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This paper deals with aiding preliminary design when considered as a constraint
satisfaction problem (CSP). In this case, constraint filtering techniques provide some kind
of interactive assistance to the designer. However, some kinds of numerical constraints
corresponding with numerical relations cannot be filtered precisely with classical
analytical filtering techniques such as interval arithmetic or box-consistency; it is
therefore necessary to discretize them in order to include them in the CSP. To this end,
quad trees (QT) have been proposed for binary constraints, or 2k trees when more than
two variables are considered; but QT assume that a constraint must be defined by a single
numerical function. The aim of this paper is to show that QT techniques can be extended
when a constraint is defined by a piecewise function or by a set of numerical functions
defined on intervals. The first section recalls some basics relevant to the preliminary
design problem and the interests of the CSP assistance. The second section presents the
principles of the QT. The last section describes our contributions relevant to QT
extensions dealing with piecewise functions.

Keywords: Preliminary design; Knowledge-based system; Constraint satisfaction
problem; Quad trees

1. Introduction

The first sub-section recalls constraint satisfaction problem
(CSP) basics and their usefulness in preliminary design.
Then the industrial design problem, which is at the origin of
our work, is briefly presented in the second sub-section.
The third sub-section summarizes constraint types and
filtering techniques and introduces the discretization need.
The last sub-section introduces the quad tree (QT) idea and
the aim of the paper.

1.1. Constraint satisfaction problems and preliminary
design

Preliminary design defines the structure and main para-
meters of a product. Therefore, it manipulates partial

description of the artefact, consisting of product parts
(components) and properties (resistance, performance). In
general, preliminary design is the stage at which the major
design decisions are made: selection of the main components
and valuation of the significant properties or parameters.

These decisions are made by using various sources of
knowledge gathering field knowledge and past experiments.
Unfortunately, during this stage, wrong decisions can be
made by the designers. These errors can be very difficult to
rectify later and can result in huge additional cost and time
requirements. In order to avoid these errors and to help
designers to make relevant decisions, the knowledge used in
preliminary design can be extracted, validated and orga-
nized in knowledge-based systems

There are two main kinds of systems able to store
knowledge and to use it to help decision making: those that
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gather all the previous experiments in a data base, and
those that are based on an explicit reasoning model,
gathering variables and relations. In such a reasoning
model, the variables stand for the product parameters and
its consisting parts, while the relations express the
permissible combinations of values for theses parameters
(field knowledge as: physical laws, manufacturing rules,
design preferences, etc). A preliminary design task lends
itself naturally to such formulation.

Such an explicit reasoning model can be easily associated
to a constraint satisfaction problem. Indeed, a CSP is
defined by a set of variables {Xi}, each of them defined on a
finite domain {Di}, and a set of constraints {C} that express
the permissible combinations of values for the variables
(Tsang 1993). Constraints can be either formalized as
compatibility tables or mathematical expressions. In the
case of preliminary design, the corresponding CSP restricts
the space of feasible product solutions respecting the
preliminary design requirements.

Interactive assistance during design is provided by
filtering techniques that remove inconsistent values from
the domain of the variables. Each time the designer inputs a
value or a domain restriction on any product parameter,
constraint filtering or propagation removes inconsistent
values from the domain of definition of the remaining
parameters.

The clear distinction between the problem definition and
its resolution, the easily understood modelling concepts and
the possibility of interactive resolution permit the consid-
eration of the CSP framework as an appropriate tool for
aiding preliminary design. Many studies have shown that
this approach, embedded in a knowledge based system,
could be a significant computer assistance for various design
domains in the following examples: steel buildings (Gelle
et al. 2000), automotive parts (Aldanondo et al. 2001), aero-
planes (Bensana et al. 2000), manufacturing operations
(Geneste et al. 2000) or civil engineering (Lottaz et al. 1999).

However the feasibility and the usefulness of this
approach are strongly dependent on the kinds of variables
and the kinds of constraints which are necessary to
formalize the knowledge relevant to the product that must
be designed.

