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Abstract

We study in this paper nonlinear subdivision schemes in a multivariate set-

ting allowing arbitrary dilation matrix. We investigate the convergence of

such iterative process to some limit function. Our analysis is based on some

conditions on the contractivity of the associated scheme for the differences.

In particular, we show the regularity of the limit function, in Lp and Sobolev

spaces.

Keywords: Nonlinear subdivision scheme, convergence of subdivision

schemes, box splines
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1. Introduction

Subdivision schemes have been the subject of active research in recent

years. In such algorithms, discrete data are recursively generated from coarse

to fine by means of local rules. When the local rules are independent of the

data, the underlying refinement process is linear. This case is extensively

studied in literature. The convergence of this process and the existence of the

limit function was studied in [2] and [7] when the scales are dyadic. When the

scales are related to a dilation matrix M , the convergence to a limit function

in Lp was studied in [8] and generalized to Sobolev spaces in [5] and [13]. In

the linear case, the stability is a consequence of the smoothness of the limit

function.

The nonlinearity arises naturally when one needs to adapt locally the re-

finement rules to the data such as in image or geometry processing. Nonlin-

ear subdivision schemes based on dyadic scales were originally introduced by

Harten [9][10] through the so-called essentially non-oscillatory (ENO) meth-

ods. These methods have recently been adapted to image processing into

essentially non-oscillatory edge adapted (ENO-EA) methods. Different ver-

sions of ENO methods exist either based on polynomial interpolation as in

[6][1] or in a wavelet framework [3], corresponding to interpolatory or non-

interpolatory subdivision schemes respectively.

In the present paper, we study nonlinear subdivision schemes associated

to dilation matrix M . After recalling the definitions on nonlinear subdivi-

sion schemes in that context, we give sufficient conditions for convergence in

Sobolev and Lp spaces.
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2. General Setting

2.1. Notations

Before we start, let us introduce some notations that will be used through-

out the paper. We denote #Q the cardinal of the set Q. For a multi-index

µ = (µ1, µ2, · · · , µd) ∈ N
d and a vector x = (x1, x2, · · · , xd) ∈ R

d we define

|µ| =
d∑

i=1

µi, µ! =
d∏

i=1

µi! and xµ =
d∏

i=1

xi
µi .

For two multi-index m,µ ∈ N
d we also define




µ

m



 =




µ1

m1



 · · ·




µd

md



 .

Let ℓ(Zd) be the space of all sequences indexed by Z
d. The subspace of

bounded sequences is denoted by ℓ∞(Zd) and ‖u‖ℓ∞(Zd) is the supremum of

{|uk| : k ∈ Z
d}. We denote ℓ0(Zd) the subspace of all sequences with finite

support (i.e. the number of non-zero components of a sequence is finite).

As usual, let ℓp(Zd) be the Banach space of sequences u on Z
d such that

‖u‖ℓp(Zd) < ∞, where

‖u‖ℓp(Zd) :=

(
∑

k∈Zd

|uk|
p

) 1

p

for 1 ≤ p < ∞.

As in the discrete case, we denote by Lp(Rd) the space of all measurable

functions f such that ‖f‖Lp(Rd) < ∞, where

‖f‖Lp(Rd) :=

(∫

Rd

|f(x)|pdx

) 1

p

for 1 ≤ p < ∞

and ‖f‖L∞(Rd) is the essential supremum of |f | on R
d.

Let µ ∈ N
d be a multi-index, we define ∇µ the difference operator

∇µ1

1 · · ·∇µd

d , where ∇
µj

j is the µjth difference operator with respect to the
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jth coordinate of the canonical basis. We define Dµ as Dµ1

1 · · ·Dµd

d , where

Dj is the differential operator with respect to the jth coordinate of the canon-

ical basis. Similarly, for a vector x ∈ R
d the differential operator with respect

to x is denoted by Dx.

A matrix M is called a dilation matrix if it has integer entries and if

lim
n→∞

M−n = 0. In the following, the invertible dilation matrix is always

denoted by M and m stands for |det(M)|.

For a dilation matrix M and any arbitrary function Φ we put Φj,k(x) =

Φ(M jx− k).

We also recall that a compactly supported function Φ is called Lp-stable

if there exist two constants C1, C2 > 0 satisfying

C1‖c‖ℓp(Zd) ≤ ‖
∑

k∈Zd

ckΦ(x− k)‖Lp(Rd) ≤ C2‖c‖ℓp(Zd).

Finally, for two positive quantities A and B depending on a set of param-

eters, the relation A <
∼ B implies the existence of a positive constant C,

independent of the parameters, such that A ≤ CB. Also A ∼ B means

A <
∼ B and B <

∼ A.

2.2. Local, Bounded and Data Dependent Subdivision Operators, Uniform

Convergence Definition

In the sequel, we will consider the general class of local, bounded and

data dependent subdivision operators which are defined as follows:

Definition 1. For v ∈ ℓ∞(Zd), a local, bounded and data dependent subdivi-

sion operator is defined by

S(v)wk =
∑

l∈Zd

ak−Ml(v)wl, (1)
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for any w in ℓ∞(Zd) and where the real coefficients ak−Ml(v) ∈ R are such

that

ak−Ml(v) = 0, if ‖k −Ml‖ℓ∞(Zd) > K (2)

for a fixed constant K. The coefficients ak(v) are assumed to be uniformly

bounded by a constant C, i.e. there is C > 0 independent of v such that:

|ak(v)| ≤ C.

Note that the definition of the coefficients depends on some sequence v, while

S(v) acts on the sequence w.

Note also that, from (1) and (2) the new defined value S(v)wk depends

only on those values l satisfying ‖k −Ml‖ℓ∞(Zd) > K. The subdivision oper-

ator in this sense is local.

