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Modeling of Dynamic Backgrounds by Type-2
Fuzzy Gaussian Mixture Models

T. Bouwmans, F. El Baf

Abstract—Gaussian Mixture Models (GMMs) are the most
popular techniques in background modeling but preset some
limitations when some dynamic changes occur like ozera jitter,
illumination changes, movement in the background. &rthermore,
the GMM are initialized using a training sequence \aich may be
noisy and/or insufficient to model correctly the bakground. All
these critical situations generate false classifitan in the
foreground detection mask due to the related unceainty. In this
context, we propose to model the background by usina Type-2
Fuzzy Gaussian Mixture Models. The interest is tontroduce
descriptions of uncertain parameters in the GMM. Experimental
validation of the proposed method is performed angresented on
a diverse set of RGB and infrared videos. Resultshew the
relevance of the proposed approach.

Index Terms—Background Modeling, Gaussian Mixture
Models, Foreground Detection.

I. INTRODUCTION

Gaussian Mixture Model (GMM)) has been used to rhode
dynamic backgrounds [13]. This model has some
disadvantages. Background having fast variatiomnaiabe
accurately modeled with just a few Gaussians (ls@ato 5),
causing problems for sensitive detection. So, apaametric
technique [14] was developed for estimating backgdo
probabilities at each pixel from many recent sasipleer time
using Kernel density estimation (KDE) but it is &m
consuming. In [18], Subspace Learning using Praicip
Component Analysis (SL-PCA) is applied on N images
construct a background model, which is represebtedhe
mean image and the projection matrix comprising fife p
significant eigenvectors of PCA. In this way, foregnd
segmentation is accomplished by computing the rdiffee
between the input image and its reconstruction.s&hi@ur
models define the first category using basic dteismodel.
The second category uses more sophisticated gtaltistodels

as Support Vector Machines (SVM) [19], Support dect
Regression (SVR) [20] and Support Vector Data Dpton

ANY video surveillance systems in visible spectrum [1}SvDD) [21]. The third category generalizes the elscf the

[2], [3] or infrared (IR) [4], [5], [ 6] need in thfirst step

first category as the single general Gaussian (S[2&) the

to detect moving objects in the scene. The basicatipn used mixture of general Gaussians (MOGG) [23] and subspa

is the separation of the moving objects calledgorend from

the static information called the background. Thecpss is [24],

called the background subtraction. In the litemtumany

learning using Independent Component Analysis (GR)
[25] or wusing Incremental Non-negative Matrix
Factorization (SL-INMF) [26], [27] or using Increml

background modeling methods have bee.n developedhend Rank-(R1,R2,R3) Tensor (SL-IRT) [28]. The Tabldows an
most recent surveys can be found in [7], [8]. TheSgverview of the statistical background modeling.eTfirst
background modeling methods can be classified i@ tlolumn indicates the categories and the secondmrpithe

following categories: Basic Background Modeling,[§10],
[11], Statistical Background Modeling [12], [13]14] and
Background Estimation [15], [16], [17]. Reading therature,

name of each method. Their corresponding acronym is
indicated in the first parenthesis and the numkfepapers
counted for each method in the second parentheseés.third

two remarks can be made: The most used modelshare ¢olumn gives the name of authors and the datehefitst

statistical ones due to their robustness to thealisituations.
The first way to represent statistically the backogd is to
assume that the history over time of intensity galof a pixel
can be modeled by a single Gaussian (SG) [12]. Mewe

related publication. We can see that the MOG (orMgMiith

100 papers is the most used and improved due tood g
compromise  between robustness and time/memory
requirements. In the GMM initialization, an expeicta-

unimodal model cannot handle dynamic backgroundsnwhmaximization (EM) algorithm is used and allows stimate

there are waving trees, water rippling or movingaal To
solve this problem, the Mixture of Gaussians (MO@)
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GMM parameters from a training sequence accordinthé
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not accurately reflect the underlying distributicof the
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problematical to use likelihoods that are themselpescise
real numbers to evaluate GMM with uncertain paranset
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TABLE |

STATISTICAL BACKGROUND MODELING: AN OVERVIEW

Categories

Methods

Authors - Dates

First Category

Single Gaussian (SG) (5)
Mixture of Gaussians (MOG - GMM) (~100)
Kernel Density Estimation (KDE) (21)
Principal Components Analysis (SL-PCA) (15)

