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Abstract

We study in this paper nonlinear subdivision schemes in a multivariate set-
ting allowing arbitrary dilation matrix. We investigate the convergence of
such iterative process to some limit function. Our analysis is based on some
conditions on the contractivity of the associated scheme for the differences.
In particular, we show the regularity of the limit function, in L? and Sobolev
spaces.

Keywords: Nonlinear subdivision scheme, convergence of subdivision

schemes, box splines




1. Introduction

Subdivision schemes have been the subject of active research in recent
years. In such algorithms, discrete data are recursively generated from coarse
to fine by means of local rules. When the local rules are independent of the
data, the underlying refinement process is linear. This case is extensively
studied in literature. The convergence of this process and the existence of the
limit function was studied in [JJ] and [[]] when the scales are dyadic. When the
scales are related to a dilation matrix M, the convergence to a limit function
in L” was studied in [§] and generalized to Sobolev spaces in [[] and [LJ]. In
the linear case, the stability is a consequence of the smoothness of the limit
function.

The nonlinearity arises naturally when one needs to adapt locally the re-
finement rules to the data such as in image or geometry processing. Nonlin-
ear subdivision schemes based on dyadic scales were originally introduced by
Harten [][LJ] through the so-called essentially non-oscillatory (ENO) meth-
ods. These methods have recently been adapted to image processing into
essentially non-oscillatory edge adapted (ENO-EA) methods. Different ver-
sions of ENO methods exist either based on polynomial interpolation as in
B[] or in a wavelet framework [[J], corresponding to interpolatory or non-
interpolatory subdivision schemes respectively.

In the present paper, we study nonlinear subdivision schemes associated
to dilation matrix M. After recalling the definitions on nonlinear subdivi-
sion schemes in that context, we give sufficient conditions for convergence in

Sobolev and L? spaces.



2. General Setting

2.1. Notations
Before we start, let us introduce some notations that will be used through-
out the paper. We denote #() the cardinal of the set (). For a multi-index

W= (ul,ug,- ,,ud) € N? and a Vector = (21,79, -+ ,24) € R? we define
|u| = Zuz, p = Hu'andx“— Hx“'

=1
For two multi- 1ndeX m, [ € Nd we also define

2 1 N

m my mgq
Let £(Z%) be the space of all sequences indexed by Z?. The subspace of
bounded sequences is denoted by ¢>°(Z%) and ||ul|s=(z4) is the supremum of
{lug| : k € Z4}. We denote (°(Z%) the subspace of all sequences with finite
support (i.e. the number of non-zero components of a sequence is finite).
As usual, let ¢?(Z%) be the Banach space of sequences u on Z? such that

||u||zﬂ(zd) < 00, where

1
p
2| oo (zay := (Z \uk\p> for 1 < p < o0.

kezd
As in the discrete case, we denote by LP(R?) the space of all measurable

functions f such that || f||;»gae) < 0o, where

1
1 fllpmay == (/d \f(x)\pdx) for 1 <p< oo
R

and || || o (ray is the essential supremum of | f| on R?.
Let 4 € N¢ be a multi-index, we define V# the difference operator

Vit VEe where V;” is the p;th difference operator with respect to the
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jth coordinate of the canonical basis. We define D* as Di* --- D%, where
D; is the differential operator with respect to the jth coordinate of the canon-
ical basis. Similarly, for a vector z € R¢ the differential operator with respect
to z is denoted by D,.

A matrix M is called a dilation matrix if it has integer entries and if
nlg& M~ = 0. In the following, the invertible dilation matrix is always
denoted by M and m stands for |det(M)|.

For a dilation matrix M and any arbitrary function ® we put ®;,(z) =
O(Mix — k).

We also recall that a compactly supported function ® is called LP-stable
if there exist two constants C;, Cs > 0 satisfying

Cl”CHzp(zd) <| Z c®(z — k)”LP(Rd) < CzHCHéP(Zd)-

kezd

Finally, for two positive quantities A and B depending on a set of param-
eters, the relation A < B implies the existence of a positive constant C,
independent of the parameters, such that A < C'B. Also A ~ B means
A < Band B < A

2.2. Local, Bounded and Data Dependent Subdivision Operators, Uniform

Convergence Definition
In the sequel, we will consider the general class of local, bounded and

data dependent subdivision operators which are defined as follows:

Definition 1. For v € (*(Z%), a local, bounded and data dependent subdivi-

sion operator is defined by

Sywy = ap_an(v)wy, (1)

lezd



for any w in (*(Z%) and where the real coefficients ap_pn(v) € R are such

that
akal<U> =0, iof Hk - Ml”f“’(Zd) > K <2)

for a fized constant K. The coefficients ai(v) are assumed to be uniformly

bounded by a constant C, i.e. there is C' > 0 independent of v such that:
lax(v)| < C.

