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A Decision-making Fokker-Planck model in

Computational Neuroscience

Jose Antonio Carrillo∗, Stéphane Cordier†, Simona Mancini†

Abstract

Minimal models for the explanation of decision-making in compu-
tational neuroscience are based on the analysis of the evolution for
the average firing rates of two interacting neuron populations. While
these models typically lead to multi-stable scenario for the basic de-
rived dynamical systems, noise is an important feature of the model
taking into account finite-size effects and robustness of the decisions.
These stochastic dynamical systems can be analyzed by studying care-
fully their associated Fokker-Planck partial differential equation. In
particular, we discuss the existence, positivity and uniqueness for the
solution of the stationary equation, as well as for the time evolving
problem. Moreover, we prove convergence of the solution to the the
stationary state representing the probability distribution of finding the
neuron families in each of the decision states characterized by their av-
erage firing rates. Finally, we propose a numerical scheme allowing
for simulations performed on the Fokker-Planck equation which are in
agreement with those obtained recently by a moment method applied
to the stochastic differential system. Our approach leads to a more
detailed analytical and numerical study of this decision-making model
in computational neuroscience.

1 Introduction

The derivation of biologically relevant models for the decision-making pro-
cesses done by animals and humans to choose between alternative behaviors
based on perceptual information is an important question in neurophysi-
ology and psychology. It is quite common to observe bi-stability of the
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decisions taken in several psychological experiments widely used by neu-
roscientists. Archetypical examples of these multi-stable decision-making
process are bistable visual perception, that is, two distinct possible interpre-
tations of the same unchanged physical retinal image: Necker cube, Rubins
face-vase, binocular rivalry and bistable apparent motion [6, 10, 16].

In order to explain these phenomena, biologically realistic noise driven
neural circuits have been proposed in the literature [8] and even used to
account qualitatively for some experimental data [19]. Minimal models pro-
posed consist of two interacting families of neurons. Each family of neurons
is characterized by their averaged firing rate, averaged number of spikes pro-
duced per time, measuring their activity level. These neuron families are
more correlated to their own behavior than with others and this mechanism
is mediated by inhibition from the rest of neurons and the sensory input.
The external stimuli may produce an increasing activity of one of the neu-
ron families leading to a decision state in which we have a high/low activity
ratio of the firing rates. Decision-making in these models is then under-
stood as the fluctuation-driven transition from a spontaneous state (similar
firing rates of both families) to a decision state (high/low activity level ratio
between the two families).

As already explained and discussed in different works [9, 10, 18], the
theory of stochastic dynamical systems offers a useful framework for the
investigation of the neural computation involved in these cognitive processes.
Noise is an important ingredient in these models since such neural families
are comprised of a large number of spiking neurons, and then the fluctuations
arise naturally through noisy input and/or disorder in the collective behavior
of the network. Moreover, this is used to introduce finite-size effect of the
neuron families as discussed in [9, 10].

The precise model considered in this work uses a Wilson-Cowan [20]
type system for describing the evolution in time of the firing rates of two
population of neurons:

τ
dνi(t)

dt
= −νi(t) + φ



λi +
∑

j=1,2

wijνj(t)



 + ξi(t), i = 1, 2, (1)

where τ is the typical time relaxation and ξi(t), i = 1, 2, represent a white
noise of amplitude β, i.e., they correspond to independent brownian motions
with variance β2/2.

In (1) the function φ(x) has a sigmoidal shape determining the response
function of the neuron population to a mean excitation x given by xi(t) =
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λi +
∑

j wijνj , i = 1, 2 in each population:

φ(x) =
νc

1 + exp(−α(x/νc − 1))
, (2)

where λi are the external stimuli applied to each neuron population and
wij are the connection coefficients. The parameter νc represents both the
maximal activity rate of the population and the frequency input needed to
drive the population to half of its maximal activity.

Following [17, 13, 9], we assume that neurons within a specific population
are likely to correlate their activity, and to interact via strong recurrent exci-
tation with a dimensionless weight w+ > 1 greater than a reference baseline
value established to 1. Analogously, neurons in two different populations
are likely to have anti-correlated activity expressed by a excitatory weight
lower than baseline, w− < 1. Furthermore, we assume that there is global
feedback inhibition, as a result of which all neurons are mutually coupled
to all other neurons in an inhibitory fashion; we will denote this inhibitory
weight by wI . As a result, the synaptic connection coefficients wij , repre-
senting the interaction between population i and j, are the elements of a
2 × 2 symmetric matrix W given by

W =

[

w+ − wI w− − wI

w− − wI w+ − wI

]

,

The typical sypnaptic values considered in these works are such that w− <
wI < w+ leading to cross-inhibition and self-excitation.

Applying standard methods of Ito calculus, see for instance [12], we can
prove that the probability density p = p(t, ν) of finding the neurons of both
populations firing at averaged rates ν = (ν1, ν2) at t > 0, satisfies a Fokker-
Planck equation, alsow known as the forward Kolmogorov equation. Hence,
p(t, ν) must satisfy:

∂tp + ∇ · ([−ν + Φ(Λ + W · ν)] p) − β2

2
∆p = 0 (3)

where ν ∈ Ω = [0, νm] × [0, νm], Λ = (λ1, λ2), Φ(x1, x2) = (φ(x1), φ(x2)),
∇ = (∂ν1

, ∂ν2
) and ∆ = ∆ν . We choose to complete equation (3) by the

following no-flux boundary conditions:
(

[−ν + Φ(Λ + W · ν)] p − β2

2
∇p

)

· n = 0 (4)

where n is the outward normal to the domain Ω. Physically, these boundary
conditions mean that neurons cannot spike with arbitrarily large firing rates
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and thus there is a typical maximal value of the averaged firing rate νm and
that the solution to (3) is a probability density function, i.e.,

∫

Ω
p(t, ν) dν = 1. (5)

In order to simplify notations, let us consider, from now on, the vector
field F = (F1, F2), representing the flux in the Fokker-Planck equation:

F = −ν + Φ(Λ + W · ν) =

(

−ν1 + φ(λ1 + w11ν1 + w12ν2)
−ν2 + φ(λ2 + w21ν1 + w22ν2)

)

(6)

then, equation (3) and boundary conditions (4) read:

∂tp + ∇ ·
(

F p − β2

2
∇p

)

= 0 (7)

(

F p − β2

2
∇p

)

· n = 0 (8)

Let us first comment that the corresponding deterministic dynamical
system to (1) in the absence of noise has a region of parameters exhibiting a
multi-stable regime. The relevant fixed point solutions are the spontaneous
state and the two states representing a decision, called decision states. For
sufficiently strong inhibition wI the two decision states are bistable with
respect to one another. Let us point out that the deterministic equations is
not a gradient flow.