To simplify, in what follows a data dependent subdivision operator is an

operator in the sense of Definition 1. With this definition, the associated

subdivision scheme is the recursive action of the data dependent rule Sv =

S(v)v on an initial set of data v0, according to:

vj = Svj−1 = S(vj−1)vj−1, j ≥ 1. (3)

2.3. Polynomial Reproduction for Data Dependent Subdivision Operators

The study of the convergence of data dependent subdivision operators

will involve the polynomial reproduction property. We recall the definition

of the space PN of polynomials of total degree N :

PN := {P ;P (x) =
∑

|µ|≤N

aµx
µ}.

With these notations, the polynomial reproduction properties read:
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Definition 2. Let N ≥ 0 be a fixed integer.

1. The data dependent subdivision operator S has the property of reproduc-

tion of polynomials of total degree N if for all u ∈ ℓ∞(Zd) and P ∈ PN

there exists P̃ ∈ PN with P − P̃ ∈ PN−1 such that S(u)p = p̃ where p

and p̃ are defined by pk = P (k) and p̃k = P̃ (M−1k).

2. The data dependent subdivision operator S has the property of exact

reproduction of polynomials of total degree N if for all u ∈ ℓ∞(Zd)

and P ∈ PN , S(u)p = p̃ where p and p̃ are defined by pk = P (k) and

p̃k = P (M−1k).

Remark:

The case N = 0 is the so-called ”constant reproduction property”. For

a data dependent subdivision operator defined as in (1), the constant repro-

duction property reads
∑

k∈Zd

ak−Ml(v) = 1, for all v ∈ ℓ∞(Zd).

3. Definition of Schemes for the Differences

Another ingredient for our study is the schemes for the differences asso-

ciated to the data dependent subdivision operator. The existence of schemes

for the differences is obtained by using the polynomial reproduction property

of the data dependent subdivision operator.

Let us denote ∆l = (∇µ, |µ| = l) and then state the following result on

the existence of schemes for the differences:

Proposition 1. Let S be a data dependent subdivision operator which re-

produces polynomials up to total degree N . Then for 1 ≤ l ≤ N + 1 there
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exists a data dependent subdivision rule Sl with the property that for all v,w

in ℓ∞(Zd),

∆lS(v)w := Sl(v)∆
lw

Proof:

Let l be an integer such that 1 ≤ l ≤ N + 1. By using the definition of

∇µ with |µ| = l, we write:

∇µS(v)wk = ∇µ1

1 · · ·∇µd

d S(v)wk.

From the definition of S(v)w we infer that

∇µS(v)wk =

max(µ1,··· ,µd)∑

m1,··· ,md=0

(−1)l




µ

m




∑

p∈Zd

ak−m·e−Mp(v)wp,

where we have used the notation m · e = m1e1+ · · ·+mded. Straightforward

computations give

∇µS(v)wk =
∑

p∈Zd

wp

max(µ1,··· ,µd)∑

m1,··· ,md=0

(−1)l




µ

m



 ak−m·e−Mp(v)

=
∑

p∈Zd

wpfk,p(v, µ). (4)

Let us clarify the definition of fk,p(v, µ). Since the data dependent subdivision

operator is local we have ak−Mp(v) = 0 for any data v ∈ ℓ∞(Zd) and any index

k such that ‖k −Mp‖ℓ∞(Zd) > K. Now by putting k = ε+Mn, we get that

fk,p(v, µ) is defined for p in the set

V µ(k) :=
{
p : ‖n− p+M−1(ε−m · e)‖∞ ≤ K‖M−1‖∞, 0 ≤ mi ≤ µi∀i

}

Then, we define V (k) := {p : ‖k −Mp‖∞ ≤ K}. Since the data dependent

subdivision scheme reproduces polynomials up to total degree N , we have
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for any |ν| = r ≤ N :

∑

p∈V (k)

ak−Mp(v)p
ν = Pν(k) for all k ∈ Z

d, (5)

where Pν is a polynomial of total degree r. By tacking the differences of

order |ν ′| = r + 1 in (5) we get

∑

p∈V ν′ (k)

fk,p(v, ν
′)pν = 0.

Note that the above equality is true for any ν such that |ν| = r. We deduce

that (fk,p(v, ν
′))k ∈ Z

d is orthogonal to (pq)p∈V ν′ (k) where |q| ≤ r. Note that
{

(∇νδn−β)n∈V ν′ (k) , |ν| = r + 1, β ∈ Z
d
}

spans (pq)p∈V ν′ (k) and we may thus

write for any p ∈ V ν′(k):

fk,p(v, ν
′) =

∑

|ν|=r+1

∑

r∈Zd

cµk,r(v)∇
µδp−r.

Now, by using (4) we obtain for any |µ| ≤ N + 1:

∇µS(v)wk =
∑

p∈V µ(k)

wp

∑

|ν|=l

∑

r∈Zd

cνk,r(v)∇
νδp−r

=
∑

p∈V µ(k)

∑

|ν|=l

cνk,r(v)∇
νwp

If we now make µ vary, we obtain the desired relation.

Now that we have proved the existence of schemes for the differences, we

introduce the notion of joint spectral radius for these schemes, which is a

generalization of the one dimensional case which can be found in [15].

Definition 3. Let S(v) : ℓp(Zd) → ℓp(Zd) be a data dependent subdivision

operator such that the difference operators Sl(v) :
(
ℓp(Zd)

)ql →
(
ℓp(Zd)

)ql,
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with ql = #{µ, |µ| = l} exists for l ≤ N + 1. Then, to each operator Sl,

l = 0, · · · , N + 1 (putting S0 = S) we can associate the joint spectral radius

given by

ρp,l(S) := inf
j≥1

‖(Sl)
j‖

1

j

ℓp(Zd)ql
.