1.2. Design of heat treatment operation as a constraint
satisfaction problem

One of the goals of the European project VHT (virtual heat
treatment - project No G1RD-CT-2002-00835) was to
design a knowledge-based system (KBS) in order to assist
engineers in charge of the definition of heat treatment
operations. The KBS relies on a case base reasoning system
(CBR) and on a CSP-based processing system. For the CSP
part, (i) some expert knowledge was collected and gathered
in a CSP-based reasoning model and (ii) an interactive

constraint propagation engine was designed and developed
(Lamesle et al. 2005).

The delicate point of heat treatment operation design is
to try to avoid distortions. According to heat treatment
experts (Oliveira et al. 1986, David et al. 2003), distortions
can result from any kind of choices relevant to the
definition of the heat treatment operation. Consequently,
the resulting constraints model gathers four sets of
variables relevant to: (i) the geometry of the part, (ii) the
material of the part, (iii) the resources required by the
operation and (iv) the distortion characteristics. Con-
straints, linking these variables, correspond with compat-
ibility tables, mathematical expressions but also with
two-dimensional (2D) experimental charts or graphs as
the one shown in figure 1(a) that shows some cooling curves
with respect to phases transformation. Unfortunately, this
kind of 2D charts cannot be approximated with a single
mathematical expression, and are, mostly, fitted with a set
of mathematical expressions defined on particular domains:
three linear functions in the example of figure 1(a). This
example comes from metallurgy, many others exist in
engineering design as for example in figure 1(b) where the
displacement of the extremity of a beam is considered with
respect to the admissible load and relevant section shape.

1.3. Variables, constraints and filtering algorithms

When the variables of the problem are defined on symbolic
domains, constraints can be represented by tables, gather-
ing permissible combinations of values, and the corre-
sponding CSP is discrete. In that case, many filtering
algorithms, based on arc-consistency, have been proposed
and a good survey can be found in Debruyne and Bessière
(2001).

When the variables are defined on numerical domains,
previous tables can be extended in order to express
permissible combinations of intervals, and filtering algo-
rithms can also be adapted in order to take into account
these kinds of constraints in the CSP, as explained in Gelle
(1998).

When the variables are numerical and each constraint is
expressed by a mathematical expression (linear, nonlinear,
equality or inequality), we can use two different filtering
techniques: 2B-consistency proposed by Lhomme (1993)
and box-consistency proposed by Benhamou et al. (1994).
Both focus on optimizing the tightening of the feasibility
space outer bounds: they approximate the effective solution
space by a rough enclosing box (Sam 1995). Their principal
difference lies in the fact that 2B-consistency requires the
projection of the constraints on each of their variables
while Box-consistency works directly on the original
constraints by using interval Newton iterates.

In order to define a more precise and efficient representa-
tion of continuous solution space, Sam (1995) proposes the



use of QTs (Finkel and Bentley 1974) for binary
constraints, or 2k trees when more than two variables are
considered.

1.4. Quad trees, constraints as functions and piecewise
functions

The main idea is to discretize the space defined by the
variables belonging to each constraint. If the constraint acts
on two variables (binary constraint), the 2D space is split
into rectangles and provides a QT. When three variables
are concerned, the space is decomposed into cubes and
provides an OcTree. A constraint dealing with k variables
will be decomposed into hyper-cubes and provide a 2k tree.

We only consider, in this paper, binary constraints and
relevant quad trees, for an easy to understand presentation
but also because most of the experimental knowledge used

in preliminary design to make a decision is represented as
2D charts or graphs in order to be manually used.
Frequently, this kind of 2D graphs cannot be easily fitted
with a single mathematical expression, and mostly, several
mathematical expressions defined on different domains are
necessary to approximate the graph with sufficient accu-
racy, as shown in figure 1.