Let us also remark that equation (7) is linear in p, but we cannot have an
explicit solution in exponential form to the associate steady state problem.
Indeed, the drift vector F is not the gradient of a potential V as it can be
easily checked. Hence, it is not possible to give an explicit expression, of
the type exp(−2V/β2), of the steady states of equation (7). Nevertheless,
(see Sect. 2.3), we will show that the steady state solution has an exponen-
tial shape. This question is related to general problems of Fokker-Planck
equations with non-gradients drifts [2, 3] arising also in polymer fluid flow
problems [4].

In fact, in a bounded domain Ω and under the assumption that the flux
F is regular enough and incoming in the domain F · n < 0, we will show
the existence of an unique positive normalized steady state, or equilibrium
profile, for the problem (7)-(8). This assumption on the drift F is verified
in our particular computational neuroscience model for νm large enough. In
order to obtain this theorem we use classical functional analysis theorems
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via a variant of the Krein-Rutman theorem. This will be the first objective
of Section 2. We will also prove existence, uniqueness and positivity of the
probability density solution of the evolutionary Fokker-Planck equation, and
also its convergence towards the unique normalized steady state problem.
This result shows the global asymptotic stability of this unique stationary
state leading to the final probability of the decision states in our neuroscience
model.

Finally, Section 3 is devoted to the numerical study of the above model,
to the discussion of the numerical results and their relation with those of [18,
9, 10]. Let us remark that the Fokker-Planck approach has not been very well
analyzed and used by computational neuroscientists due to its higher degree
of sophistication. Moreover, the mathematical problem corresponding to
(7)-(8) although linear, it has not been dealt with in detail due to their non
classical boundary conditions. This work shows that the direct treatment
of the Fokker-Planck equation can be useful both at the analytical and the
numerical level.

2 Existence, Uniqueness and Asymptotic Stability

of the Stationary Solution

In this section we first study the existence, uniqueness and positivity of the
solution of the associated stationary problem, see subsection 2.1, then we
prove the existence and uniqueness of the solution for the Fokker-Planck
model (7), see subsection 2.2. Finally, in subsection 2.3, we use the general
relative entropy strategy [14, 15] to show the decay of the relative entropy,
and as a consequence, we can prove the convergence of this evolution toward
the unique positive normalized solution of the stationary problem associated
to (7)-(8).

Let us set the notation for this section. We will first assume we have a
bounded domain Ω ⊂ R

2 for which the divergence theorem and the stan-
dard trace theorems for Sobolev functions, for instance the embedding from
H2(Ω) onto H3/2(∂Ω), are valid. Moreover, we need the strong maximum
principle to apply, and thus, we will assume Ω ∈ C2. Obviously, this is not
true for square like domains as in the computational neuroscience model at
the origin of this work. However, it is true for smooth approximations of
rectangular domains which avoid the corners in the domain of interest. As
announced, we assume that the flux function satisfies

F ∈ C1(Ω̄, R2) with F · n < 0 on ∂Ω, (9)
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being n the outwards unit normal to ∂Ω.
Let us, define the following linear operator A, for every given u ∈ H2(Ω):

Au = −β2

2
∆u + ∇ · (Fu).

Then, the Fokker-Planck problem (7)-(8) for the distribution function p(t, ν)
is just a particular case of the general Fokker-Planck equation for u(ν, t) with
non-gradient drift that reads:















∂u

∂t
+ Au = 0 in Ω × (0, T )

(

Fu − β2

2
∇u

)

· n = 0 on ∂Ω × (0, T )
, (10)

and we endow the parabolic system (10) by the initial condition u(·, 0) =
u0(·) ∈ L2(Ω).

Concerning the stationary problem associated with (10), in subsection
2.1 we will consider the elliptic problem:











Au + ξu = f in Ω
(

Fu − β2

2
∇u

)

· n = 0 on ∂Ω ,
(11)

with f a given function in L2(Ω) and ξ ∈ R conveniently chosen, under the
assumptions (9) and (5).

Finally, in subsection 2.3 we deal with problem (10), and its dual form:











∂v

∂t
= −F · ∇v +

β2

2
∆v, in Ω × (0, T )

∂v

∂n
= 0, on ∂Ω × (0, T )

(12)

associated to the initial conditions: v0(·) = v(0, ·).

2.1 Stationary problem

We consider here the stationary problem (11) and the bilinear form associ-
ated with A :

a(u, v) =

∫

Ω

β2

2
∇u · ∇v dν −

∫

Ω
uF · ∇v dν , ∀u, v ∈ H1(Ω) . (13)

It is easy to check that:
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Lemma 2.1 The bilinear form a(u, v) satisfies:

i. a(u, v) is continuous:

|a(u, v)| ≤ M ||u||H1 ||v||H1 , ∀u, v ∈ H1(Ω),

with M = β2

2 + ||F ||∞.

ii. a(u, v) is ”coercive”, that is, it verifies:

a(u, u) + ρ||u||2L2 ≥ θ||u||H1 ∀u ∈ H1(Ω) ,

with ρ = C + θ with C =
1√
2β2

and θ = β2/4.

Proof. i. We have, from (13):

|a(u, v)| ≤ β2

2

∫

Ω
|∇u||∇v| dν + ‖F‖∞

∫

Ω
|u| |∇v| dν ≤

≤
(

β2

2
+ ‖F‖∞

)

‖u‖H1‖v‖H1 ,

where ||F ||∞ corresponds to the maximum of |F | in Ω̄.
ii. We have, from (13):

β2

2

∫

Ω
|∇u|2 dν ≤ a(u, u) + ‖F‖∞

∫

Ω
|u||∇u| dν.

Now, from the following inequality ab ≤ εa2 +b2/4ε, with a, b, ε > 0, we get:

∫

Ω
|∇u||u| dν ≤ ε

∫

Ω
|∇u|2 dν +

1

4ε

∫

Ω
|u|2 dν.