Second Category Support Vector Machine (SVM) (3)

Third Category

Support Vector Regression (SVR) (2)
Support Vector Data Description (SVDD) (5)

Single General Gaussian (SGG) (3)
Mixture of General Gaussians (MOGG) (3)

Wrenet al. (1997) [12]

Stauffer and Grimson (1999) [13]
Elgammalet al. (2000) [14]
Oliver et al. (1999) [18]

Lin et al. (2002) [19]
Wanget al. (2006) [20]
Tavakkoliet al. (2006) [21]

Kim et al. (2007) [22]
Allili et al. (2007) [23]

Independent Component Analysis (SL-ICA) (2)
Incremental Non Negative Matrix Factorization (UMF) (2)
Incremental RanKR;, Ry, Rs) Tensor (SL-IRT) (1)

Yamazakiet al. (2006) [24]
Bucaket al. (2007) [26]
Li et al. (2008) [28]

To solve this problem, we propose to model the gemknd dynamically the number of Gaussians to be more sbbu
by using a Type-2 Fuzzy Gaussians Mixture Model-(T2dynamic backgrounds [36], [37], [38], [39], [40K1]. Other

FGMM) recently developed by Zeng et al. [29] tordnluce
descriptions of uncertain parameters in the GMM.

The rest of this paper is organized as followsthi section
II, we present briefly related works on GMM’s impegnents.
In the section lll, the T2-FGMM is used for backgnd
modeling. In the section IV, qualitative and qutaiive
experiments on RGB videos and infrared videos st T2-

approaches use another algorithm for the initiibra[42],

[43] and allow presence of foreground objects ia titaining
sequence [44]. For the maintenance, the learnitgs rare
better set [45], [46] or adapt over time [47], [4&or the
foreground detection, some authors use a differerasure for
the matching test [42] or use a foreground mod@]. [Another
way to improve the efficiency and robustness of dhiginal

FGMM outperforms the crisp GMM when dynamic change&MM consist in using extrinsic strategies. Someharg used

occur. Finally, we present conclusions and persgectin
Section V.

Il. RELATED WORKS

The original GMM for background modeling was progads
by Stauffer and Grimson [13] and present severahathges.
Indeed, it can work without having to store an imaot set of
input data in the running process. The multimogatit the
model allows to tackle multimodal backgrounds amadgal
illumination changes. Despite it, this model preéseame
disadvantages: the number of Gaussians must
predetermined, the need for good initializationdie t
dependence of the results on the true distribuiden which
can be non-Gaussian and slow recovery from failubdésers
limitations are the needs for a series of trairfiagnes absent
of moving objects and the amount of memory requirethis
step. To alleviate these limitations, numerous oupments
have been proposed over the recent years as shpwheb
different acronyms found like AKGMM [30], TLGMM [31
STGMM [32], SKMGM [33], TAPPMOG [34] and S-

Markov Random Fields [50], hierarchical approachi&s],
multi-level approaches [52], multiple backgroun88][ graph
cuts [54], multilayer approaches [55] or specifiosp
processing [56]. A recent complete survey of these
improvements can be found in [57]. However, nongheke
improvements consider the uncertainty related sufficient
or noisy data in training sequence. Nevertheless, td this
uncertainty, the GMM may not accurately reflect the
underlying distribution of the observations accogdito the
ML estimation. One way to take into account thisanmainty
is to use fuzzy concepts with the GMM. A first apgch
geveloped by [58] consists in the fuzzy GMM (FGMWat
estimates its parameters based on the modified/ foaeans
algorithm. So, the FGMM focuses on the precise rpatar
estimation of GMMs using fuzzy approaches ratheanth
modeling GMMs uncertain parameters. On the otherdha
Type-2 fuzzy sets (T2-FSs) [59] provide a theoedhjcwell-
founded framework to handle GMMs uncertain pararsete
Their recent success achieved in pattern recognitas been
largely attributed to their three-dimensional mershi
functions (MFs) for modeling uncertainties. Recgnfleng et