Sam (1995) has shown that this approach was of interest
in order to include constraints defined by various mathe-
matical expressions in a constraint satisfaction problem. In
order to be able, in preliminary design, to consider
constraints defined by piecewise functions in the constraint
model of the product, we propose to extend QT techniques
to piecewise functions. The next section recalls QT basics
and the last section shows how piecewise functions
gathering equalities or inequalities, can be processed
as QTs.

Figure 1. (a) Cooling curves and constraint as a piecewise function and (b) displacement data and constraint as a piecewise
function.



2. Quad trees: definition and generation

The aim of this section is to recall QT definition and to
explain how QTs can be generated and integrated in a
constraint satisfaction problem. Several examples illustrate
the elements presented.

2.1. Quad tree definition

A QT is a hierarchical representation of a binary numerical
constraint, C(x,y), linking two variables, x and y, each one
defined on a numerical domain, Dx and Dy. A QT gathers
nodes defined as follows:

(a) each node n is defined by a pair of intervals (dx, dy),
(b) each node n is constrained by C(x,y),
(c) each node n has a colour: white, grey or black

defined according to the consistency of the intervals
(dx, dy) with the numerical constraint C(x,y):
(i) white means that all the pairs of values

belonging to (dx, dy) are considered consis-
tent with the constraint,

(ii) black means that all the pairs of values
belonging to (dx, dy) are considered not
consistent with the constraint,

(iii) grey means that the node n gathers both
consistent and inconsistent pairs with respect
to the constraint.

(d) each node n with a colour grey is split into four
children: NW (north-west), SW (south-west), SE
(south-east) and NE (north-east),

(e) two discretization steps, ex and ey, relevant to the
two variables x and y, stop the Tree decomposing
at a given accuracy level,

(f) when one of these two discretization steps is
reached, the grey nodes are called unitary nodes
and considered:
(i) white or consistent with the constraint, if the

goal is to forbid the rejection of pairs (x,y)
which are consistent,

(ii) black or inconsistent with the constraint, if the
goal is to forbid the acceptation of pairs (x,y)
which are inconsistent.

(g) the leaves of the resulting QT are therefore either
black or white.

2.2. Quad tree generation

The generation of a QT can be launched at the initial search
area defined by the domains of the variables x and y (Dx,
Dy). The search area is decomposed recursively until the
discretization steps (ex, ey) are reached. All kinds of binary
numerical constraints can be represented by a QT: f(x,y) .
0, with . belonging to {¼, 5, ", 4, #}.

There are two ways to compute the colour of a node. The
first one, proposed by Sam (1995), consists of using
mathematical techniques to compute the intersections
between the four sides of a node and the constraint. This
computation can be a delicate problem according to the
shape of the mathematical expression.

The second method, proposed by Lottaz (2000), consists
of using interval arithmetic to verify if a node satisfies or
not the constraint. Interval arithmetic (Moore 1966)
extends real arithmetic to intervals by applying the
operators of a formula to the endpoints of the intervals
of its arguments. As interval arithmetic can over-estimate
results, Lottaz (2000) has shown that it can happen that a
node belonging completely to either a consistent or an
inconsistent region has to be unnecessarily decomposed and
explored.

In spite of this drawback, we have chosen this last
approach to compute the colour of the nodes, mainly
because it operates well whatever the shape of the
mathematical expression is.

Each tree node is encoded using a succession of h digits,
representing an integer in base 2h, where the number of
digits h corresponds to the height of the encoding node n in
the Quad Tree. This encoding is based on a Peano’s filled
path with an N motif, arranged following Morton’s order
(Briggs and Peat 1991), as show in figure 2. This kind of
encoding produces a unique code per node, corresponding
to its geographic coordinates in base 2h, as shown in
figure 3.

2.3. Quad tree example

Figure 4 shows an example of a constraint C(x, y):
y7x3þ 0.14 0 defined on numerical domains Dx¼ [72,
2] and Dy¼ [72, 2] with its relevant QT. The discretization
steps are ex¼ 1 and ey¼ 1. Let us compute the consistency
of the following nodes by using interval arithmetic:

Figure 2. Peano’s filled path with a N motif.