Then choosing ε so small that: ε‖F‖∞ ≤ β2/4, e.g. ε = β2

8‖F‖∞
we have:

β2

4

∫

Ω
|∇u|2 dν ≤ a(u, u) + C

∫

Ω
|u|2 dν

with

C =
1√
2β2

.
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Finally, from this we obtain:

a(u, u) +

(

C +
β2

4

)

||u||2L2 ≥ β2

4
||u||2H1 ,

which ends the proof. �

Lemma 2.2 For each f ∈ L2(Ω), problem (11) has an unique solution in
H2(Ω) for ξ ≥ ρ.

Proof. Applying Lemma 2.1 we have that a(u, v) + ξ 〈u, v〉L2 is continuous
and coercive, for ξ ≥ ρ. Then, applying Lax-Milgram theorem, we have
that, for each f ∈ L2(Ω), there exists an unique u ∈ H1(Ω) such that,
∀ v ∈ H1(Ω) :

∫

Ω

(

β2

2
∇u · ∇v − uF · ∇v + ξuv

)

dν =

∫

Ω
fv dν. (14)

By regularity, since f ∈ L2(Ω) then we have u ∈ H2(Ω) with traces for u
and its derivatives on the boundary. Thus, integrating by parts (14), we
get, ∀v ∈ H1(Ω) :

∫

Ω

(

∇ · (Fu) − β2

2
∆u + ξu − f

)

v dν+

∫

∂Ω
(Fu−β2∇u) ·n v dσ = 0. (15)

If in (15), we choose v ∈ C∞
c (Ω), we get in distributional sense:

∫

Ω

(

∇ · (Fu) − β2

2
∆u + ξu − f

)

v dν = 0 ∀v ∈ C∞
c (Ω) .

Hence:

∇ · (Fu) − β2

2
∆u + ξu − f = 0 in L2(Ω). (16)

Moreover, replacing (16) in (15), we have:

∫

∂Ω

(

Fu − β2

2
∇u

)

· n v dσ = 0 ,∀v ∈ H1(Ω),

which implies:
(

Fu − β2

2
∇u

)

· n = 0 on ∂Ω ,

that is, u satisfies the boundary conditions. �
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Let us now define the linear operator:

Tξ : L2(Ω) → L2(Ω), Tξf = u, ∀f ∈ L2(Ω) and ∀ξ ≥ ρ

with u the unique solution of (11). In particular, we can prove that:

Lemma 2.3 The operator Tξ : H2(Ω) → H2(Ω) is a compact operator for
all ξ ≥ ρ.

Proof. We have that there exists u = Tξf solution of (11), for any
f ∈ H2(Ω). By regularity, we have u ∈ H4(Ω) and from the estimate
‖u‖H4(Ω) ≤ C‖f‖H2(Ω), we get that Tξ maps H2(Ω) onto itself. Moreover,
the compactness of the imbedding, H4(Ω) →֒ H2(Ω) implies that Tξ is a
compact operator. �

Consider now the cone K:

K = H2
+(Ω) =

{

u ∈ H2(Ω) |u(ν) ≥ 0 a.e ν ∈ Ω
}

,

we remark that it has non-empty interior, see [1, Page 360] and it corre-
sponds to everywhere positive functions in Ω. To prove the existence of
solution to our problem, we shall use the following theorem derived from
the Krein-Rutman theorem:

Theorem 2.1 (Krein-Rutman) Let X be a Banach space, K ⊂ X a solid
cone (i.e the cone has non-empty interior K0), T : X → X a compact
linear operator which is strongly positive, i.e, Tf ∈ K0 if f ∈ K\{0}. Then,
r(T ) > 0, and r(T ) is a simple eigenvalue with an eigenvector v ∈ K0; there
is no other eigenvalue with positive eigenvector.

Lemma 2.4 The operator Tξ is strongly positive in H2
+(Ω) under the as-

sumption ξ ≥ max(ρ, ‖(∇ · F )−‖L∞(Ω)).

Proof. We first start by defining the operator L as follows:

Lu = Au + ξu ,

then, Lu = f ≥ 0 if u = Tξf . Under the assumptions on ξ, we have that the
operator has a zero order term given by ξ + ∇ · F ≥ 0 on Ω. Thus, we can
apply the weak maximum principle to L, see [11, page 329] deducing that

min
ν∈Ω̄

u = − max
ν∈∂Ω

u−.
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Now, assume that the minimum of u in Ω is negative, then it is achieved at
a ν0 ∈ ∂Ω such that u(ν0) < 0. Using (9) we get

β2

2

∂u

∂n
(ν0) = u(ν0)F · n > 0 ,

contradicting the fact that ν0 is a minimum at the boundary. Thus, we
have proved u ≥ 0 and that Tξ maps nonnegative functions into itself: Tξ :
H2

+(Ω) → H2
+(Ω).

Suppose now f ∈ K\{0} and u = Tξf . Moreover, if there exists ν0 ∈ Ω,
such that u(ν0) = 0, then

min
Ω

u = u(ν0) = 0,

because u(ν) ≥ 0, ∀ν ∈ Ω. Therefore, by the strong maximum principle,
we have u = C constant and thus, u = 0. This is a contradiction because
f 6= 0. Then, we have

u(ν) > 0 , ∀ν ∈ Ω.

Consider now ν0 ∈ ∂Ω, we will prove that u(ν0) > 0. If u(ν0) = 0, then
it is a strict minimum of u at the boundary, and thus

∂u

∂n
(ν0) < 0.

by Hopf’s lemma [11, page 330]. Using (9), we have

β2

2

∂u

∂n
(ν0) = u(ν0)F · n = 0,

which is in contradiction. Thus, u(ν) > 0, ∀ν ∈ Ω̄, i.e. u ∈ K0. �

We can now prove the main theorem :

Theorem 2.2 Under assumptions (9), there exists an unique probability
density function u∞ ∈ H4(Ω), u∞(ν) > 0 in Ω̄ satisfying:











Au = 0 in Ω
(

Fu − β2

2
∇u

)

· n = 0 on ∂Ω
. (17)
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Proof. (a) Existence and positivity
Using Lemma 2.3 and 2.4, we have that Tξ satisfies the hypothesis in Theo-
rem 2.1 for ξ large enough. Therefore, r(Tξ) > 0 and there exists a positive
eigenvector v such that Tξv = r(Tξ)v, i.e.,

A(r(Tξ)v) + ξ r(Tξ)v = v.