Note that the definition of the coefficients depends on some sequence v, while
S(v) acts on the sequence w.

Note also that, from ([l) and (B) the new defined value S(v)wy depends
only on those values 1 satisfying ||k — Ml|| s (z4y > K. The subdivision oper-

ator in this sense is local.

To simplify, in what follows a data dependent subdivision operator is an
operator in the sense of Definition . With this definition, the associated
subdivision scheme is the recursive action of the data dependent rule Sv =

S(v)v on an initial set of data v°, according to:
v/ =St = ST > 1. (3)

2.3. Polynomial Reproduction for Data Dependent Subdivision Operators

The study of the convergence of data dependent subdivision operators
will involve the polynomial reproduction property. We recall the definition
of the space Py of polynomials of total degree N:

Py = {P;P(x)= Y a,a"}.

[uI<N

With these notations, the polynomial reproduction properties read:
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Definition 2. Let N > 0 be a fixed integer.

1. The data dependent subdivision operator S has the property of reproduc-
tion of polynomials of total degree N if for all u € (*°(Z%) and P € Py
there exists P € Py with P — P € Py_y such that S(u)p = p where p
and p are defined by py, = P(k) and p, = P(M~'k).

2. The data dependent subdivision operator S has the property of exact
reproduction of polynomials of total degree N if for all u € (*(Z%)
and P € Py, S(u)p = p where p and p are defined by pr, = P(k) and
pr = P(M71k).

Remark:
The case N = 0 is the so-called ”constant reproduction property”. For
a data dependent subdivision operator defined as in ([]), the constant repro-

duction property reads Y. ap_an(v) =1, for all v € £°°(Z9).
kezd

3. Definition of Schemes for the Differences

Another ingredient for our study is the schemes for the differences asso-
ciated to the data dependent subdivision operator. The existence of schemes
for the differences is obtained by using the polynomial reproduction property
of the data dependent subdivision operator.

Let us denote Al = (V#, |u| = [) and then state the following result on

the existence of schemes for the differences:

Proposition 1. Let S be a data dependent subdivision operator which re-

produces polynomials up to total degree N. Then for 1 <[ < N + 1 there



exists a data dependent subdivision rule S; with the property that for all v,w
in £°°(Z4),
AlS(w)w := Sy(v)Alw
PROOF:

Let [ be an integer such that 1 <[ < N + 1. By using the definition of

V# with |u| =1, we write:
VES(v)wy = Vi -+ - VS (v)wy,.

From the definition of S(v)w we infer that

max(p1, - 4d)

viS@u = Y (-1 S ke apl0),

My, mg=0 m | pezd

i

where we have used the notation m-e = mye; + - - - +mgyey. Straightforward
computations give

max (1, 1)

VES(v)wy, = pr Z (—1)" a A—mme—11p(V)

pEZL my,- ,mg=0

= > wpfip(v,p). (4)

pezd
Let us clarify the definition of f ,(v, pt). Since the data dependent subdivision
operator is local we have a_pz,(v) = 0 for any data v € £>°(Z%) and any index
k such that ||k — Mp||sezey > K. Now by putting k = ¢ + Mn, we get that
frp(v, p) is defined for p in the set

VEE) :={p:[[n—p+ M (e —m-e)|l < KM s, 0 <m; < p;Vi}

Then, we define V(k) := {p: ||k — Mp||l« < K}. Since the data dependent

subdivision scheme reproduces polynomials up to total degree N, we have
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for any |v| =r < N:
Z ap_ap(V)p” = P,(k) for all k € Z%, (5)
peV (k)
where P, is a polynomial of total degree r. By tacking the differences of
order || =7+ 1 in (f) we get
Z Jep(v, V" )p” = 0.
peV¥' (k)
Note that the above equality is true for any v such that |v| = r. We deduce
that (fxp(v,v)), € Z* is orthogonal to (p?) ey 1y Where |g| < r. Note that
{(V On—8)neve/ () s IV =7+ 1,8 € Zd} spans (p?) ¢y ) and we may thus
write for any p € V¥ (k):
frp(v, V) Z chr v)VH 0.
lv|=r+1rczd
Now, by using ({]) we obtain for any |u| < N + 1:

VES(v)wy = Z wpz chr V)V,

peVr(k) lv|=lrezd

= Z chn‘vva

pEVH (k) |v|=l

If we now make p vary, we obtain the desired relation.

Now that we have proved the existence of schemes for the differences, we
introduce the notion of joint spectral radius for these schemes, which is a

generalization of the one dimensional case which can be found in [13].