1. Let N1 be the node defined by a pair of intervals
(dx¼ [72, 71] dy¼ [71, 0]). N1 is white and
completely consistent with the constraint because:

C ½&2;&1'; ½&1;0'ð Þ ¼ ½&1;0' & ½&2;&1'3þ ½0:1;0:1'
¼ ½&1;0' & ½&8;&1'þ ½0:1;0:1'
¼ ½0;8' þ ½0:1;0:1'
¼ ½0:1;8:1'> 0

true for all the interval

2. Let N2 be the node defined by a pair of intervals
(dx¼ [1,2] dy¼ [72, 71]). N2 is black and com-
pletely inconsistent with the constraint because:

C ½1; 2'; ½&2;&1'ð Þ ¼ ½&2;&1' & ½1; 2'3 þ ½0:1; 0:1'
¼ ½&2;&1' & ½1; 8' þ ½0:1; 0:1'
¼ ½&10;&2' þ ½0:1; 0:1'
¼ ½&9:9;&1:9' > 0

false for all the interval

3. Let N3 be the node defined by a pair of intervals
(dx¼ [0, 1] dy¼ [0, 1]). N3 is grey and partially
consistent with the constraint because:

C ½0; 1'; ½0; 1'ð Þ ¼ ½0; 1' & ½0; 1'3 þ ½0:1; 0:1'
¼ ½0; 1' & ½0; 1' þ ½0:1; 0:1'
¼ ½&1; 1' þ ½0:1; 0:1' ¼ ½&0:9; 1:1' > 0

true and false on the interval

When the two discretization steps, ex and ey are reached,
the grey leaves turn:

(a) white or consistent with the constraint, if the goal is
to forbid the rejection of pairs (x, y) that are
consistent, as shown in figure 5,

(b) black or inconsistent with the constraint, if the goal
is to forbid the acceptance of pairs (x, y) that are
inconsistent, as shown in figure 6.

Figure 3. Encoding of the nodes in base 2h.

Figure 4. Numerical binary constraint and corresponding quad tree.



2.4. Quad tree and constraint processing

In order to include QT in a CSP, the intervals (dx, dy) of
the white nodes are gathered in a compatibility table that
represents permissible combinations of intervals, as shown
in the table 1 for the two previous QTs.

When more than one constraint acts on the same pair of
variables, it is necessary to compute the intersection of the
constraints and therefore the intersection of their QT. Sam
(1995) proposed calling this operation ‘fusion’ and denot-
ing it *. The fusion is simply defined by the occlusion of
consistent regions by inconsistent ones. The fusion of two
QTs is therefore implemented by combining the colours of
each pair of corresponding nodes (i.e. nodes covering the
same region in the search area). The colours of the
nodes are in a certain order and it is assumed that:
white5 grey5 black. The rule for determining consistency
of a node n obtained by fusion of two nodes n1 and n2
belonging to two QTs, is expressed as:

colourðnÞ ¼ colourðn1* n2Þ
¼ max colourðn1Þ; colourðn2Þð Þ

This operation is illustrated in figure 7, where two
constraints C1: f1(x,y)4 0 and C2: f2(x,y)5 0, with
hatched inconsistent areas, are intersected.

3. Extension of quad trees

The aim of this section is to extend the QT approach
in order to be able to take into account constraints defined

Figure 5. Final quad tree that forbids the rejection of consistent couples.

Figure 6. Final quad tree that forbids the acceptance of inconsistent couples.

Table 1. Compatibility table.

X Y

Compatibility table of figure 5
[72, 0] [0, 2]
[72, 0] [72, 0]
[0, 1] [71, 0]
[0, 2] [0, 2]

Compatibility table of figure 6
[72, 0] [0, 2]
[72, 71] [71, 0]
[0, 1] [1, 2]



by piecewise functions. A first sub-section defines what we
mean by piecewise functions and introduces what we call
information grades. Following sub-sections present QTs
which deal with constraint gathering equalities, f(x,y)¼ 0,
and inequalities, f(x,y)4or5 0.