Let u = r(Tξ)v, then u satisfies the boundary conditions in (11) and,

Au + ξu = λu with λ =
1

r(Tξ)
.

equivalent to,
Au = (λ − ξ)u. (18)

Multiplying by ϕ ∈ H1(Ω) on both sides of (18) and integrating by parts,
we obtain:

∫

Ω

β2

2
∇u · ∇ϕ dν −

∫

Ω
uF · ∇ϕ dν = (λ − ξ)

∫

Ω
uϕ dν.

Then, choosing ϕ = 1, we get:

(λ − ξ)

∫

Ω
u dν = 0.

But u > 0, because u = r(Tξ)v > 0 , thus ξ = λ = 1
r(Tξ) . Therefore, the

existence and positivity of a stationary state, i.e., Au = 0 are obtained, since
we can choose any multiple of u, we take the one satisfying the normalisation
condition (5).

(b) Uniqueness
Let u1 > 0 satisfies (17). By standard regularity theory, u1 ∈ H2(Ω) and
then u1 ∈ K. Hence, we have:

Au1 + ξu1 =
1

r(Tξ)
u1

by recalling that ξ = 1
r(Tξ) . This implies A(r(Tξ)u1) + ξr(Tξ)u1 = u1. On

the other hand, by definition of Tξ, we also have A(Tξu1) + ξTξu1 = u1.
Therefore, Tξu1 = r(Tξ)u1.

Recalling that r(Tξ) is a simple eigenvalue, we obtain u1 = cu. By means
of the normalisation hypothesis (5), we finally prove the uniqueness of the
solution. By Hopf’s Lemma proceeding as in the last part of Lemma 2.4,
we deduce the strict positivity of u∞. �
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2.2 Time evolution problem

Let us first consider the bilinear form associated to A:

a(t, u, v) =

∫

Ω

β2

2
∇u · ∇v dν −

∫

Ω
uF · ∇v dν , ∀u, v ∈ H1(Ω) , (19)

It is easy to check that :

i. Let T ∈ R
∗
+, then the mapping t 7→ a(t, u, v) is measurable on [0, T ],

for fixed u, v ∈ H1(Ω) since it is constant in time.

ii. The bilinear form a(t, u, v) is continuous:

|a(t, u, v)| ≤ M ||u||H1 ||v||H1 , ∀ t ∈ [0, T ], u, v ∈ H1(Ω) ,

and coercive

a(t, u, u) + ρ||u||2L2 ≥ θ||u||H1 ∀ t ∈ [0, T ], u ∈ H1(Ω)

with M > 0, θ and ρ given in Lemma 2.1.

We say that u is a weak solution of (10) if u ∈ L2(0, T ;H1(Ω)) and satisfies:

d

dt

∫

Ω
uv dν + a(t, u, v) =

∫

Ω
fv dν. (20)

Theorem 2.3 Problem (10) has an unique strong solution.

Proof. The existence of an unique weak solution to (10) is proved applying
[21, Theorem 27.3]. Moreover, the weak solution u belongs to L2(0, T ;H2(Ω)),
see [21, Theorem 27.5]. Now, integrating by parts (20), with f = 0, we get:

∫

Ω

(

∂u

∂t
− β2

2
∆u + ∇ · (Fu)

)

v dν +

∫

∂Ω

(

Fu − β2

2
∇u

)

·n v dσ = 0 , (21)

for all v ∈ H1(Ω). Choosing v ∈ C∞
c (Ω), we obtain, in the distributional

sense:
∂u

∂t
− β2

2
∆u + ∇ · (Fu) = 0, (22)

which is equivalent to ∂tu+Au = 0. Finally, replacing (22) in (21), we have:

∫

∂Ω

(

Fu − β2

2
∇u

)

· n v dσ = 0 ∀ v ∈ H1(Ω),

12



yielding to:
(

Fu − β2

2 ∇u
)

· n = 0 on ∂Ω. Hence the weak solution u is in

fact a strong solution. �

Concerning the positivity of the solution of (10), we remark that since
the flux F has negative divergence, the maximum principle does not hold in
our case. Nevertheless, it is possible to prove the positivity for the solution
using the relative entropy decay, as shown in the next section. Concerning
the dual problem (12), it is a standard evolution problem with Neumann
boundary conditions for which classical references apply, see [11].

2.3 Convergence to steady state

In order to show the positivity of the solution of problem (10) and the
convergence to the stationary solution, u∞ of problem (17), we need to
prove the decay of the relative entropy, see [15]. We will hence consider
problems (10) and (12). We first prove the following conservation result:

Lemma 2.5 Given any strong solution of (10) with normalized initial data,
then the solution satisfies mass conservation, that is:

∫

Ω
u(t, ν) dν =

∫

Ω
u0(ν) dν = 1. (23)

Proof. Let us consider the product of u and v, respectively solutions to
(10) and (12). Integrating over the phase space Ω the derivative in time of
uv, and using (10) and (12), we get:

d

dt

∫

Ω
uv dν = −

∫

Ω

(

−Fu +
β2

2
∇u

)

· ∇v dν +

∫

Ω
u

∂v

∂t
dν =

=

∫

Ω
uF · ∇v dν − β2

2

∫

Ω
u∆v dν +

∫

Ω
u

∂v

∂t
dν = 0.

Hence,
∫

Ω
uv dν =

∫

Ω
u0v0 dν

and the result follows by considering that constant functions are solutions
of (12). �

Given any convex function H = H (ω), where ω = u2/u1 and u1 and u2

are strong solutions of (10) with u2 > 0 in Ω̄, we have the following:
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Lemma 2.6 For any u1 and u2 strong solutions of (10), and v strong so-
lution of (12) with u2, v > 0 in Ω̄, then:

d

dt
[vu1H (ω)] =

β2

2

(

∇ ·
[

v2∇
(u1

v
H (ω)

)]

− vu1H
′′ (ω) |∇ (ω)|2

)

−∇ · [Fvu1H (ω)] (24)

Proof. Let us develop the left hand side of (24), using (10) and (12):

d

dt
[vu1H (ω)] = −∇ · [Fu1vH (ω)] + u1F · ∇ (vH (ω))

− u1H (ω) F · ∇v +
u2

u1
vH ′ (ω)∇ · (u1F )

− vH ′ (ω)∇ · (u2F ) − β2

2
u1H (ω) ∆v

+
β2

2

[

vH (ω) − u2

u1
vH ′ (ω)

]

∆u1 +
β2

2
vH ′ (ω) ∆u2 .