TAPPMOG [35]. All the developed improvements can b@&!- [29] introduce the Type-2 fuzzy sets in the GMd

classified following the strategies used to be nrotrist to the
critical situations met in video sequences [15].eThirst

strategies called intrinsic strategies consistetartore rigorous
in the statistical sense or to introduce spatia/@ntemporal
constraint in the different step of the model. FExample,

called it Type-2 Fuzzy Gaussian Mixture Model (TGNM).
Experimental validations made in [29] show the siguity of
T2-FGMM in pattern classification. In this contexiye
propose to apply the T2-FGMM for background modglia
take into account the uncertainty.

some authors propose to determine automatically and
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[ll. BACKGROUND MODELING USINGTYPE-2 FGMM mean or standard deviation as shown in Fig. 1. Streded
In this section, we apply the Type-2 FGMM to backgrd region is the footprint of uncertainty (FOU). Theck solid
modeling and explain it in the case of RGB videasibcan @nd dashed lines denote the lower and upper MFshen
be apply to infrared videos too by reducing the efision of Gaussian primary MF with uncertain mean, the uppris:

the observation to one dimension. _
h(0) = f (o; 11, 0) if o<y

A. Principle h(o) =1 if < o< u (5)
h(o) = f ;_; if 0> u

Each pixel is characterized by its intensity in R@B color (0)= (04 0) o=H
space. So, the observatioiis a vectol X, in the RGB space

) ] where
and d =3. Then, the GMM is composed of K mixture
components of multivariate Gaussian as follows: (0, 4, 0) = exp—%[o_ﬂ]
- o
K
and
P(Xt):Zw],t”(xtuui,tvzi,t) 1) —\2
= (0,1, 0) = exp-= (ﬂ]
2\ o
where the parameters are K is the number of digtdbs, The lower ME is:
«;.is a weight associated to tHe iGaussian at time t with '
mean y;.and standard deviatiolX);,. 77 is a Gaussian _ . U+
probability density function: h(o) = f(0; i, 0) if o< B
. (6)
1 —7(XI—,U)Z_1(XI—,U) +_
nXe, 4, 2) =—————-e ? @) h(o) = f (o y; 0 it 0> 22
(271)3/2|Z|1/2 h(o) = f(o; i; 0) 5

For the T2-FGMM-UM, the multivariate Gaussian with [N the Gaussian primary MF with uncertain standard
uncertain mean vector is: deviation, the upper MF i:h(o) = f (0; 1; o) and lower MF is

h(o) = f (0; 1 0) .

2
~ 1 1 He
X U, Z)=———exX -—=— 3 . . .
X0 1:2) (27T)3/2|Z|1/2 p(l_l 2( o, J )3 The factor k,, and k, control the intervals in which the
parameter vary as follows:
with 77, D[4, 14,] andcO{R G,B}. _
Fe Ol ) anden{R . U= H=KnG = K0 ™
For the T2-FGMM-UV, the multivariate Gaussian with _
uncertain variance vector is: og=k,0,0=Q/k,)o (8)

N 1 1( Xoo =t Y Because a one-dimensional gaussian has 99.7% of its
(X, (4, 2) :Wexp(ﬂ —E(%] ) (4) probability mass in the range [u-30,u+30], Zeng et al
(@m) |Z| ¢ [29] constraink,, 0[03] and k, O [0.31] . These factors also
control the area of the FOU. The big(K,, or K,, the larger

with &, O[o,,0.] andcO{R,G,B}. o .
e l0c, 0] { ) the FOU which implies the greater uncertainty.

4 and i denote uncertain mean vector and covarianceBoth the T2-FGMM-UM and T2-FGMM-UV can be used to
matrix respectively. Because, there is no priorkedge Mmodel the background and we can expect that thEGM-

about the parameter uncertainty, practically Zengle[29] UM will be more robust than the T2-FGMM-UV. Indedd,

assume that the mean and standard deviation vatyinwi theé GMM maintenance, only the means are estimateti a
tracked correctly. The variance and the weights uarstable

_ and unreliable as explained by Greiffenhagen ¢68l.
o0[g,o]. Each exponential component in (3) and (4) is the

intervals with uniform possibilities, i.e.ﬁD[E,Z] or

Gaussian primary membership function (MF) with uteie
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B. Training

Upper MF f ™

Training the T2-FGMM consist to estimate the parzmse o / A
M, > and the factok,, or k,. Zeng et al. [29] set the factors
K, or K, as constants according to prior knowledge and then

in our application are fixed depending to the vid@hus, i,' / \ \
parameters estimation of T2 FGMM includes threpsste (]

- Step 1: Choose K between 3 and 5.