In other words, ρp(S) is the infimum of all ρ > 0 such that for all v ∈

ℓp(Zd), one has

‖∆lSjv‖ℓp(Zd)ql <
∼ ρj‖∆lv‖ℓp(Zd)ql , (6)

for all j ≥ 0.

Remark: Let us define a set of vectors {x1, · · · , xn} such that [x1, · · · , xn]Z
n =

Z
d, n ≥ d (i.e. a set such that the linear combinations of its elements with

coefficients in Z spans Z
d). We use the bold notation in the definition of

the set so as to avoid the confusion with the coordinates of vector x. Then,

consider the differences in the directions x1, · · · , xn. One can show that there

exists a scheme for that differences which we call S̃l for l ≤ N + 1 provided

the data dependent subdivision operator reproduces polynomials up to de-

gree N (the proof is similar to that using the canonical directions). If we

denote by ∆̃l the difference operator of order l in the directions x1, · · · , xn,

one can see that ‖∆̃lv‖ℓp(Zd)q̃l ∼ ‖∆lv‖ℓp(Zd)ql for all v in ℓp(Zd) and where

q̃l = #{µ, |µ| = l, µ = (µi)i=1,··· ,n}.Then, following (6), one can deduce that

the joint spectral radius of S̃l is the same as that of Sl.

4. Convergence in L
p spaces

In the following, we study the convergence of data dependent subdivision

schemes in Lp which corresponds to the following definition:
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Definition 4. The subdivision scheme vj = Svj−1 converges in Lp(Rd), if

for every set of initial control points v0 ∈ ℓp(Zd), there exists a non-trivial

function v in Lp(Rd), called the limit function, such that

lim
j→∞

‖vj − v‖Lp(Rd) = 0.

where vj(x) =
∑

k∈Zd

vjkφj,k(x) with φ(x) =
d∏

i=1

max(0, 1− |xi|).

4.1. Convergence in the Linear Case

When S is independent of v, the rule (1) defines a linear subdivision

scheme:

Svk =
∑

l∈Zd

ak−Mlvl.

If the linear subdivision scheme converges for any v ∈ ℓp(Zd) to some function

in Lp(Rd) and if there exists v0 such that lim
j→+∞

vj 6= 0, then {ak, k ∈ Z
d}

determines a unique continuous compactly supported function Φ satisfying

Φ(x) =
∑

k∈Zd

akΦ(Mx − k) and
∑

k∈Zd

Φ(x− k) = 1.

Moreover, v(x) =
∑

k∈Zd

v0kΦ(x− k).

4.2. Convergence of Nonlinear Subdivision Schemes in Lp Spaces

In the sequel, we give a sufficient condition for the convergence of non-

linear subdivision schemes in Lp(Rd). This result will be a generalization of

the existing result in the linear context established in [8] and only uses the

operator S1.

Theorem 1. Let S be a data dependent subdivision operator that reproduces

the constants. If ρp,1(S) < m
1

p , then Svj converges to a Lp limit function.

11



Proof: Let us consider

vj(x) :=
∑

k∈Zd

vjkφj,k(x), (7)

where φ(x) =
d∏

i=1

max(0, 1 − |xi|) is the hat function. With this choice, one

can easily check that
∑

k∈Zd

φ(x−k) = 1. Let ρp,1(S) < ρ < m
1

p , it follows that

‖∆1vj‖(ℓp(Zd))d
<
∼ ρj‖∆1v0‖(ℓp(Zd))d ,

since q1 = d. We now show that the sequence vj is a Cauchy sequence in Lp:

vj+1(x)− vj(x) =
∑

k∈Zd

vj+1
k φj+1,k(x)−

∑

p∈Zd

vjpφj,p(x)

=
∑

k∈Zd

∑

p∈Zd

(vj+1
k − vjp)φj+1,k(x)φj,p(x)

where we have used
∑

k∈Zd

φ(· − k) = 1. Now, since the subdivision operator

reproduces the constants:

vj+1(x)− vj(x) =
∑

p∈Zd

∑

k∈Zd

∑

l∈Zd

ak−Ml(v
j)(vjl − vjp)φj+1,k(x)φj,p(x).

Note that

∑

l∈Zd

ak−Ml(v
j)(vjl − vjp) =

∑

l∈Zd

ak−Ml(v
j)vjl − vjp =

∑

l∈Zd

(ak−Ml(v
j)− δp−l)v

j
l .

Since
∑

l∈Zd

ak−Ml(v
j)−δp−l = 0,

{
∇iδl−β, l ∈ {F (k) ∪ {p}} , β ∈ Z

d, i = 1, · · · , d
}

spans (ak−Ml − δp−l)l∈{F (k)∪{p}}. This enables us to write:

vj+1(x)− vj(x) =
∑

p∈Zd

∑

k∈Zd

∑

l∈V (k)
⋃
{p}

d∑

i=1

dik,p,l∇iv
j
l φj+1,k(x)φj,p(x).
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Since |
∑

k∈Zd

φj+1,k(x)| = 1 following the same argument as in Theorem 3.2 of

[8], we may write:

‖vj+1 − vj‖Lp(Rd)
<
∼ m− j

p max
1≤i≤d

‖∇iv
j‖ℓp(Zd)

<
∼ m− j

p‖∆1vj‖ℓp(Zd)

∼ (
ρ

m
1

p

)j‖∆1v0‖ℓp(Zd) (8)

which proves that vj converges in Lp, since ρ < m
1

p . Note that, for p = ∞,

we obtain that the limit function is continuous.

Furthermore, the above proof is valid for any function Φ0 satisfying the prop-

erty of partition of unity when p = ∞. In general, we could show, following

Theorem 3.4 of [8], that the limit function in Lp is independent of the choice

of a continuous and compactly supported Φ0.

4.3. Uniform Convergence of the Subdivision Schemes to Cs functions (s <

1)

We are now ready to establish a sufficient condition for the Cs smoothness

of the limit function with s < 1.