Definition 3. Let S(v) : (P(Z%) — (*(Z%) be a data dependent subdivision
operator such that the difference operators Sy(v) : (P(Z4))" — (e*(Z%))",

9



with q = #{u, |u| = 1} exists for | < N + 1. Then, to each operator Sy,
l=0,---,N+1 (putting Sy = S) we can associate the joint spectral radius
given by
1
Ppa(S) = [ (S0) 1o 0y -

In other words, p,(S) is the infimum of all p > 0 such that for all v €
(P(Z4), one has

1A' V| pznya S P I A ]| ey, (6)

for all 5 > 0.

Remark: Let us define a set of vectors {x1, - -+, } such that [z, -+, x,]Z" =
Z% n > d (i.e. a set such that the linear combinations of its elements with
coefficients in Z spans Z?). We use the bold notation in the definition of
the set so as to avoid the confusion with the coordinates of vector x. Then,
consider the differences in the directions x1, - - - , x,. One can show that there
exists a scheme for that differences which we call S, for [ < N + 1 provided
the data dependent subdivision operator reproduces polynomials up to de-
gree N (the proof is similar to that using the canonical directions). If we
denote by Al the difference operator of order [ in the directions z1, - , Zn,
one can see that ||Alv||gp(zd)ql ~ || A%]|gp(zaye for all v in £(Z%) and where
G = #{p, |u| = 1, 0 = (1)i=1... n}-Then, following (), one can deduce that

the joint spectral radius of S, is the same as that of .S;.

4. Convergence in LP? spaces

In the following, we study the convergence of data dependent subdivision

schemes in L” which corresponds to the following definition:

10



Definition 4. The subdivision scheme v/ = Svi~1 converges in LP(RY), if
for every set of initial control points v° € (P(Z%), there exists a non-trivial

function v in LP(RY), called the limit function, such that

jh_)fgo [vj = vl Lr(ray = 0.

where v;(z) = 32 vl¢;i(z) with ¢(z) = ﬁ max(0, 1 — |z;]).
i=1

kezd

4.1. Convergence in the Linear Case

When S is independent of v, the rule ([[) defines a linear subdivision

scheme:

If the linear subdivision scheme converges for any v € £7(Z%) to some function
in LP(R?) and if there exists v° such that ,liin vl # 0, then {ay, k € Z}
J—+00

determines a unique continuous compactly supported function & satisfying
O(x) = Z ar®(Mx — k) and Z O(x—k)=1.
kezd kezd

Moreover, v(z) = > v2®(x — k).

kezd
4.2. Convergence of Nonlinear Subdivision Schemes in LP Spaces
In the sequel, we give a sufficient condition for the convergence of non-
linear subdivision schemes in LP(IR?). This result will be a generalization of
the existing result in the linear context established in [§] and only uses the

operator S;.

Theorem 1. Let S be a data dependent subdivision operator that reproduces

the constants. If p,1(S) < m%, then Sv? converges to a LP limit function.
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PRrRoOOF: Let us consider

= Z U£¢j,k‘ (:L’), <7>

kezd

d
where ¢(z) = [] max(0,1 — |z;|) is the hat function. With this choice, one
i=1

can easily check that > ¢(x—k)=1. Let p,1(S) < p < m%, it follows that
kezd

A | zaye < 27| A0 r(zayye

since ¢; = d. We now show that the sequence v; is a Cauchy sequence in L*:

vin(r) —vi() = > vl gaale) = D vid,(@)

kezd p€eEZ
=3 ST W - ) ann(@) ()
kezd pezd

where we have used > ¢(- — k) = 1. Now, since the subdivision operator
kezd
reproduces the constants:

v (@) = vi(@) = > Y Y aran() (0] = v))dj16(2)85(x).
pEZd keZd leZ4
Note that

Z ar—ni( U] U - U] Z ar—nni( U] - vi; = Z(%—Ml(vj) - 5p—l)“lj-

€74 €74 lezd

Since Y ap_an(v) =6, =0, {Vi6_5,l € {F(k)U{p}},B€Zi=1,---

lezd
spans (ar—a — Op—1)ic{Fk)ufp}}- This enables us to write:

vjs1(x Z Z Z Zd plvivlj@ﬂ,k(i’f)@w(i’f)-

peZd kezd 1eV (k) U{p} i=1

12



Since | Y ¢;41%(z)| =1 following the same argument as in Theorem 3.2 of
kezd
[B], we may write:

2

[vj41 — UJHLP(Rd) S omor 112?52 Hvz‘Uszp(zd)
S M Al
p .
~ () IAY | za) (8)

mr

1
which proves that v; converges in LP, since p < mr. Note that, for p = oo,

we obtain that the limit function is continuous. 7

Furthermore, the above proof is valid for any function ® satisfying the prop-
erty of partition of unity when p = co. In general, we could show, following
Theorem 3.4 of [}, that the limit function in L” is independent of the choice

of a continuous and compactly supported ®.