3.1. Piecewise functions and information grades

3.1.1. Piecewise functions. A piecewise function C(x, y)
gathers a set of mathematical expressions, called pieces
and noted fi(x,y). A piece fi(x,y) is defined on a domain
(Dxi,Dyi) and is either an equality constraint fi(x, y)¼ 0
or an inequality constraint fi(x,y) . 0, with . belongs to {5,
", 4, #}. A piecewise function C(x, y) is either a set of
equality constraints or a set of inequality constraints.

We notice that a region (dx,dy) of the search area
(Dx,Dy), can be covered by more than the domain of
definition of one piece (Dxi,Dyi) or by none at all.

Figure 8 shows two examples of piecewise constraints: on
the left side, the constraint named ‘Wave’, gathers fives
pieces, whereas on the right side, the constraint, named

‘Potato’, gathers four. Each grey rectangle corresponds
with the domain of definition of each piece fi(x,y). We can
see that:

(a) for both constraints, some parts of the search
area are not covered by any definition domains
(Dxi,Dyi),

(b) for the constraint named ‘Potato’, a region is
covered by two domains of definition, the first one
corresponding to f1(x,y) and the second one to
f3(x,y).

Some hypotheses on the general outline of piecewise
constraints are necessary to guarantee the existence of a
border between the consistent and inconsistent regions:

(a) the general outline of the piecewise constraint
C(x,y) must be closed in case of inequality
constraints, and must be bounded in case of
equality ones,

(b) two pieces of an inequality constraint should
not cross each other (the border between the
consistent and inconsistent regions must be clearly
defined),

(c) in case of inequality constraints, all the pieces
must be consistent with the others in order to define
correctly consistent and inconsistent regions.

All the hypotheses are considered verified when the QT
generation is launched.

3.1.2. Grades of information. As a node n of a QT can
either intersect several domains of definition of the pieces
(Dxi,Dyi) or none at all, we need to characterize different
types of nodes with what we call a grade of information.
We propose four grades of information according to the
two following types of intersections:Figure 7. Fusion of quad trees.

Figure 8. Examples of piecewise constraint.



(a) between a node and the domain of definition of a
piece (Dxi,Dyi),

(b) between a node and a piece itself fi(x,y).

These intersections are computed by using interval analysis.
Four types of node are then defined:

(1) empty nodes which do not have any information to
determine their consistency with the piecewise
constraint. A node n defined on (dx, dy) is an
empty node if it does not intersect any domain of
definition of the pieces (Dxi,Dyi):

ðdx; dyÞ \ ðDxi;DyiÞ ¼ Ø for the definition
domain of any piece

ðdx; dyÞ \ fiðx; yÞ ¼ Ø; for any piece

(2) poorly informed nodes which don’t have enough
information to determine their consistency with
the piecewise constraint. A node n defined on (dx,
dy) is a poorly-informed node if (i) it intersects
partially or completely, at least one domain of
definition of a piece (Dxi,Dyi) (ii) but does not
intersect any piece fi(x,y).

ðdx;dyÞ \ ðDxi;DyiÞ 6¼Ø; at least for the definition
domain of one piece

ðdx;dyÞ \ fiðx;yÞ¼Ø; for any piece

(3) informed nodes which have enough information to
determine their consistency with the piecewise
constraint. A node n is an informed node if it
intersects one and only one piece fi(x,y).

ðdx;dyÞ\ðDxi;DyiÞ 6¼Ø; at least for thedefinition
domainofonepiece

ðdx;dyÞ\fiðx;yÞ 6¼Ø; foroneandonlyonepiece

(4) over-loaded nodes which have too much in-
formation to determine their consistency with
the piecewise constraint. A node n is an over-
loaded node if it intersects more than one piece
fi(x,y).