Theorem 2. Let S(v) be a data dependent subdivision operator which re-

produces the constants. If the scheme for the differences satisfies ρp,1(S) <

m−s+ 1

p , for some 0 < s < 1 then Svj is convergent in Lp and the limit

function is Cs .

Proof: First, the convergence in Lp is a consequence of ρp,1(S) < m
1

p .

In order to prove that the limit function v be in Cs, it suffices to evaluate
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|v(x)−v(y)| for ‖x−y‖∞ ≤ 1. Let j be such that m−j−1 ≤ ‖x−y‖∞ ≤ m−j .

We then write :

|v(x)− v(y)| ≤ |v(x)− vj(x)|+ |v(y)− vj(y)|+ |vj(x)− vj(y)|

≤ 2‖v − vj‖L∞(Rd) + |vj(x)− vj(y)|

Note that (8) implies that ‖v − vj‖L∞(Rd) <
∼ ρj‖∆1v0‖ℓ∞(Zd). Since vj is

absolutely continuous, it is almost everywhere differentiable, so putting y =

x+M−jh, with h = (hi)i=1,··· ,d satisfying ‖h‖∞ ≤ 1 we get:

|vj(x+M−jh)− vj(x)| ≤ |vj(x+M−jh)− vj(x+M−j(h− hded))|

+|vj(x+M−j(h− hded))− vj(x+M−j(h− hded − hd−1ed−1))|

+ · · ·+ |vj(x+M−j(h1e1))− vj(x)|

Then, using a Taylor expansion we remark that, there exists θ ∈] − hd, hd[

such that:

|vj(x+M−jh)− vj(x+M−j(h− hded))| =
∑

k∈Zd

vjkhdDdφ(M
jx+ h− k + θded)

If we denote Ψd(x) = Φ(x1) · · ·Φ(xd−1)Ψ(xd), where Ψ is the characteristic

function of [0, 1] and Φ(xi) = max(0, 1− |xi|), we may write:

|vj(x+M−jh)− vj(x+M−j(h− hded))| ∼
∑

k∈Zd

∇dv
j
khdΨd(y)

where yi = (M−jx+h−k+θded)i if i < d and yd = 2(M−jx+h+θded)d−kd

(we have used the fact that the differential of the hat function Φ is the Haar

wavelet). Iterating the procedure for other differences in the sum, we get:

|vj(x+M−jh)− vj(x)| <
∼

d∑

i=1

‖∇iv
j‖ℓ∞(Zd) <

∼ ‖∆1vj‖ℓ∞(Zd).
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Combining these results we may finally write:

|v(x)− v(y)| ≤ |v(x)− vj(x)|+ |v(y)− vj(y)|+ |vj(x)− vj(y)|

≤ 2‖v − vj‖L∞(Rd) + |vj(x)− vj(y)|

<
∼ ρj‖∆1v0‖ℓ∞(Zd) + ‖∆1vj‖ℓ∞(Zd)

<
∼ ρj‖∆1v0‖ℓ∞(Zd) <

∼ ‖x− y‖s∞

with s < − log(ρ∞,1)/ logm.

5. Examples of Bidimensional Subdivision Schemes

In the first part of this section, we construct an interpolatory subdivision

scheme having the dilation matrix the hexagonal matrix which is:

M =




2 1

0 −2



 ,

For the hexagonal dilation matrix, the coset vectors are ε0 = (0, 0)T , ε1 =

(1, 0)T , ε2 = (1,−1)T , ε3 = (2,−1)T . The coset vector εi,i = 0, · · · , 3 of M

defines a partition of Z2 as follows:

Z
2 =

3⋃

i=0

{
Mk + εi, k ∈ Z

2
}
.

The discrete data at the level j, vj is defined on the grid Γj = M−j
Z
2,

the value vjk is then associated to the location M−jk. We now define our bi-

dimensional interpolatory subdivision scheme based on the data dependent

subdivision operator which acts from the coarse grid Γj−1 to the fine grid

grid Γj . To this end, we will compute vj at the different coset points on the

fine grid Γj using the existing values vj−1 of the coarse grid Γj−1, as follows:
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for the first coset vector ε0 = (0, 0)T we simply put vjMk+ε0
= vj−1

k , for the

coset vectors εi, i = 1, · · · , 3. the value vjMk+εi
, i = 1, · · · , 3 is defined by

affine interpolation of the values on the coarse grid. To do so, we define four

different stencils on Γj−1 as follows:

V j,1
k = {M−j+1k,M−j+1(k + e1),M

−j+1(k + e2)},

V j,2
k = {M−j+1k,M−j+1(k + e2),M

−j+1(k + e1 + e2)},

W j,1
k = {M−j+1(k + e1),M

−j+1(k + e2),M
−j+1(k + e1 + e2)},

W 2
k = {M−j+1k,M−j+1(k + e1),M

−j+1(k + e1 + e2)}.

We determine to which stencils each point of Γj belongs to, and we then

define the prediction as its barycentric coordinates. Since we use an affine

interpolant we have:

vjMk = vj−1
k and vjMk+ε1

=
1

2
vj−1
k +

1

2
vj−1
k+e1

. (9)

To compute the rules for the coset point ε2, V
1
k or V 2

k can be used leading

respectively to:

vj,1Mk+ε2
=

1

4
vj−1
k+e1

+
1

2
vj−1
k+e2

+
1

4
vj−1
k

vj,2Mk+ε2
=

1

2
vj−1
k +

1

4
vj−1
k+e2

+
1

4
vj−1
k+e1+e2

. (10)

When one considers the rules for the coset point ε3, W
1
k or W 2

k can be used

leading respectively to:

vj,1Mk+ε3
=

1

4
vj−1
k+e2

+
1

4
vj−1
k+e1+e2

+
1

2
vj−1
k+e1

vj,2Mk+ε3
=

1

4
vj−1
k +

1

4
vj−1
k+e1

+
1

2
vj−1
k+e1+e2

. (11)

This nonlinear scheme is converging in L∞ since we have the following result:
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Proposition 2. The prediction defined by (9), (10), (11) satisfies:

‖∆1vjM.+εi
‖ℓ∞(Zd) ≤

3

4
‖∆1vj−1‖ℓ∞(Zd)

We do not detail the proof here but the result is obtained by computing

the differences in the canonical directions at each coset points. If we then

use Theorem 2 we can find the regularity of the corresponding limit function

is Cs with s < − log(3/4)
log(4)

≈ 0.207.