4.8. Uniform Convergence of the Subdivision Schemes to C* functions (s <
1)
We are now ready to establish a sufficient condition for the C'* smoothness

of the limit function with s < 1.

Theorem 2. Let S(v) be a data dependent subdivision operator which re-
produces the constants. If the scheme for the differences satisfies p,1(S) <
mfer%, for some 0 < s < 1 then Sv’ is convergent in LP and the limit

function is C* .

1
PRrROOF: First, the convergence in L is a consequence of p,1(S) < mr.

In order to prove that the limit function v be in C”, it suffices to evaluate

13



lv(z) —v(y)| for ||z —yllee < 1. Let j be such that m™7=! < ||z —y|lee < m™7.

We then write :

(@) —v(y)] < o) = v;(2)] + Jo(y) = v; ()] + |v;(z) = v;(y)]

< 200 = vjll oo ey + [v(2) = v;(y)]

Note that (§) implies that [[v — vj|ze@ey < P7[|AWO||gee(zay. Since v; is
absolutely continuous, it is almost everywhere differentiable, so putting y =

x4+ M~Ih, with h = (h;)i=1,... 4 satisfying ||h|le < 1 we get:

vj( + M7h) —vi(2)] < Jvj(z + M7h) = vj(z + M7 (h — hgeq))|
++Uj($‘+wﬂf_j(h,—-hd6d))——QU($‘+WAf_j(h/—-hd6d-— hd_led_l)ﬂ

4+t |Uj<SL’ + Mﬁj<h1€1)) - Uj(x)‘

Then, using a Taylor expansion we remark that, there exists 6 €] — hg, hq|
such that:
vj(z + M7R) — vj(@ + M7 (h = heeq))] = > vihgDad(M’x + h — k + 04eq)
kezd
If we denote Vy(x) = ®(z1) - P(z4-1)¥(x4), where W is the characteristic
function of [0,1] and ®(z;) = max(0,1 — |x;|), we may write:
|vj(z + M) — vj(@ + M7 (h = haea))| ~ Y Vaviha¥a(y)
kezd
where y; = (M 7z +h—k+04eq); if i < dand yg=2(M7z+h+0g4eq)q—kq
(we have used the fact that the differential of the hat function ® is the Haar
wavelet). Iterating the procedure for other differences in the sum, we get:

vj(x + M7h) —vi(2)] <

~Y

d
Vit oo @y S 1A [l ).
=1

(2

14



Combining these results we may finally write:

(@) —v(y)] < o) —v(@)] + |vly) — v )] + vj(z) —v;(y)]
< 20w = vjlleemey + () — vi(y)]
< P |AY e zay + (| A | goo 0y
< PIAY @y S Nl -yl
with s < —log(ps,1)/logm. -

5. Examples of Bidimensional Subdivision Schemes

In the first part of this section, we construct an interpolatory subdivision

scheme having the dilation matrix the hexagonal matrix which is:
M = ,

For the hexagonal dilation matrix, the coset vectors are gy = (0,0)7,e; =
(1,007, g5 = (1,-1)T,e3 = (2, —1)T. The coset vector g;,i = 0,---,3 of M
defines a partition of Z? as follows:
3
7= J{Mk+eikez?}.
=0
The discrete data at the level j, v7 is defined on the grid IV = M 772,
the value vﬁ is then associated to the location M ~7k. We now define our bi-
dimensional interpolatory subdivision scheme based on the data dependent
subdivision operator which acts from the coarse grid IV~! to the fine grid
grid TV. To this end, we will compute v’ at the different coset points on the

fine grid I'V using the existing values v7=1 of the coarse grid IV~!, as follows:

15



for the first coset vector gy = (0,0)7 we simply put vfm tey = viil, for the
coset vectors €;, ¢« = 1,---,3. the value v%/fkﬁi, 1 =1,---,3 is defined by
affine interpolation of the values on the coarse grid. To do so, we define four
different stencils on I'V=! as follows:

VIL = MR, MU (kA eq), M (k4 e0) ),

VPP = M e, M (ke ey), MTTT (k4 e + e2)},
Wit = Mk +ey), Mk +ey), M7 (k+ e +ea)},

W2 = (M7, M7 (k4 e), M7 (k+ e 4+ e2)}.