We separate now the computation in two parts: the one concerning first
order derivatives (I) and the one concerning second order derivatives (II).
We start by computing (I). Leaving the first term unchanged and developing
the following ones, we get:

(I) = −∇ · [Fu1vH (ω)] + u1H (ω)F · ∇v

+ vH ′ (ω) F ·
(

∇u2 −
u2

u1
∇u1

)

− u1H (ω)F · ∇v

+
u2

u1
vH ′ (ω)∇u1 · F + vH ′ (ω)u2∇ · F

− vH ′ (ω)∇u2 · F − vH ′ (ω) u2∇ · F = −∇ · [Fu1vH (ω)] .

Concerning the second part (II), we start developing ∇ ·
[

v2∇
(

u1

v H (ω)
)]

,
and find that:

∇ ·
[

v2∇
(u1

v
H (ω)

)]

= − u1H (ω) ∆v +

[

vH (ω) − u2

u1
vH ′ (ω)

]

∆u1

+ vH ′ (ω) ∆u2 −∇vH ′ (ω)

(

∇u2 −
u2

u1
∇u1

)

+ H ′ (ω)∇u2 · ∇v + vH ′′ (ω)∇u2 · ∇ (ω)

− u2

u1
H ′ (ω)∇u1 · ∇v − u2

u1
vH ′′ (ω)∇u1 · ∇ (ω) .

14



Multiplying by β2

2 , recalling part (II) of our development and that u1∇ (ω) =
∇u2 − u2

u1
∇u1, we then get:

β2

2
∇ ·

[

v2∇
(u1

v
H (ω)

)]

= (II) +
β2

2
vu1 |∇ (ω)|2 H ′′ (ω) ,

which completes the proof in the case H is smooth. �

Let us now define the relative entropy operator:

Hv(u2|u1) =

∫

Ω
vu1H (ω) dν (25)

and the decay operator:

Dv(u2|u1) =

∫

Ω
vu1H

′′ (ω)

∣

∣

∣

∣

∇
(

u2

u1

)∣

∣

∣

∣

2

dν. (26)

Then we have the following:

Theorem 2.4 Let u1 and v be positive solution to (10) and (12), respec-
tively. If H is a smooth convex function then, the relative entropy is de-
creasing in time and

d

dt
Hv(u2|u1) = −β2

2
Dv(u2|u1) ≤ 0. (27)

Proof. Integrating (24) over the domain Ω, we get:

d

dt

∫

Ω
vu1H (ω) dν = − β2

2

∫

Ω
vu1H

′′ (ω) |∇ (ω)|2 dν −
∫

∂Ω
(F · n)vu1H (ω) dσ

+
β2

2

∫

∂Ω
v2∇

(u1

v
H (ω)

)

· n dσ .

We just have to show that the integration on the boundaries are equal to
zero. Developing the last term, we get:

∫

∂Ω
(F · n)vu1H (ω) dσ+

β2

2

∫

∂Ω
v2∇

(u1

v
H (ω)

)

· n dσ =

∫

∂Ω
(F · n)vu1H (ω) +

β2

2

∂u1

∂n
vH (ω) dσ

+

∫

∂Ω

β2

2
u1

∂v

∂n
H (ω) +

β2

2
vH ′ (ω) u1

∂ω

∂n
dσ.
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Then, applying boundary conditions in (10) and (12), we have:

(F · n)vu1H (ω) − β2

2

∂u1

∂n
vH (ω) = 0,

β2

2
u1

∂v

∂n
vH (ω) = 0.

Finally, recalling that ω = u2/u1, that from (10) we have

F · n =
β2

2

1

u1

∂u1

∂n
,

and applying (12), we obtain:

∫

∂Ω

β2

2
vH ′ (ω)u1

∂ω

∂n
dσ =

∫

∂Ω

β2

2

(

vH ′ (ω)
∂u2

∂n
− vH ′ (ω)

∂u1

∂n

u2

u1

)

dσ =

∫

∂Ω

β2

2
vH ′ (ω)

∂u2

∂n
− vH ′ (ω) (F · n)u2 dσ = 0,

and the theorem is proved. �

We can now prove the positivity of the solution of the evolution problem
for the linear Fokker-Planck equation (10).

Theorem 2.5 If u0 is nonnegative, then the solution u of problem (10) is
nonnegative.

Proof. Consider the operators (25) and (26), and let u1 be the stationary
solution u∞ of problem (11), and v a positive constant, say v = 1. We recall
that, u∞ > 0 in Ω̄ and that constants are solution to (12). Moreover, let
H(ω) = ω−, the negative part of ω, ω− = max(−ω, 0). Then H(ω) is a
positive and convex function than can be approximated easily by smooth
convex positive functions Hδ(ω). Thus, we can obtain

d

dt

∫

Ω
u∞Hδ

(

u2

u∞

)

dν ≤ 0.

and by approximation δ → 0, we deduce

h(t) :=

∫

Ω
u∞H

(

u2(t, ν)

u∞

)

dν ≤
∫

Ω
u∞H

(

u2(0, ν)

u∞

)

dν , (28)
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for all t ≥ 0. Here, u2 is any solution of (10) endowed by the positive
initial condition u2(t = 0, ν1, ν2) = u0(ν1, ν2) ≥ 0. Hence, the function
h(t) ≥ 0 is decreasing in time, because of (28), and at the initial time t = 0,
h(0) = 0. Therefore, h(t) = 0 for all t ≥ 0, and, as u∞ is positive, u2 must
be nonnegative. �

The consequences of the existence of this family of Liapunov functionals
given in Theorem 2.4 for (10) have already been explored for several equa-
tions in [14, 15] where they have been called general relative entropy (GRE)
inequalities. The same conclusions apply here.