In the second pat of the section, we build an example of bidimensional

subdivision scheme based on the same philosophy but this time using as

dilation matrix the quincunx matrix defined by:

M =




−1 1

1 1



 ,

whose coset vectors are ε0 = (0, 0)T and ε1 = (0, 1)T . Note that a0,0 = 1

and since the nonlinear subdivision operator reproduces the constants we

have
∑

i

aMi+ε = 1 for all coset vectors ε. To build the subdivision operator,

we consider the subdivision rules based on interpolation by of first degree

polynomials on the grid Γj−1. vjMk+ǫ1
corresponds to a point inside the cell

delimited by M−j+1{k, k + e1, k + e2, k + e1 + e2}. There are four potential

stencils, leading in this case only to two subdivision rules:

v̂j,1Mk+ǫ1
= 1

2
(vj−1

k + vj−1
k+e1+e2

) (12)

v̂j,2Mk+ǫ1
= 1

2
(vj−1

k+e1
+ vj−1

k+e2
) (13)

Note also, that since the scheme is interpolatory we have the relation: vjMk =

vj−1
k . Let us now prove a contraction property for the above scheme.
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Proposition 3. The nonlinear subdivision scheme defined by (12) and (13)

satisfies the following property:

1. when k = Mk′:

‖vj,1M.+ε1
− vjM.‖ℓ∞(Zd) ≤

1

2
‖∆1vj−2

. ‖ℓ∞(Zd)

‖vj,2M.+ε1
− vjM.‖ℓ∞(Zd) ≤ ‖∆1vj−2

. ‖ℓ∞(Zd)

2. when k = Mk′ + ε1, we can show that:

‖vj,2M.+ε1
− vjM.‖ℓ∞(Zd) ≤

1

2
‖∆1vj−2

. ‖ℓ∞(Zd)

‖vj,1M.+ε1
− vjM.‖ℓ∞(Zd) ≤ ‖∆1vj−2

. ‖ℓ∞(Zd)

The proof of this theorem is obtained computing all the potential differ-

ences. This theorem shows that the nonlinear subdivision scheme converges

in L∞ since ρ1,∞(S) < 1.

6. Convergence in Sobolev Spaces

In this section, we extend the result established in [13] on the convergence

of linear subdivision scheme to our nonlinear setting. We will first recall the

notion of convergence in Sobolev spaces in the linear case. Following [12]

Theorem 4.2, when Φ0(x) =
∑

k∈Zd

akΦ0(Mx − k) is Lp-stable, the so-called

”moment condition of order k + 1 for a” is equivalent to the polynomial

reproduction property of polynomial of total degree k for the subdivision

scheme associated to a. In what follows, we will say that Φ0 reproduces

polynomial of total degree k. When the subdivision associated to a exactly

reproduces polynomials, we will say that Φ0 exactly reproduces polynomi-

als. We then have the following definition for the convergence of subdivision

schemes in Sobolev spaces in the linear case [13]:
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Definition 5. We say that vj = Svj−1 converges in the Sobolev spaceW k
N(R

d)

if there exists a function v in W k
N (R

d) satisfying:

lim
j→+∞

‖vj − v‖W k
N
(Rd) = 0

where v is in W k
N (R

d), and vj =
∑

k∈Zd

vjkΦ0(M
jx− k) for any Φ0 reproducing

polynomials of total degree k.

We are going to see that in the nonlinear case, to ensure the convergence

we are obliged to make a restriction on the choice of Φ0. We will first give

some results when the matrix M is an isotropic dilation matrix, we will

also emphasize a particular class of isotropic matrices, very useful in image

processing.

6.1. Definitions and Preliminary Results

Definition 6. We say that a matrix M is isotropic if it is similar to the

diagonal matrix diag(σ1, . . . , σd), i.e. there exists an invertible matrix Λ such

that

M = Λ−1diag(σ1, . . . , σd)Λ,

with |σ1| = . . . = |σd| being the eigenvalues of matrix M .

Evidently, for an isotropic matrix holds |σ1| = . . . = |σd| = σ = m
1

d .

Moreover, for any given norm in R
d, any integer n and any v ∈ R

d we have

σn‖u‖ <
∼ ‖Mnu‖ <

∼ σn‖u‖.

A particular class of isotropic matrices is when there exists a set ẽ1, ẽ2, · · · , ẽq

such that:

Mẽi = λiẽγ(i) (14)
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where γ is a permutation of {1, · · · , q}. Such matrices are particular cases of

isotropic matrices since M q = λI where I is the identity matrix and where

λ =
d∏

i=1

λi. For instance, when d = 2, the quincunx (resp. hexagonal) matrix

satisfies M2 = 2I (resp. M2 = 4I).

We establish the following property on joint spectral radii that will be

useful when dealing with the convergence in Sobolev spaces.

Proposition 4. Assume that S reproduces polynomials up to total degree N .

Then,

ρp,n+1(S) ≥
1

‖M‖∞
ρp,n(S),

for all n = 0, . . . , N .