We determine to which stencils each point of IV belongs to, and we then
define the prediction as its barycentric coordinates. Since we use an affine
interpolant we have:

1
2

) 1 .
-1 -1
Ui + _Ui+e1 : <9>

j i1 J _
vy = Vg and UMk+e, — 5

To compute the rules for the coset point €5, V! or V2 can be used leading

respectively to:

,1 o -1 -1 -1
,U]Mk+€2 - Zvi‘i’el + §vi+62 + Zvi
2 - —1 —1 -1
U?Mk‘-i—.sg - évi + Zvi-i-eg + Zvi-f—el-f—eg' (1())

When one considers the rules for the coset point €3, W} or W7 can be used

leading respectively to:

. 1 . 1 . 1 .

J,1 _ Jj—1 Jj—1 Jj—1
UMk+€3 - kaJreQ + ka+61+62 + §Uk+61

7.2 _o L a1 11
ka-‘,-Eg - 4vk + 4vk+el + ka-l—el—l—ez' ( )

This nonlinear scheme is converging in L*> since we have the following result:
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Proposition 2. The prediction defined by (9), (IQ), (1) satisfies:
1, 3 1,.5—1
A UM.+5,.||zoo(zd) < ZHA v ||eoo(zd)

We do not detail the proof here but the result is obtained by computing
the differences in the canonical directions at each coset points. If we then
use Theorem P we can find the regularity of the corresponding limit function
3 S 3 _IOg(3/4) ~
is C* with s < Tos() 0.207.

In the second pat of the section, we build an example of bidimensional

subdivision scheme based on the same philosophy but this time using as

dilation matrix the quincunx matrix defined by:

-1 1
1 1

M =

whose coset vectors are g = (0,0)” and ¢; = (0,1)". Note that agg = 1
and since the nonlinear subdivision operator reproduces the constants we
have > api. = 1 for all coset vectors e. To build the subdivision operator,
we COIZlSidel" the subdivision rules based on interpolation by of first degree
polynomials on the grid TV=". v, e, Corresponds to a point inside the cell
delimited by M~7"YEk k + e,k + ez, k + e; + ea}. There are four potential

stencils, leading in this case only to two subdivision rules:

il i—1 i—1
U?Wk;-f—el = %(Ui + Ué+e1+e2) (12)
.2 i—1 i1
U?Wk;-f—el = %(%Jrel + Uijteg) (13)

Note also, that since the scheme is interpolatory we have the relation: vfm =

vi‘*l. Let us now prove a contraction property for the above scheme.

17



Proposition 3. The nonlinear subdivision scheme defined by ([13) and ([[3)

satisfies the following property:
1. when k= MK :

. . 1 ,

71 _—

||v§w_+61 - U?M.sz(zd) < §||A1U.J 2||z<>o(zd)
. ) a

1037 e, — Vhg llee@ay < 1A 72| oo (29

2. when k = MK + &1, we can show that:
1|
2

j,1 j i
10340, — Var llee@ay < Al 2Hz<><>(zd)

1037 4oy — Vs llese(zay

IN

| AL T2 oo (20

The proof of this theorem is obtained computing all the potential differ-
ences. This theorem shows that the nonlinear subdivision scheme converges

in L™ since p1 o (S5) < 1.

6. Convergence in Sobolev Spaces

In this section, we extend the result established in [[[3] on the convergence
of linear subdivision scheme to our nonlinear setting. We will first recall the
notion of convergence in Sobolev spaces in the linear case. Following [[J]
Theorem 4.2, when ®g(x) = > apPo(Max — k) is LP-stable, the so-called
"moment condition of order llzeid 1 for a” is equivalent to the polynomial
reproduction property of polynomial of total degree k for the subdivision
scheme associated to a. In what follows, we will say that &y reproduces
polynomial of total degree k. When the subdivision associated to a exactly
reproduces polynomials, we will say that ®, exactly reproduces polynomi-

als. We then have the following definition for the convergence of subdivision

schemes in Sobolev spaces in the linear case [[L3:

18



Definition 5. We say that vi = Svi=! converges in the Sobolev space Wk (R?)

if there exists a function v in Wk (R?) satisfying:

JETOO lv; = vllwg @ay =0

where v is in WE(RY), and v; = 3 vl ®g(Mix — k) for any Oy reproducing

kezd
polynomials of total degree k.

We are going to see that in the nonlinear case, to ensure the convergence
we are obliged to make a restriction on the choice of ;. We will first give
some results when the matrix M is an isotropic dilation matrix, we will
also emphasize a particular class of isotropic matrices, very useful in image

processing.

6.1. Definitions and Preliminary Results

Definition 6. We say that a matrix M s isotropic if it is similar to the
diagonal matriz diag(oy, ..., 04), i.e. there exists an invertible matriz A such
that

M = A Ydiag(oy, ..., 09)A,

with |o1| = ... = |og4| being the eigenvalues of matriz M.