ðdx;dyÞ\ ðDxi;DyiÞ 6¼Ø; at least for the definition
domain of one piece

ðdx;dyÞ \ fiðx;yÞ 6¼Ø; for more than one piece

Empty and poorly-informed nodes are called
ignorant nodes. The solution space can be therefore
divided into six grades of information: consistent, empty,
poorly informed, informed, over-loaded and inconsistent.

If we have a look at the previous examples, ‘Wave’ and
‘Potato’, we can see, on figure 9, that the solution space
contains the four information grades defined above: (E) for
empty nodes, (P) for poorly-informed nodes, (I) for
informed nodes and (O) for over-loaded nodes.

3.2. Generation of quad trees gathering a set of equality
constraints

The generation of QT gathering a set of equality
constraints is recursive, based on the grades of information
and follows the ideas of the classical QT generation:

(a) each node n is defined by a pair of intervals (dx, dy),
(b) if a node n is an ignorant one, both empty or

poorly-informed ones, it is coloured black,
(c) if a node n is an over-loaded one (more than one

piece intersect the node), it is coloured grey. Each
grey node is split into four children: NW (north-
west), SW (south-west), SE (south-east) and NE
(north-east), whose information grade (empty,
poorly informed, informed or over-loaded in-
formed) has to be computed,

Figure 9. Information grades.



(d) if a node is an informed one (only one piece
fi(x,y) intersects the node), classical Quad Tree
generation is launched from the isolated piece
fi(x,y) (cf.sub-section 2.1). Consistency is computed
and colours (white or black) are given to the
resulting nodes,

(e) two discretization steps, ex and ey, relevant to
the two variables x and y, allow the Tree decom-
position to stop at a given accuracy level. When
one of these two discretization steps is reached, the
grey unitary node becomes white or consistent
with the constraint because we are dealing with
equalities.

In order to illustrate the previous propositions, let us
consider the constraint named ‘Wave’ of figure 8, and its
Quad Tree represented in figure 10, on which we note E for
empty nodes and P for poorly-informed ones.

Let us look in detail at the decomposition of the upper
left node of figure 10, encoded (0,1)1 with Peano’s
encoding. This node is an over-loaded one, containing
two pieces: f2 and f3. It is coloured in grey and split into
four child nodes:

(a) its first child, encoded (0, 3)2, is an empty node: its
colour is therefore black,

(b) its second child, encoded (0, 2)2, is also an empty
node: its colour is therefore black,

(c) its third child, encoded (1, 2)2, is an over-loaded
node, containing f2 and f3: its colour is therefore
grey,

(d) and its fourth child, encoded (1, 3)2, is an empty
node: its colour is therefore black.

Now, let us consider its child node encoded (1, 2)2. This
node is split once more into four child nodes because the
precision has not been reached:

(a) its first child, encoded (2, 5)3, is a empty node: its
colour is therefore black,

(b) its second child, encoded (2, 4)3, is a poorly-
informed node which intersects the domain of
definition of f2: its colour is therefore black,

(c) its third child, encoded (3, 4)3, is a unitary over-
loaded node, containing two pieces f2 and f3: its
colour is therefore white,

(d) and its fourth child, encoded (3, 5)3, is a unitary
informed node, intersecting only the piece f3: its
colour is therefore white.

3.3. Generation of quad trees gathering a set of inequality
constraints

The idea of the previous section, associating a grade of
information to each node, is kept, but the generation of the
QT is a little bit more complex because ignorant nodes can
belong either to consistent or inconsistent regions. There-
fore, the generation is achieved in two steps:

(1) First, during the recursive decomposition, we need
to mark the information grade of each node with a
specific colour,

(2) Second, when the decomposition stops, the con-
sistency of each ignorant node is found, thanks to
the propagation of the consistent and inconsistent
regions.