Remark: If M is an isotropic matrix and S reproduces polynomials up to

total degree N , then

ρp,n+1(S) ≥ σ−1ρp,n(S),

for all n = 0, . . . , N .

Proof: It is enough to prove

ρp,1(S) ≥
1

‖M‖∞
ρp(S).

According to the definition of spectral radius there exists ρ > ρp,1(S) such

that for any u0

‖S1(u
j−1) . . . S1(u

0)∇u‖ℓp(Zd) <
∼ ρj‖∇u‖(ℓp(Zd).

Using the notation ωj := S(uj−1) · . . . · S(u0)u we obtain

‖∇ωj‖ℓp(Zd) <
∼ ρj‖∇u‖ℓp(Zd).
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Since

ωj
l =

∑

n

Aj
l,nun,

where

Aj
l,n =

∑

l1,...,lj−1

al−Mlj−1
(uj−1)alj−1−Mlj−2

· . . . · al1−Mn(u
0).

We can write down the ℓp-norm as follows:

‖ωj‖p
ℓp(Zd)

=
∑

k∈Zd

mj
∑

i=1

|ωj

Mjk+εji
|p,

where {εji}
mj

i=1 are the representatives of cosets of M j . First note that:

‖k − n‖∞ ≤ ‖k − n+M−jεji‖∞ + ‖M−jεji‖∞.

Note that M−jεji belongs to the unit square so that ‖M−jεji‖∞ ≤ K1. When

Aj

Mjk+εji ,n
6= 0, one can prove that there exists K2 > 0 such that

‖k − n+M−jεji‖∞ ≤ K2,

the proof being similar to that of Lemma 2 in [11]. From these inequalities

it follows that if Aj

Mjk+εji ,n
6= 0 there exists K3 > 0 such that

‖k − n‖∞ ≤ K3,

that is, for a fixed k, the values of ωj
l for l ∈ {M jk + εji}

mj

i=1 depend only on

un with n : {‖k − n‖∞ ≤ K3}.

Let us now fix k and define ũ such that

ũl =







ul, if ‖k − l‖∞ ≤ K3;

0, otherwise.
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Let ω̃j := S(uj−1) · . . . · S(u0)ũ, then

ω̃j
l =







ωj
l , if l ∈ {M jk + εji}

mj

i=1;

0, if ‖k −M−j l‖∞ ≥ K4,

since if Aj
l,n 6= 0, then

‖k −M−jl‖∞ ≤ ‖k − n‖∞ + ‖n−M−jl‖∞ ≤ K3 +K2 := K4.

Moreover, from ‖k−M−jl‖∞ ≤ K4, it follows that ‖M
jk−l‖∞ ≤ K4‖M

j‖∞.

Taking all this into account, we get

∑

k∈Zd

∑

l∈{Mjk+εji}

|ωj
l |

p =
∑

k∈Zd

∑

l∈{Mjk+εji}

|ω̃j
l |

p ≤
∑

k∈Zd

∑

‖Mjk−l‖∞≤K4‖Mj‖∞

|ω̃j
l |

p

<
∼ ‖M‖j∞‖∆1ω̃j

l ‖ℓp(Zd) <
∼ (‖M‖∞ρ)j‖∆1ũ‖ℓp(Zd).

That is, ‖ωj‖ℓp(Zd) <
∼ (‖M‖∞ρ)j‖u‖ℓp(Zd), consequently ρp(S) <

∼ ‖M‖∞ρ.

Now, if ρ → ρp,1(S) we get ρp(S) ≤ ‖M‖∞ρp,1(S).

6.2. Convergence in Sobolev Spaces When M is Isotropic

First, Let us recall that the Sobolev norm on W p
N(R

d) is defined by:

‖f‖W p
N
(Rd) = ‖f‖Lp(Rd) +

∑

|µ|≤N

‖Dµf‖Lp(Rd). (15)

If one considers a set x1, · · · , xn such that [x1, · · · , xn]Z
n = Z

d, an equivalent

norm is given by:

‖f‖W p
N
(Rd) = ‖f‖Lp(Rd) +

∑

|µ|≤N

‖D̃µf‖Lp(Rd). (16)

where D̃µ = Dµ1

x1
· · ·Dµn

xn
.

We then enounce a convergence theorem for general isotropic matrix M :
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Theorem 3. Let S be a data dependent nonlinear subdivision scheme which

exactly reproduces polynomials up to total degree N − 1, then the subdivision

scheme Svj converges in W p
N(R

d), provided Φ0 is compactly supported and

exactly reproduces polynomials up to total degree N − 1 and

ρp,N(S) < m
1

p
− s

d for some s > N. (17)

Proof: Note that because of Proposition 4, the hypotheses of Theorem

3 imply that ρp,k(S) < m
1

dρp,k+1(S) < m
1

p
− s−1

d , which means that (17) is also

true for k < N . Let us now show that vj is a Cauchy sequence in Lp. To do

so, let us define

qj(x) =
d∑

l=1

λj,lxl,

where Λ = (λj,l) is defined in (6). For a multi-index µ = (µ1, . . . , µd) ∈ Z
d

let

qµ(x) = qµ1

1 (x) . . . qµd

d (x).

Since Λ is invertible, the set {qµ : |µ| = N} forms a basis of the space of all

polynomials of exact degree N , which proves that

‖Dµ(vj+1 − vj)‖Lp(Rd) ∼ ‖qµ(D)(vj+1 − vj)‖Lp(Rd)

Now, we use the fact that, sinceM is isotropic, qµ(D)(f(M jx)) = σjµ(qµ(D)f)(M jx)

where σ̃µ =
d∏

i=1

σµi

i ([5]). We can thus write:

qµ(D)(vj+1 − vj) = qµ(D)

(
∑

l∈Zd

vj+1
l Φ0(M

j+1x− l)−
∑

l∈Zd

vjlΦ0(M
jx− l)

)

.
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We use now the scaling equation of Φ0 to get

qµ(D)(vj+1 − vj) = qµ(D)

(
∑

l∈Zd

vj+1
l Φ0(M

j+1x− l)−
∑

l∈Zd

∑

r∈Zd

vjrgl−MrΦ0(M
j+1x− l)

)

=
∑

l∈Zd

(vj+1
l −

∑

r∈Zd

vjrgk−Mr)qµ(D)
(
Φ0(M

j+1x− l)
)

=
∑

l∈Zd

∑

r∈Zd

(al−Mr(v
j)− gl−Mr)v

j
r σ̃

µ(j+1)(qµ(D)Φ0)(M
j+1x− l).