Evidently, for an isotropic matrix holds |o1| = ... = |og| = 0 = ma.

Moreover, for any given norm in R?, any integer n and any v € R? we have
o"lull < IMMull < o™ flull.

A particular class of isotropic matrices is when there exists a set €1, €2, - , €,

such that:

19



where v is a permutation of {1, -+, ¢}. Such matrices are particular cases of

isotropic matrices since M? = Al where [ is the identity matrix and where
d

A = [] \i. For instance, when d = 2, the quincunx (resp. hexagonal) matrix
i=1

satisfies M? = 21 (resp. M? = 41I).
We establish the following property on joint spectral radii that will be

useful when dealing with the convergence in Sobolev spaces.

Proposition 4. Assume that S reproduces polynomials up to total degree N .

Then,

1
Ppni1(S) > Wﬂp,n(s)a

foralln=0,...,N.

Remark: If M is an isotropic matrix and S reproduces polynomials up to

total degree N, then
pp,n-l—l(S) > U_lpp,n(s)a

foralln=20,...,N.

PRrROOF: It is enough to prove

1
Ppa(S) > pr(S).

According to the definition of spectral radius there exists p > p,1(S) such

that for any u°
1S .. 8 () Vallwy < IVl
Using the notation w’ := S(w/~') - ... S(u")u we obtain
vajﬂzp(zd) N ijVu|]gp(Zd).
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Since
_ E J
- Al,nun7
n

where

= Z Ql—Mi;— ' )alj,lfMljﬁ e alrMn(UO)-
ll, 7] 1
We can write down the ¢P-norm as follows:
T S il

kezd =1

where {5f }zm:]1 are the representatives of cosets of M. First note that:
Ik = nlloe < Ik = n+ M7e]lloc + | M el cc.

Note that M /¢ belongs to the unit square so that |[M~7¢/||,, < K;. When
J

Mikic n # 0, one can prove that there exists Ky > 0 such that

|k —n+ M| < Ky,

the proof being similar to that of Lemma 2 in [[1]. From these inequalities

it follows that if AJ Miktelm # 0 there exists K3 > 0 such that

[£ = nllee < K,

that is, for a fixed k, the values of wl for I € {M7k + €J ’”J , depend only on
u, with n: {||k — nl|e < K3}

Let us now fix k& and define @ such that

w, if [k = oo < K3;
U =
0, otherwise.
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Let @ := S(uw/') - ... S(u®)a, then

; wl, ifle {MIk+el};
wl:

0, if||k— M7 > Ky,
since if A{n # 0, then
Ik — M 10 <[k —nlloo+ | — M 7||oo < K3+ Ky := K.

Moreover, from ||k —M 71| o < Ky, it follows that || M7k —1||e < Ky|| M7 ||e-
Taking all this into account, we get

Do WP o= > > @<y > @

keZ |e{Mik+el} ke€Z® |e{Mik+el} keZd || MIk—l||oo <K4|| M7 |0

S IMILIA G @y < (IMleep) | A oo z)-

That s, [/l S (IMllep) e, consequently py(S) < [IM]|ocp.

Y

Now, if p — p,1(S) we get p,(S) < || M||ocpp,1(:S). 3

6.2. Convergence in Sobolev Spaces When M s Isotropic

First, Let us recall that the Sobolev norm on W% (R?) is defined by:

£ s ey = 1 zoay + > 11D fl|oqray. (15)
lul<N
If one considers a set 1, - - - , o, such that [z, -+, 2,]Z" = Z%, an equivalent

norm is given by:

1w @ay = 1oy + D, I1D* fllzogeay. (16)

ln|<N
where DF = DY ... DEn
1 Tn

We then enounce a convergence theorem for general isotropic matrix M:
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Theorem 3. Let S be a data dependent nonlinear subdivision scheme which
exactly reproduces polynomials up to total degree N — 1, then the subdivision
scheme Sv? converges in Wk (R?), provided ®q is compactly supported and

exactly reproduces polynomials up to total degree N — 1 and
pp.n(S) < mp for some s > N. (17)

PROOF: Note that because of Proposition f], the hypotheses of Theorem
imply that p, (S5) < mépp,kH(S) < m%_%, which means that ([[7) is also
true for £ < N. Let us now show that v; is a Cauchy sequence in LP. To do

s0, let us define
d
qj(z) = Z Aj i,
=1

where A = () is defined in ([). For a multi-index u = (u1,...,uq) € 24
let

Gu(r) = q" () .. qq" (2)-
Since A is invertible, the set {g, : |¢| = N} forms a basis of the space of all

polynomials of exact degree N, which proves that

D" (Vi1 = vj)l[r@ey ~ lgu(D)(0j41 = v5)l| Lo ray

Now, we use the fact that, since M is isotropic, ¢, (D)(f(M?z)) = o7*(q,(D) f)(M?z)
d
where ¢ = [] o/ ([H]). We can thus write:

=1

@u(D) (Vi1 — v5) = qu(D) <Z o o (M e — 1) = 0] Bo(Mz — l)) :

lezd lezd
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We use now the scaling equation of ®( to get

qM(D)(vj-i—l _Uj) = qM(D) (Z ]+1(I) (M]Jrl Z Z rgz qu)o MJ+1

lezd €74 rezd
= Z g+l Z 0l gi—nrr) 4 (D) (Do (M7 — 1))
lezd rezd
= 3 S (arwar (07) — a0 (g, (D)) (M
1€74 rez4d

Since S and ®( exactly reproduce polynomials up to total degree N — 1, we
have for |u| < N — 1:

Z(al—Mr(vj) — gi-mr)r" = 0.

reZs
Remark that g,_p, = 0 for ||l — Mr|| > K since @ is compactly supported.
Since {V”(Sl_ﬁ, lv| = N,re F(l) = {||l — Mr|| < max(K, f()} B € Zd} spans

(aler(Uj) - gler>r€F(l)7 we deduce:

LD —v) = 3033 )V la I (q,(D)B) (M7 — 1),

lezd reF(l) lv|=N

Consequently;,

D)1 — Dy S oIV, () AN e
Since p, n(S) < mY/P~*/? with s > N we obtain

FI(N=9)

||QM(D)(UJ+1 - vj)HLP(Rd) N ||ANUO||(zP(zd))QN-

From this we deduce that ||q,(D)(v;j+1 —v;)| Lr(re) tends to 0 with j. Making
p vary, we deduce the convergence in Wk (R9) J
We now show that when the matrix M satisfies ([4) and when @ is a box

spline satisfying certain properties, the limit function is in W& (R?). Before
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that, we need to recall the definition of box splines and some properties that

we will use. Let us define a set of n vectors, not necessarily distinct:
X, = {1, - 2} C Z%\ {0}.

We assume that d vectors of X,, are linearly independent. Let us rearrange

the family X, such that X; = {1, ,2q} are linearly independent. We
d

denote by [z1, -+, 24][0, 1[¢ the collection of linear combinations Y \;z; with
i=1

A\; € ]0,1[. Then, we define multivariate box splines as follows [{][LG]:

(e, X = 4 T 0 € [ a0, 11
0\&Ly “Ad =
0 otherwise
1
Bo(z, Xy) = / Bo(x — txy, Xp_1)dt, n >k >d. (18)
0

One can check by induction that the support of By (z, X,,) is [x1, 2, - - - , 4] [0, 1]™.
The regularity of box splines is then given by the following theorem [If]:

Proposition 5. Gy(x, X,,) is r times continuously differentiable if all subsets

of X,, obtained by deleting r + 1 vectors spans R?.

We recall a property on the directional derivatives of box splines, which

we use in the convergence theorem that follows:

Proposition 6. Assume that X, \ z, spans R?, and consider the following
box spline function s(x) = > cxfBo(x—k, X,,) then the directional derivative

kezd
of s in the direction x, reads:

D, s(x) = Z Vacrbo(r —k, Xp \ 2p).

kezd

We will also need the property of polynomial reproduction which is [[L6]:
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Proposition 7. If fy(z, X,,) is r times continuously differentiable then, for
any polynomial c(x) of total degree d < r+1,
p(x) = c(i)Bolx — i, X,) (19)
€2
is a polynomial with total degree d, with the same leading coefficients (i.e. the
coefficients corresponding to degree d). Conversely, for any polynomial p, it
satisfies ([L9) with ¢ being a polynomial having the same leading coefficients

as p.