The first step of the QT generation follows the principles
below:

(a) a node n is defined by a pair of intervals (dx, dy),
(b) if a node n is an ignorant one, both empty or

poorly-informed ones, it is coloured red,
(c) if a node n is an over-loaded one (more than one

pieces intersects the node), it is coloured:
(i) orange if it is unitary (the accuracy level, ex

and ey, is reached),
(ii) grey otherwise and split into four children:

NW (north-west), SW (south-west), SE
(south-east) and NE (north-east), whose grade

Figure 10. Resulting Quad Tree.



of information (empty, poorly-informed, in-
formed or over-loaded informed) has to be
computed and marked,

(d) if a node n is an informed one (only one piece fi(x,y)
intersects the node), it is coloured:
(i) yellow if it is unitary (the accuracy level, ex ey,

is reached),
(ii) grey otherwise and classical QT generation is

launched from the isolated piece (cf. sub-
section 2.1). Consistency is computed and
colours (white or black) are given to the
resulting nodes.

(e) two discretization steps, ex and ey, relevant to the
two variables x and y, allow the Tree decomposi-
tion to stop at a given accuracy level. When one of
these two discretization steps is reached, the second
step of the generation is launched.

At the end of the first step, the leaves of the QT can be
coloured either in:

(a) white for consistent nodes,
(b) black for inconsistent nodes,
(c) yellow for unitary informed nodes,
(d) orange for unitary over-loaded nodes
(e) or red for ignorant nodes, the empty and the

poorly-informed ones.

In order to illustrate these different colours, let us consider
the outside area and the border of the constraint named
‘Potato’ of figure 8, as the consistent region. When the first
step is finished as shown in figure 11, the QT is multi-
coloured with red, yellow and orange leaves. We note on
figure 11, ‘R’ for red nodes, ‘Y’ for yellow nodes and ‘O’ for
orange nodes.

Let us look in detail at the decomposition of the lower
left node of figure 11, encoded (0,0)1 with Peano’s
encoding. This node is an over-loaded one, containing
three pieces: f1, f3 and f4. It is coloured in grey and split
into four child nodes:

(a) its first child, encoded (1, 0)2, is an over-loaded node,
containing f1 and f4: its colour is therefore grey,

(b) its second child, encoded (0, 0)2, is an informed
node, containing only f4, the classical Quad Tree
generation is launched from the isolated piece f4,
and permit us to conclude that the whole node is
consistent with the piecewise constraint and there-
fore white,

(c) its third child, encoded (0, 1)2, is an over-loaded
node, containing f3 and f4: its colour is therefore
grey,

(d) and its fourth child, encoded (1, 1)2, is an poorly-
informed node, intersecting only the domain of
definition of f4: its colour is therefore red.

Now, let us consider its child node encoded (1, 0)2. This
node is split once more into four child nodes because the
precision has not been reached:

(a) its first child, encoded (0, 3)3, is a unitary over-
loaded node, containing f1 and f4: its colour is
therefore orange,

(b) its second child, encoded (0, 2)3, is also an unitary
over-loaded node, containing f1 and f4: its colour is
therefore orange,

(c) its third child, encoded (1, 2)3, is a unitary informed
node, containing only f4: its colour is therefore
yellow,

(d) and its fourth child, encoded (1, 3)3, is an poorly-
informed node, intersecting the domains of defini-
tion of f1 and f4: its colour is therefore red.

The second step of this QT generation consists of
propagating the consistent and inconsistent regions from
the nodes which know their consistency (the yellow, black
and white nodes), to those which are ignorant (the red
ones). In order to propagate the consistent and the
inconsistent regions, the neighbours of the yellow, black
and white nodes must be identified. The selection of the
relevant neighbours of a node n is made thanks to the

Figure 11. Quad tree at the end of the first step.



unique encoding per node. We notice that a node n can
have neighbours with a higher or a lower height than its
own: the encoding of its neighbours can have a different
number of digits than it owns.

The propagation of the consistent and inconsistent
regions is done in four steps:

(a) first, yellow nodes tell their red neighbours on
which side of the border they belong to, by using
interval arithmetic. If a red neighbour belongs to
the consistent side, it turns white, otherwise, black.