Since S and Φ0 exactly reproduce polynomials up to total degree N − 1, we

have for |µ| ≤ N − 1:

∑

r∈Zd

(al−Mr(v
j)− gl−Mr)r

µ = 0.

Remark that gl−Mr = 0 for ‖l −Mr‖ > K̃ since Φ0 is compactly supported.

Since
{

∇νδl−β, |ν| = N, r ∈ F (l) =
{

‖l −Mr‖ ≤ max(K, K̃)
}

, β ∈ Z
d
}

spans

(al−Mr(v
j)− gl−Mr)r∈F (l), we deduce:

qµ(D)(vj+1 − vj) =
∑

l∈Zd

∑

r∈F (l)

∑

|ν|=N

cνr(v
j)∇νvjrσ̃

µ(j+1)(qµ(D)Φ0)(M
j+1x− l),

Consequently,

‖qµ(D)(vj+1 − vj)‖Lp(Rd) <
∼ σ(j+1)Nm−(j+1)/p(ρp,N(S))

j‖∆Nv0‖(ℓp(Zd))qN

Since ρp,N(S) < m1/p−s/d, with s > N we obtain

‖qµ(D)(vj+1 − vj)‖Lp(Rd) <
∼ σj(N−s)‖∆Nv0‖(ℓp(Zd))qN .

From this we deduce that ‖qµ(D)(vj+1−vj)‖Lp(Rd) tends to 0 with j. Making

µ vary, we deduce the convergence in W p
N(R

d)

We now show that when the matrix M satisfies (14) and when Φ0 is a box

spline satisfying certain properties, the limit function is in W p
N(R

d). Before
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that, we need to recall the definition of box splines and some properties that

we will use. Let us define a set of n vectors, not necessarily distinct:

Xn = {x1, · · · , xn} ⊂ Z
d \ {0}.

We assume that d vectors of Xn are linearly independent. Let us rearrange

the family Xn such that Xd = {x1, · · · , xd} are linearly independent. We

denote by [x1, · · · , xd][0, 1[
d the collection of linear combinations

d∑

i=1

λixi with

λi ∈ [0, 1[. Then, we define multivariate box splines as follows [4][16]:

β0(x,Xd) =







1
|det(x1,··· ,xd)|

if x ∈ [x1, · · · , xd][0, 1[
d

0 otherwise

β0(x,Xk) =

∫ 1

0

β0(x− txk, Xk−1)dt, n ≥ k > d. (18)

One can check by induction that the support of β0(x,Xn) is [x1, x2, · · · , xn][0, 1]
n.

The regularity of box splines is then given by the following theorem [16]:

Proposition 5. β0(x,Xn) is r times continuously differentiable if all subsets

of Xn obtained by deleting r + 1 vectors spans Rd.

We recall a property on the directional derivatives of box splines, which

we use in the convergence theorem that follows:

Proposition 6. Assume that Xn \ xr spans R
d, and consider the following

box spline function s(x) =
∑

k∈Zd

ckβ0(x−k,Xn) then the directional derivative

of s in the direction xr reads:

Dxr
s(x) =

∑

k∈Zd

∇xr
ckβ0(x− k,Xn \ xr).

We will also need the property of polynomial reproduction which is [16]:
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Proposition 7. If β0(x,Xn) is r times continuously differentiable then, for

any polynomial c(x) of total degree d ≤ r + 1,

p(x) =
∑

i∈Zd

c(i)β0(x− i, Xn) (19)

is a polynomial with total degree d, with the same leading coefficients (i.e. the

coefficients corresponding to degree d). Conversely, for any polynomial p, it

satisfies (19) with c being a polynomial having the same leading coefficients

as p.

Theorem 4. Let S be a data dependent nonlinear subdivision scheme which

reproduces polynomials up to total degree N − 1 and assume that M satisfies

relation (14), then the subdivision scheme Svj converges in W p
N (R

d), if when

N ≥ 2, Φ0 is a CN−2 box spline generated by x1, · · · , xn satisfying Φ0(x) =
∑

k

gkΦ0(Mx−k) and if N = 1 Φ0(x) =
∑

k

gkΦ0(Mx−k) and
∑

k∈Zd

Φ0(x−k) =

1 and if

ρp,N(S) < m
1

p
− s

d for some s > N. (20)

Proof: We here prove the case N ≥ 2, the case N = 1 can be proved

similarly. First note that since Φ0(x) is a CN−2 box spline, we can write for

any polynomial p of total degree N − 1 at most:

p(M−1x) =
∑

i∈Zd

p̃(i)Φ0(M
−1x− i, Xn)

=
∑

q∈Zd

∑

i∈Zd

gq−Mip̃(i)Φ0(x− q,Xn)

Using Proposition 7 we get p and p̃ have the same leading coefficients, and

that
∑

i∈Zd

gq−Mip̃(i) is a polynomial evaluated inM−1i having the same leading
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coefficients as p. That is to say the subdivision scheme (Svj)q =
∑

i∈Zd

gq−Miv
j
i

reproduces polynomials up to degree N − 1.

