial data u0 to (11), then

lim
t→∞

∫
Ω

|u(t, ν)− u∞(ν)|2 dν = 0 . (33)

Proof. Using the general entropy inequality with H(s) = s2/2 and v = 1,
we get from Theorem 4 that∫

Ω

u(T, ν)2

u∞(ν)
dν + 2

∫ T

0

∫
Ω

u∞(ν)

∣∣∣∣∇(u(t, ν)

u∞(ν)

)∣∣∣∣2 dν dt ≤ ∫
Ω

u0(ν)2

u∞(ν)
dν , (34)

for all T > 0. From (34), we deduce that∫ ∞
0

∫
Ω

u∞(ν)

∣∣∣∣∇(u(t, ν)

u∞(ν)

)∣∣∣∣2 dν dt <∞ ,

and thus, there exits {tn} ↗ ∞ such that for any fixed T > 0∫ tn+T

tn

∫
Ω

u∞(ν)

∣∣∣∣∇(u(t, ν)

u∞(ν)

)∣∣∣∣2 dν dt→ 0 as n→∞.

Now, developing the square, we deduce∫
Ω

u∞

∣∣∣∣∇(u(t)

u∞

)∣∣∣∣2 dν =

∫
Ω

(
|∇u(t)|2

u∞
− 2
∇u(t) · ∇u∞

u2
∞

u(t)

+
|∇u∞|2

u3
∞

u(t)2

)
dν

=

∫
Ω

(
|∇u(t)|2

u∞
+
|∇u∞|2

u3
∞

u(t)2

)
dν (35)

+

∫
Ω

u(t)2∇ ·
(
∇u∞
u2
∞

)
dν −

∫
∂Ω

u(t)2

u2
∞

∂u∞
∂n

dσ

where an integration by parts has been done in the last term. Taking into
account that the stationary solution u∞ ∈ H4(Ω) and that is strictly positive,
from Theorem 2, we get that u∞ and their derivatives up to second order are
in C(Ω̄) with u∞ bounded away from zero. From this fact together with the
boundary condition

β2

2

∂u∞
∂n

= u∞(F · n),

and the L2 estimates in (31), we conclude that there exists a constant depend-
ing only on F , u0 and u∞ such that the terms∫

∂Ω

u(t)2

u2
∞

∂u∞
∂n

dσ,

∫
Ω

u(t)2∇ ·
(
∇u∞
u2
∞

)
dν,

and ∫
Ω

|∇u∞|2

u3
∞

u(t)2 dν
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are uniformly bounded in t ≥ 0. This implies immediately that∫ tn+T

tn

∫
Ω

|∇u(t)|2

u∞
dν dt

is uniformly bounded in n. Therefore, defining the sequence un(t, ν) := u(t+
tn, ν) for all t ∈ [0, T ] and ν ∈ Ω, we deduce that un ∈ L2(0, T ;H1(Ω))
uniformly bounded in n since u∞ is bounded away from zero. Using this fact
and the L2-bounds in (31), we can come back to the equation satisfied by u(t)
and check that ∂un

∂t ∈ L
2(0, T ;H−1(Ω)) uniformly in n. The standard Aubin-

Lions’s compactness lemma implies the existence of a subsequence, denoted
with the same index, such that un → u∗ strongly in L2(0, T ;L2(Ω)) and weakly
in L2(0, T ;H1(Ω)).

From (35), we can easily deduce that

0 ≤
∫ T

0

∫
Ω

u∞(ν)

∣∣∣∣∇(u∗(t, ν)

u∞(ν)

)∣∣∣∣2 dν dt
≤ lim inf

n→∞

∫ T

0

∫
Ω

u∞(ν)

∣∣∣∣∇(un(t, ν)

u∞(ν)

)∣∣∣∣2 dν dt→ 0 as n→∞ ,

and thus, u∗/u∞ is constant. Due to the normalisation condition in (24), then
u∗ = u∞. Since the limit is the same for all subsequences, we deduce the
desired claim. �

Remark 2 (Splitting and Rate of Convergence) We finally remark that, even if
the flux F is not in a gradient form, following [2,3,4], once we have the exis-
tence, uniqueness and positivity for the solution u∞ to the stationary problem
associated to (7), we may split the flux F into a gradient part plus a non
gradient one. In fact, let A be defined by A = − log u∞, so that e−A = u∞ is
the solution of the stationary problem associated to (7). Then we have:

∇ ·
(
Fe−A +

β2

2
∇Ae−A

)
= 0 ,

or equivalently

∇ ·
((

F +
β2

2
∇A
)
e−A

)
= 0 ,

Defining G = (F + β2

2 ∇A), we have split F as F = −β
2

2 ∇A+G. In particular,
we note that G is such that ∇ · (Ge−A) = 0, but we do not have yet an
explicit form for G. Once this splitting is done, a variation of entropy-entropy
dissipation arguments as in [5, Subsection 2.4] in bounded domains with the
no-flux boundary conditions should lead to an exponential rate of convergence
under the assumption that the hessian matrix of A, D2A, is positive definite
with an explicit rate given by the minimum eigenvalue of D2A. However, we
do not know under which assumptions we can show that the hessian matrix
of the potential A is positive definite or equivalently that u∞ is log-concave.
It is worthy to mention that the Krein-Rutman theorem used shows that all
other eigenvalues of problem (12) are negative but no general conditions on the
explicit form of F to measure the spectral gap are known to our knowledge.
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4 Conclusions

In this paper, we have presented a kinetic description of a stochastic system
of differential equations, see [11], describing the behaviour of two interacting
populations of neurons under the action of two possibly different stimuli. The
analysis is based on the Fokker-Planck equation associated to a stochastic
differential system modeling the firing rates of the two neuron populations.
An important feature of our model is that the flux term in the Kolmogorov
equation is not the gradient of a potential function. This implies that we do
not have explicit solutions.

Performing a classic finite difference discretization scheme, on one hand
we obtain the same results as in [11], and additionally, we give the temporal
evolution of each population and the two-dimensional profile of the solutions.
The evolution on time highlights that the problem we consider is characterized
by a slow-fast behaviour, while the two-dimensional plot shows that the two
density picks are aligned along a curve, called slow-manifold. Moreover, we
numerically show and prove that the decay of the solution to equilibrium
has an exponential behaviour. This trend to equilibrium has implications in
finding the probability of reaching a decision and the reaction time. Finally,
we have performed an “exit time” test, showing the exponential dependence
of the exit time with respect to the noise strength β. We remark that due to
the expression of the sigmoidal function ϕ(x), we have no explicit information
about the speed of the decay to equilibrium, nor about the exit time problem.

One main aspect of our numerical simulations is the long computing-time
needed in order to reach equilibrium. This is mainly due to the slow-fast behav-
ior of the stochastic differential system. As explained also in [8], these kinds
of problems are characterized by the fast dynamics of a solution towards a
curve, on which the behavior becomes slow. We suggest that it is possible to
reduce our problem to a one-dimensional model defined on the slow-manifold,
i.e. the curve relying the three equilibrium points of the stochastic differential
system, see [7]. The same approach was indeed applied on the mutual inhi-
bition model to derive two one-dimensional independent Ornstein-Uhlenbeck
equations, see [8]. Nevertheless, in our model, due to the form of the sigmoidal
function ϕ(x), we do not have explicit/analytical expressions for this manifold,
and all computations and the reduction to the one-dimensional model have to
be done numerically. Clearly, for this one-dimensional reduction we will have
an explicit expression for the steady state, and also explicit formulations for
the exit time problem. Using this reduced model (with a very reduced com-
putational time), it should be possible to investigate in detail the effects of
the parameters of the model for the two choices task paradigm of decision
making. Since this is beyond the goal of this paper, we shall not detail further
this aspect, which we will develop in future work.

Finally, we have rigorously shown this numerically observed stabilization
in time of the probability density in the Fokker-Planck setting. We obtained
two main mathematical elements, first the existence, uniqueness and positivity
of the solution of the time dependent problem, i.e. the well-posedness of the
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problem; and second, the convergence in time of this solution to the equilibrium
solution, i.e. the solution of the stationary problem. Both these elements are
important. The first one ensures that the model makes sense, in fact existence
and uniqueness of a positive solution means that given initial data we will
have a unique evolution for the probability of neuron populations with a well-
defined positive firing rate. The second one shows that the system of neuron
populations will reach a unique behaviour if we wait for a long time irrespective
of its initial assumption. Obtaining an estimate on the rate of convergence by
estimating the first nonzero eigenvalue or spectral gap is an open problem
directly related to the reaction time.
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