Corollary 2.1 Given F satisfying (9) and any solution u with normalized
initial data u0 to (10), then the following properties hold:

i) Contraction principle:

∫

Ω
|u(t, ν)| dν ≤

∫

Ω
|u0(ν)| dν. (29)

ii) Lp bounds, 1 < p < ∞:

∫

Ω
u∞(ν)

∣

∣

∣

∣

u(t, ν)

u∞(ν)

∣

∣

∣

∣

p

dν ≤
∫

Ω
u∞(ν)

∣

∣

∣

∣

u0(ν)

u∞(ν)

∣

∣

∣

∣

p

dν. (30)

iii) Pointwise estimates:

inf
ν∈Ω

u0(ν)

u∞(ν)
≤ u(t, ν)

u∞(ν)
≤ sup

ν∈Ω

u0(ν)

u∞(ν)
. (31)

This corollary is a consequence of the GRE inequality in Theorem 2.4
with H(s) = |s|, H(s) = |s|p, and H(s) = (s − k)2+ respectively by approxi-
mation from smooth convex functions. Moreover, the GRE inequality gives
the convergence of the solution u(t) to the stationary state u∞.

Corollary 2.2 (Long time asymptotics) Given F satisfying (9) and any
solution u with normalized initial data u0 to (10), then

lim
t→∞

∫

Ω
|u(t, ν) − u∞(ν)|2 dν = 0 . (32)
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Proof. Using the general entropy inequality with H(s) = s2/2 and
v = 1, we get from Theorem 2.4 that

∫

Ω

u(T, ν)2

u∞(ν)
dν + 2

∫ T

0

∫

Ω
u∞(ν)

∣

∣

∣

∣

∇
(

u(t, ν)

u∞(ν)

)∣

∣

∣

∣

2

dν dt ≤
∫

Ω

u0(ν)2

u∞(ν)
dν ,

(33)
for all T > 0. From (33), we deduce that

∫ ∞

0

∫

Ω
u∞(ν)

∣

∣

∣

∣

∇
(

u(t, ν)

u∞(ν)

)∣

∣

∣

∣

2

dν dt < ∞ ,

and thus, there exits {tn} ր ∞ such that for any fixed T > 0

∫ tn+T

tn

∫

Ω
u∞(ν)

∣

∣

∣

∣

∇
(

u(t, ν)

u∞(ν)

)∣

∣

∣

∣

2

dν dt → 0 as n → ∞.

Now, developing the square, we deduce

∫

Ω
u∞

∣

∣

∣

∣

∇
(

u(t)

u∞

)∣

∣

∣

∣

2

dν =

∫

Ω

( |∇u(t)|2
u∞

− 2
∇u(t) · ∇u∞

u2
∞

u(t)

+
|∇u∞|2

u3
∞

u(t)2
)

dν

=

∫

Ω

( |∇u(t)|2
u∞

+
|∇u∞|2

u3
∞

u(t)2
)

dν (34)

+

∫

Ω
u(t)2∇ ·

(∇u∞

u2
∞

)

dν −
∫

∂Ω

u(t)2

u2
∞

∂u∞

∂n
dσ

where an integration by parts has been done in the last term. Taking into
account that the stationary solution u∞ ∈ H4(Ω) and that is strictly posi-
tive, from Theorem 2.2, we get that u∞ and their derivatives up to second
order are in C(Ω̄) with u∞ bounded away from zero. From this fact together
with the boundary condition

β2

2

∂u∞

∂n
= u∞(F · n),

and the L2 estimates in (30), we conclude that there exists a constant de-
pending only on F , u0 and u∞ such that the terms

∫

∂Ω

u(t)2

u2
∞

∂u∞

∂n
dσ,

∫

Ω
u(t)2∇ ·

(∇u∞

u2
∞

)

dν,
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and
∫

Ω

|∇u∞|2
u3
∞

u(t)2 dν

are uniformly bounded in t ≥ 0. This implies immediately that
∫ tn+T

tn

∫

Ω

|∇u(t)|2
u∞

dν dt

is uniformly bounded in n. Therefore, defining the sequence un(t, ν) :=
u(t+ tn, ν) for all t ∈ [0, T ] and ν ∈ Ω, we deduce that un ∈ L2(0, T ;H1(Ω))
uniformly bounded in n since u∞ is bounded away from zero. Using this fact
and the L2-bounds in (30), we can come back to the equation satisfied by
u(t) and check that ∂un

∂t ∈ L2(0, T ;H−1(Ω)) uniformly in n. The standard
Aubin-Lions’s compactness lemma implies the existence of a subsequence,
denoted with the same index, such that un → u∗ strongly in L2(0, T ;L2(Ω))
and weakly in L2(0, T ;H1(Ω)).

From (34), we can easily deduce that

0 ≤
∫ T

0

∫

Ω
u∞(ν)

∣

∣

∣

∣

∇
(

u∗(t, ν)

u∞(ν)

)∣

∣

∣

∣

2

dν dt

≤ lim inf
n→∞

∫ T

0

∫

Ω
u∞(ν)

∣

∣

∣

∣

∇
(

un(t, ν)

u∞(ν)

)∣

∣

∣

∣

2

dν dt → 0 as n → ∞ ,

and thus, u∗/u∞ is constant. Due to the normalisation condition in (23),
then u∗ = u∞. Since the limit is the same for all subsequences, we deduce
the desired claim. �

Remark 2.1 (Splitting and Rate of Convergence) We finally remark
that, even if the flux F is not in a gradient form, following [2, 3, 4], once
we have the existence, uniqueness and positivity for the solution u∞ to the
stationary problem associated to (7), we may split the flux F into a gradient
part plus a non gradient one. In fact, let A be defined by A = − log u∞, so
that e−A = u∞ is the solution of the stationary problem associated to (7).
Then we have:

∇ ·
(

Fe−A +
β2

2
∇Ae−A

)

= 0 ,

or equivalently

∇ ·
((

F +
β2

2
∇A

)

e−A

)

= 0 ,

Defining G = (F + β2

2 ∇A), we have split F as F = −β2

2 ∇A + G. In
particular, we note that G is such that ∇ · (Ge−A) = 0, but we do not
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have yet an explicit form for G. Once this splitting is done, a variation of
entropy-entropy dissipation arguments as in [5, Subsection 2.4] in bounded
domains with the no-flux boundary conditions should lead to an exponential
rate of convergence under the assumption that the hessian matrix of A, D2A,
is positive definite with an explicit rate given by the minimum eigenvalue of
D2A. However, we do not know under which assumptions we can show that
the hessian matrix of the potential A is positive definite or equivalently that
u∞ is log-concave. It is worthy to mention that the Krein-Rutman theorem
used shows that all other eigenvalues of problem (11) are negative but no
general conditions on the explicit form of F to measure the spectral gap are
known to our knowledge.