Theorem 4. Let S be a data dependent nonlinear subdivision scheme which
reproduces polynomials up to total degree N — 1 and assume that M satisfies
relation ([I), then the subdivision scheme Sv? converges in W& (R?), if when
N > 2, @ is a CV=2 bor spline generated by xy,-- -,y satisfying Po(z) =
ggkq)o(Mx—k) and if N = 1 ®y(z) = ggkq)o(Mx—k) and > Pg(x—k) =

kezd
1 and if
pp.n(S) < mp for some s > N. (20)

PrROOF: We here prove the case N > 2, the case N = 1 can be proved
similarly. First note that since ®y(x) is a CV¥=2 box spline, we can write for
any polynomial p of total degree N — 1 at most:

p(M™'z) = > p(i) (M 'z — i, X,,)

i€Z4

= S g w0 @o(x — g, X,)

qE€Z% icZd
Using Proposition [ we get p and p have the same leading coefficients, and

that > g,—n:p(i) is a polynomial evaluated in M ' having the same leading
SV
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coefficients as p. That is to say the subdivision scheme (Sv7), = 3 g4 arev)
reproduces polynomials up to degree N — 1. e

As already noticed, the joint spectral radius of difference operator is in-
dependent of the choice of the directions zq,---,z, that spans Z¢. Fur-
thermore, it is shown in [[[4], that the existence of a scaling equation for @
implies that the vectors zj, i = 1,--- , n satisfy a relation of type ([4). We
consider such a set {z;}iz1,... n and then define ®y(x) = So(x,Yy) the box

spline associated to the set

which is C¥=2 by definition. We then define the differential operator DY, _; :=

D IPIEE -[)’ﬁ_jxn. We will use the characterization ([[) of Sobolev spaces

therefore pt = (;)i=1,... n. For any |p| < N we may write:

Dhy s (v (@) = = > l"(D"Bo) (M — k, V)
kezd
> vlgpari(D*Bo) (M — p, V),
pEZ4 icZd

using the scaling property satisfied by ;. Then, we get:

Dl]\L/I -1 (Vi) —vi(x)) = Z Z ag—ari (V') — Gr-mi) g(Dﬂﬁo)(Mij —k,Yy)
kezd iz
= > VRO (r-ai(v)) = geoai)v]) o (M x — K, Y)
kezd i€Zd
where Y} is obtained by removing p; vector x;, i = 1,---,d to Yy and

VH = (V‘m‘j)izl .., As both ax_n.(v7) and gj_ s reproduce polynomials up

)
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to total degree N — 1, there exist a finite sequence ¢, such that:
VA (an-ai(v)) = grari)vl) = > D IV,
i€zd peV (k) UV (k) lvI=Iul
where V (k) = {i, |k — Mi|| < K}, where gj_p; = 0 if ||k — Mi| > K. We
finally deduce that:

DYy (@) —vi@) =Y DY > )V B (M e — kYK,

keZ pev (k) JV (k) IvI=|u]

From this, we conclude that:
~ . _J+1 ~ .
108 sy (&) = v @) ity S Ao (S5 IR
Now, consider a sufficiently differentiable function f and remark that Dy;—j-1,, f(z) =
(Df)(z).M 7~ zy, where Df is the differential of the function f. We also
note that M? = AI which implies that A = ¢% and we then put j + 1 =

q X L]”Llj + r with r < ¢ and where [.] denotes the integer part. From this

we may write:

Dyosi f(2) = o~V (D f)(2). M2y
and then

—QL%J(

Dyj-i-1g f(x) ~ 0 Df)(x).x,,

where 7; depends on j. Making the same reasoning for any order j of differ-

entiation and any direction xj, we get, in LP:
~ _ & ~
(D= @) zoay ~ o~ 5T [(D* ) ()| ooy
We may thus conclude that

. - i+l
ID*(v501(x) = 0@ lo@sy  ~  [1Dyymsmr (Vi1 (x) = 05 (@) | oy ™

. jt1 J+1
pptu(SYm™ % oM A

AN
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To state the above result, we have used the fact that the joint spectral radius
is independent of the directions used for its computation. Since we have the

hypothesis that p, |, (S) < m#~4 for s > ||, we get that

1D (0j1(2) = (@)l ioey S W DINAMOY o,

which tends to zero with j, and thus the limit function is in W% (R%) H.

A comparison between Theorem P and [] shows that when the subdivision
scheme reproduces exactly polynomials, which is the case of interpolatory
subdivision schemes, the convergence is ensured provided ®q also exactly re-
produces polynomials. When the subdivision scheme only reproduces poly-
nomial the convergence is ensured provided that ®q is a box spline. Note also
that the condition on the joint spectral radius is the same. We are currently
investigating illustrative examples which involve the adaptation of the local

averaging subdivision scheme proposed in [ff] to our non-separable context.

7. Conclusion

We have addressed the issue of the definition of nonlinear subdivision
schemes associated to isotropic dilation matrix M. After the definition of
the convergence concept of such operators, we have studied the convergence
of these subdivision schemes in L? and in Sobolev spaces. Based on the study
of the joint spectral radius of these operators, we have exhibited sufficient
conditions for the convergence of the proposed subdivision schemes. This
study has also brought into light the importance of an appropriate choice of
®( to define the limit function. In that context, box splines functions have

shown to be a very interesting tool.
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