(b) then, black nodes indicate to their red neighbours
that they belong to the inconsistent region and
therefore the red neighbours turn black.

(c) thirdly, white nodes indicate to their red neighbours
that they belong to the consistent region. The red
neighbours turn white.

(d) finally, yellow and orange nodes turn:
(i) white or consistent with the piecewise con-

straint, if the goal is to forbid the rejection of
pairs (x, y) that are consistent,

(ii) black or inconsistent with the piecewise
constraint, if the goal is to forbid the accep-
tation of pairs (x, y) that are inconsistent.

In our ‘Potato’ example, figure 12 illustrates this first
propagation step, with the small arrows showing how

previous red nodes become white. Then, as there are no
contiguous red and black nodes, there is no need to
propagate inconsistent region, so the second step is not
necessary. The third step leads to figure 13 where the red
neighbours turn white as indicated by the small arrows.
Finally in figure 14, yellow and orange nodes turn white
because the border is kept in the consistent region. At the
end of the second step, all the leaves of the Quad Tree are
either white or black and the consistent and inconsistent
regions are identified.

3.4. Extended quad trees and constraint processing

The proposed, extended QTs, can be intersected without
any problem with original QTs. Their integration in a CSP
can be achieved thanks to compatibility tables gathering
permissible combinations of intervals, as stated in sub-
section 2.3.

The proposed, extended QTs can also sometimes avoid
the need to compute ‘fusions’ of QTs. As the proposed QT
is defined for a set of mathematical expressions, it is
possible to provide the fusion of two QTs in a single QT
generation. If we consider the examples at figure 15, where
the inconsistent values are hatched, it is clear that for each
example a single QT can be generated, instead of a process
including two independent generations and a fusion
operation.

Figure 12. Propagation from yellow nodes to red ones.

Figure 13. Propagation from white nodes to red ones.



4. Conclusions

The aim of this paper has been to propose an approach that
permits the handling of constraints, given as graphs or
charts, in a constraint satisfaction problem. This sort of
problem is frequently encountered in engineering, and
especially in preliminary design where knowledge comes,
most of the time, from experience. Frequently, such
constraints cannot be easily approximated with a single
mathematical expression, and are, mostly, fitted with a set
of mathematical expressions defined on particular domains.

QTs, proposed by Sam (1995), allow single mathematical
constraint to be taken into account in constraints satisfac-
tion problems: the search area is split recursively into
rectangles defining nodes, until a certain accuracy level is
reached. During the decomposition, the consistency of each
node is computed by using intervals arithmetic and is
marked with a specific colour. We have extended this
method to piecewise constraints, with respect to some
insubstantial assumptions on their general outline.

Our method follows the idea of the classical QTs
(recursive decomposition) but the generation of QTs of
piecewise constraints is somewhat more complex. First, we
have to identify the grade of information of each node.
Indeed, some regions can be covered by several domains of
definition of the pieces or by none at all. This kind of area
cannot alone determine their consistency with the piecewise
constraint. Four grades of information have been identified
to characterize the different types of nodes. When the grade

of information of each node is found, the consistent and
inconsistent regions are propagated from the nodes which
know their consistency to those which do not. The
consistent and inconsistent regions defined by the piecewise
constraint are then established.

The mechanism of ‘fusion’ proposed by Sam (1995), to
compute the intersection of constraints represented by QTs,
can be applied to QTs associated to piecewise constraints,
without any particular problems.

This study has been necessary when designing a knowl-
edge based system in order to take into account experi-
mental knowledge, relevant to the heat treatment domain
during a European project (project No G1RD-CT-2002-
00835). The detailed algorithms relevant to Quad Tree
generation and integration in a constraint satisfaction
problem can be found in Vareilles (2005).
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contribution à la mise en oeuvre d’un outil d’aide interactif. PhD Thesis,

Ecole des Mines d’Albi-Carmaux, France, 2005.