3 Numerical method and results

In this section, we will consider a particular relevant case of the neuroscience
model discussed in the introduction, exactly corresponding to the discussion
in [9]. We will consider the following values of the synaptic connection
parameters: w+ = 2.35, wI = 1.9 and w− = 1− r(w+ − 1)/(1− r) , r = 0.3;
which corresponds to self-excitation and cross-inhibition between the two
neuron families. The sigmoidal response function is determined from α = 4
and νc = 20Hz with external stimuli corresponding to two cases: λ1 = 15Hz
and λ2 = λ1 + ∆λ, with ∆λ = 0 for the unbiased case or ∆λ = 0.1 for the
biased one. The relaxation time for the system is chosen to τ = 10−2s.

It can be shown, by means of direct simulations of the stochastic differen-
tial system (1), that there is a slow-fast behaviour of the solutions towards
equilibrium. More precisely, it is possible to show that, see [9], system
(1) is characterised by two stable and one unstable equilibrium points; for
example, in the unbiased case, if ∆λ = 0, the stable decision states are in
S1 = (1.32, 5.97) and its symmetric S3 = (5.97, 1.32), and the unstable spon-
taneous state is in S2 = (3.19, 3.19), whereas in the biased case ∆λ = 0.1
the stable decision states are in S1 = (1.09, 6.59) and S3 = (5.57, 1.53) and
the unstable spontaneous state is in S2 = (3.49, 3.08). For instance, in figure
1, we highlight, in the unbiased case, the fast convergence of one realisation
of (1) towards the slow-manifold to which the equilibrium points belongs,
and its very slow convergence towards one of the two stable points. The
discussion of this behaviour is beyond the goal of this paper, and a possible
way to use this slow-fast feature of the SDE system (1) will be investigated
elsewhere.

We will now propose a numerical scheme to approximate the solution
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Figure 1: Dynamics, in the unbiased case, of the dynamical system (1) in
the deterministic case (straight lines) and the stochastic case (un-straight
line). Straight lines highlight an approximation of the slow-manifold to
which belongs the equilibrium point of the system. The un-straight line
becomes clearer when the time spent in a point becomes bigger: the particle
starts his dynamic in the point (5, 5), moves almost straight foward towards
the slow-manifold, and then oscillates towards the stable point.
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of the Fokker-Planck equation (7). Let us first comment that a direct ap-
proximation by simple finite differences has an important drawback in terms
of computing time. The main issue being this slow-fast feature of the sys-
tem, producing then a kind of metastable solution that takes a long time to
evolve to the final equilibrium solution concentrating its probability around
the decision states.

In order to discretise and perform numerical simulation of equation (7),
we apply an explicit finite volume method on the bounded domain Ω =
[0, νm]× [0, νm]. We recall that for νm large enough F ·n < 0, hence verifying
assumption (9), and so we choose νm=10 in our numerical simulations. In
order to simplify notations below, we have set τ = 1, but in the figures the
time scale has been adjusted to take into account the relaxation time τ and
being comparable to results in [9] discussed below.

Let i = 0...M1−1 and j = 0...M2−1, and consider the discrete variables:

ni = ν1(i) =

(

i +
1

2

)

∆ν1,

nj = ν2(j) =

(

j +
1

2

)

∆ν2,

where ∆ν1 and ∆ν2 are the mesh size along the ν1 and ν2 direction respec-
tively:

∆νi =
νm

Mi
.

Thus, the discrete variables ni are defined at the centre of the squared
cells. Moreover, let ∆t be the time discretisation step, so that pk(i, j) repre-
sents the distribution function p(k∆t, ni, nj). We note that pk(i, j) are the
unknown values of the discretised distribution function inside the meshes,
whereas pk(i − 1

2 , j − 1
2) are the interpolated values at their interfaces. The

discretised Fokker-Planck equation is then given by:

pk+1(i, j) = pk(i, j) + ∆tFk(i, j), (35)

where :

Fk(i, j) =
1

∆ν1

(

F k

(

i +
1

2
, j

)

− F k

(

i − 1

2
, j

))

+
1

∆ν2

(

Gk

(

i, j +
1

2

)

− Gk

(

i, j − 1

2

))

,
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with F k(i + 1
2 , j) and Gk(i, j + 1

2) the fluxes at the interfaces respectively
defined by :

F k

(

i +
1

2
, j

)

=
(

−ni+1/2 + φ(λ1 + w11ni+1/2 + w12nj)
)

pk

(

i +
1

2
, j

)

− β2

2∆ν1

(

pk(i + 1, j) − pk(i, j)
)

,

Gk

(

i, j +
1

2

)

=
(

−nj+1/2 + φ(λ2 + w21ni + w22nj+1/2)
)

pk

(

i, j +
1

2

)

− β2

2∆ν2

(

pk(i, j + 1) − pk(i, j)
)

.

We choose the most simple interpolation at the interfaces:

pk

(

i +
1

2
, j

)

=
pk(i + 1, j) + pk(i, j)

2
,

and

pk

(

i, j +
1

2

)

=
pk(i, j + 1) + pk(i, j)

2
.

Remark 3.1 Concerning the CFL condition and in order to diminish the
computational time, we compute an adaptative time step ∆t at every itera-
tion. We require, for example, that:

pk(i, j)

2
≤ pk+1(i, j) ≤ 3pk(i, j)

2
.

These conditions lead to the following time step bound:

∆t|Fk(i, j)| ≤ pk(i, j)

2
.

Finally we define at each iteration the following ∆t, for i, j such that pk(i, j) 6=
0 and Fk(i, j) 6= 0:

∆t = min
i,j

pk(i, j)

2|Fk(i, j)| .

This adaptive time step condition gains a factor 100 in the time compu-
tations, with respect to the classical one, but it depends on the number
of discretisation points. For instance, in our simulations we need at least
M1 = M2 = 200, in order to capture the growth of the double picked distri-
bution.
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Finally, we choose to stop our computation when the difference between
two successive distribution profiles is smaller than 10−10, and we say in this
case that we have reached the equilibrium.

Using the above discretisation we compute various quantities as the
marginals N1(t, ν1) and N2(t, ν2) of the distribution function p:

N1(t, ν1) =

∫ νm

0
p(ν1, ν2, t)dν2,

N2(t, ν2) =

∫ νm

0
p(ν1, ν2, t)dν1,

representing the behaviour of each neuron population. We compute as well,
the first, µ1(t), µ2(t), and second γ11(t), γ12(t), γ22(t) moments associated to
the distribution function p. They are respectively given by:

µi(t) =

∫ ∫

Ω
νip(ν1, ν2, t)dν1dν2, i = 1, 2,

γij(t) =

∫ ∫

Ω
νiνjp(ν1, ν2, t)dν1dν2, i, j = 1, 2.