As already noticed, the joint spectral radius of difference operator is in-

dependent of the choice of the directions x1, · · · , xn that spans Z
d. Fur-

thermore, it is shown in [14], that the existence of a scaling equation for Φ0

implies that the vectors xi, i = 1, · · · ,n satisfy a relation of type (14). We

consider such a set {xi}i=1,··· ,n and then define Φ0(x) = β0(x, YN) the box

spline associated to the set

YN :=

{
N

︷ ︸︸ ︷
x1, · · · , x1, · · · ,

N
︷ ︸︸ ︷
xn, · · · , xn

}

.

which is CN−2 by definition. We then define the differential operator D̃µ
M−j :=

D̃µ1

M−jx1
· · · D̃µn

M−jxn
. We will use the characterization (16) of Sobolev spaces

therefore µ = (µi)i=1,··· ,n. For any |µ| ≤ N we may write:

D̃µ
M−j−1(vj+1(x)− vj(x)) =

∑

k∈Zd

vj+1
k (D̃µβ0)(M

j+1x− k, YN)

−
∑

p∈Zd

∑

i∈Zd

vji gp−Mi(D̃
µβ0)(M

j+1x− p, YN),

using the scaling property satisfied by β0. Then, we get:

D̃µ
M−j−1(vj+1(x)− vj(x)) =

∑

k∈Zd

∑

i∈Zd

(ak−Mi(v
j)− gk−Mi)v

j
i (D̃

µβ0)(M
j+1x− k, YN)

=
∑

k∈Zd

∇̃µ(
∑

i∈Zd

(ak−Mi(v
j)− gk−Mi)v

j
i )β0(M

j+1x− k, Y µ
N )

where Y µ
N is obtained by removing µi vector xi, i = 1, · · · , d to YN and

∇̃µ =
(
∇µi

xi

)

i=1,··· ,n
. As both ak−M.(v

j) and gk−M. reproduce polynomials up
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to total degree N − 1, there exist a finite sequence ck,p such that:

∇̃µ(
∑

i∈Zd

(ak−Mi(v
j)− gk−Mi)v

j
i ) =

∑

p∈V (k)
⋃

Ṽ (k)

∑

|ν|=|µ|

ck,p(ν)∇̃
νvjp,

where Ṽ (k) = {i, ‖k −Mi‖ ≤ K̃}, where gk−Mi = 0 if ‖k −Mi‖ > K̃. We

finally deduce that:

D̃µ
M−j−1(vj+1(x)− vj(x)) =

∑

k∈Zd

∑

p∈V (k)
⋃

Ṽ (k)

∑

|ν|=|µ|

ck,p(ν)∇̃
νvjpβ0(M

j+1x− k, Y µ
N ).

From this, we conclude that:

‖D̃µ
M−j−1(vj+1(x)− vj(x))‖Lp(Rd)

<
∼ ρp,|µ|(S)

jm− j+1

p ‖∆̃|µ|vj0‖(ℓp(Zd))
q̃|µ| .

Now, consider a sufficiently differentiable function f and remark thatDM−j−1x1
f(x) =

(Df)(x).M−j−1x1, where Df is the differential of the function f . We also

note that M q = λI which implies that λ = σq and we then put j + 1 =

q × ⌊ j+1
q
⌋ + r with r < q and where ⌊.⌋ denotes the integer part. From this

we may write:

DM−j−1x1
f(x) = σ−q⌊ j+1

q
⌋(Df)(x).M−rx1

and then

DM−j−1x1
f(x) ∼ σ−q⌊ j+1

q
⌋(Df)(x).xrj

where rj depends on j. Making the same reasoning for any order µ of differ-

entiation and any direction xi, we get, in Lp:

‖(D̃µ
M−j−1f)(x)‖Lp(Rd) ∼ σ−q|µ|⌊ j+1

q
⌋‖(D̃µf)(x)‖Lp(Rd).

We may thus conclude that

‖D̃µ(vj+1(x)− vj(x))‖Lp(Rd) ∼ ‖D̃µ
M−j−1(vj+1(x)− vj(x))‖Lp(Rd)σ

q|µ|(×⌊ j+1

q
⌋)|

<
∼ ρp,|µ|(S)

jm− j+1

p σq|µ|⌊ j+1

q
⌋‖∆̃|µ|v0‖

(ℓp(Zd))
q̃|µ| .
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To state the above result, we have used the fact that the joint spectral radius

is independent of the directions used for its computation. Since we have the

hypothesis that ρp,|µ|(S) ≤ m
1

p
− s

d for s > |µ|, we get that

‖D̃µ(vj+1(x)− vj(x))‖Lp(Rd) <
∼ σ(|µ|−s)j‖∆̃|µ|v0‖

(ℓp(Zd))
q̃|µ| ,

which tends to zero with j, and thus the limit function is in W p
N(R

d) �.

A comparison between Theorem 3 and 4 shows that when the subdivision

scheme reproduces exactly polynomials, which is the case of interpolatory

subdivision schemes, the convergence is ensured provided Φ0 also exactly re-

produces polynomials. When the subdivision scheme only reproduces poly-

nomial the convergence is ensured provided that Φ0 is a box spline. Note also

that the condition on the joint spectral radius is the same. We are currently

investigating illustrative examples which involve the adaptation of the local

averaging subdivision scheme proposed in [6] to our non-separable context.

7. Conclusion

We have addressed the issue of the definition of nonlinear subdivision

schemes associated to isotropic dilation matrix M . After the definition of

the convergence concept of such operators, we have studied the convergence

of these subdivision schemes in Lp and in Sobolev spaces. Based on the study

of the joint spectral radius of these operators, we have exhibited sufficient

conditions for the convergence of the proposed subdivision schemes. This

study has also brought into light the importance of an appropriate choice of

Φ0 to define the limit function. In that context, box splines functions have

shown to be a very interesting tool.
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