Moreover, we will compute the probabilities ρi(t) for a couple of firing rates
(ν1, ν2) to belong to some domains Ωi:

ρi(t) =

∫ ∫

Ωi

p(ν1, ν2, t)dν1dν2.

In particular, the domains Ωi will be three boxes centered at the three
equilibrium points: Ω1 = [0, 2] × [5, 10] and Ω3 = [5, 10] × [0, 2] for the two
stable points S1 and S3, Ω2 = [2, 5] × [2, 5] for the unstable one, S2.
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Figure 2: Time evolution for the marginals N1(t, ν1). Left: unbiased case.
Right: biased case.
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We present now some numerical results, obtained starting from an initial
condition given by a Gaussian centered at (3, 3), near the unstable position
S2, as in [9]. We considered here both the unbiased (∆λ = 0) and the biased
(∆λ = 0.1) case, both with a standard deviation β = 0.1.

In figure 2 we represent the evolution in time of the marginal N1(t). In
the unbiased case (left), it is clearly shown the convergence of the density
probability function towards an equilibrium with a double pick distribution.
In the biased case (right), the distribution function at equilibrium is mostly
concentrated around one of the two stable points. Moreover, we remark the
slow-fast behaviour of the distribution time evolution: fast diffusion, and
slow growth of the two picks.

In figure 3 we give in the unbiased case (left) and the biased case (right),
the contour levels of the density f(ν1, ν2) at equilibrium. We note that
there are two points of mass concentration around S1 and S3 which are the
stable equilibrium points of system (1). We remark that, in the unbiased
case the probability density is symmetrically distributed along the slow-
manifold, whereas in the biased case there is no more symmetry, but still a
little proportion of the population is concentrated around one of the stable
points, S1.
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Figure 3: Contour level for the equilibrium solution. Left: unbiased case.
Right: biased case.

In figure 4 we show, only for the unbiased case, the evolution in time of
the moments of order one, µ1 and µ2 (on the left), and two, γ11, γ12 and γ22

(on the right). Let us comment that this computation recovers in a exact
manner the approximation on the evolution of moments done in [9]. The
moment method has been used in the computational neuroscience commu-
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Figure 4: Moments µ1, µ2, γ11, γ12, γ22 with respect to time, in the unbiased
case.

nity [18, 9, 10] in order to approximate the collective averaged quantities
of the stochastic differential system (1) by solving deterministic systems.
These moment methods need a closure assumption to give closed systems of
equations and therefore, they have inherent errors in their approximation.
Nevertheless, in this particular case they lead to good qualitative approxi-
mations comparing our results to the ones in [9]. A detailed numerical study
of this problem is currently under way.
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Figure 5: Evolution in time of the densities ρi(t). Left: unbiased case.
Right: biased case.

In figure 5 we show the evolution in time of three probabilities, ρi for i =
1, 2, 3, of finding the firing rates in three different domains Ω1 = [0, 2]×[5, 10],
Ω2 = [2, 5]× [2, 5] Ω3 = [5, 10]× [0, 2] and respectively in the unbiased (left)
and biased (right) cases. We note that each domain contains one of the three
equilibrium points and thus we can refer to ρ1 and ρ3 as the probabilities of
each decision states and to ρ2 as the probability of the spontaneous state.
We have set the initial condition we consider implies ρ1(0) = ρ3(0) ≃ 0 and
ρ2(0) ≃ 1. Moreover, in the unbiased case, the symmetry of the problem
leads to ρ1(t) = ρ3(t) for every t ≥ 0, i.e., the two decision states are taken
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with equal probability. Whereas, in the biased case, ρ3 remains very small
and one decision state is obtained with large probability.
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Figure 6: Convergence toward the stationary solution, in the unbiased case.
Right: in logarithmic scale

In figure 6 we show the convergence of the solution of the Fokker-Planck
equation to its stationary state in L2 norm. On the left we present the
convergence with respect to time and on the right the same result, but in
logarithmic scale. We remark that, a linear regression done on the second
half of the curve has a slope of -0.19 with a standard deviation of 0.031, and
a linear regression done on the last quarter of the curve has a slope of -0.08
with a standard deviation of 0.004. We conclude then that, after a small
transition period, the convergence of the solution towards its stationary state
has an exponential behavior.

Finally, we perform a different numerical test, intended to be a first
step in the study of the escaping time problem (or first passage problem).
We consider only the unbiased case, because we know that for a time large
enough the probability function p must be distributed in equal parts on both
the domains Ω1 and Ω3, no matter what would be the initial condition. We
let the diffusion coefficient β to vary in the set (0.2, ..., 1), see table 1, and
choose as initial data a Gaussian distribution concentrated near the stable
point S1, hence in the domain Ω1. We then stop the numerical simulation
when half of the mass has arrived in the Ω3 domain, that is when ρ1(T ) <
2ρ3(T ). We shall call escaping time, the smallest time T at which the above
condition is verified. In table 1, we give the values of the escaping time
T (expressed in seconds) for different values of the diffusion coefficient β.
As one may expect, the bigger the diffusion coefficient is the smaller would
be the escaping time T . Moreover, a linear regression on the logarithm
of these values shows that the expectation of the escaping time T has an
exponential behaviour (the standard deviation being σ = 0.14 and the slope
−2.2), as it is shown also in figure 7 where we plot in logarithmic scale
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Table 1: Escaping Time.

β 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T 12.91 3.33 1.70 1.12 0.80 0.60 0.49 0.37 0.30

the values for the escaping time T with respect to the diffusion coefficient
β. It is well known, see for example [12], for one dimensional problems,
that the expectation of a first passage problem is given by the Kramers law,
E(t) = exp

(

H/β2
)

, where H represents the potential gap and β the diffusion
coefficient. This kind of behavior has been proved also on some particular
multi-dimensional problems. Nevertheless, to our knowledge, there is no
proof that for general multi-dimensional problem the expectation of the
escaping time has an exponential behaviour.
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Figure 7: Escaping time T with respect to the diffusion coefficient β in log
scale.
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