Step 2: Estimate GMM parameters by an EM algorithm
Step 3: Add the factokor k, to GMM to produce I ‘ ‘ T
T2- FGMM-UM or T2-FGMM-UV. L \

——— LowerMF

Once the training is made, a first foreground d&iaccan
be processed.

C. Foreground Detection /

Foreground detection consist to classify currentelpias

background or foreground. By using the r¢ r =w /Jj , We  Fig. 1. The upper image shows the Gaussian prifd&ryith uncertain mean
. . . . . and the lower image shows the Gaussian primary Miruncertain std. Both
firstly ordered the K Gaussians as in [13]. Thislasing

of them have uniform possibilities. The hatchedaegds the FOU. The thick
supposes that a background pixel corresponds ighaweight solid and dashed lines denote the upper and ther IbFs respectively.
with a weak variance due to the fact that the beamkud is

more present than moving objects and that its vatie u# and o are the mean end the std of the original certain T1
practically constant. The first B Gaussian distitns which  MF without uncertainty. Both (10) and (11) are &msing

exceed certain threshol@ are retained for a backgroundfynctions in terms of the deviati|Xt _/1| . For example,
distribution:

given a fixedk,, the farther the X, deviates from y, the

B:argminb(ZP @, >T) ) Ifalrgfer H(X,) is |n.(12), Whlch refk_acts é higher exFent of the
=" likelihood uncertainty. This relationship accordsthwthe

outlier analysis. If the outlie X; deviates farther from the

The other distributions are considered to represent center of the class-conditional distribution, itsha larger
foreground distribution. When the new frame incormesmes

: X - H (X, ) showing its greater uncertainty to the class moda,
t+1, a match test is made for each pixel. For this,use the a pixel is ascribed to a Gaussian if:
log-likelihood, and thus we are only concerned wiité length '
between two bounds of the log-likelihood intervale.,
_ _ _ H(X,) <ko (12)
H(Xt):|In(b(Xt))—In(h(Xt))|. In Fig 1. (a), the Gaussian
primary MF with uncertain mean has: where k is a constant threshold equal to 2.5. Then,cases
can occurs: (1) A match is found with one of th&Kussians.
H(X,) = 2Kp| X, = 4|/ o In this case, if the Gaussian distribution is iffeed as a
background one, the pixel is classified as backuoeise the
pixel is classified as foreground. (2) No matctfasnd with
(10 any of the K Gaussians. In this case, the pixelassified as
foreground. At this step, a binary mask is obtainEden, to

make the next foreground detection, the parameterst be
updated.

if X, <u—-K.,0 or X, 2pu+k,o

H(X,) = |X, — i 1207 + k| X, — ] 7+ K2 12
if u-kno<X,<p+k,o

In Fig 1.(b), the Gaussian primary MF with uncartai

standard deviation has D. Maintenance

H(Xt):(llkf—k3)|xt _;42/202 (11) The T2-FGMM Maintenance is made as in the original

GMM [13] as follows:
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Once a background maintenance is made, another

- Case 1: A match is found with one of the K Gaussianforeground detection can be processed.
For the matched component, the update is done as

follows:
Qi1 = (1_ a)a'i,t ta
where & is a constant learning rate.

Ui = Q=P + P X1

(13)

(14)

Ji2,t+1 = (1_p)0i2,t + P(Xs1 = i pa1)- (K — M5 ,t+1)T (15)

where p = 0’/7(Xt+1uui V2 )

For the unmatched componeny and X are unchanged,

(16)

only the weight is replaced tw; ;,; = L-a@)w;; (17).

- Case 2: No match is found with any of the K Gaussitn

this case, the least probable distribution k idasgd with

a new one with parameters:

4+ = LOw Prior Weidnt
/‘Ik,t+l = xt+l

o141 = Largelnitial Variance

Frame 271

(18)
(19)
(20)

Frame 373

IV. RESULTSAND DISCUSSION

We have applied the T2-FGMM-UM and T2-FGMM-UV
algorithms in different dynamic backgrounds in tfgble and
beyond the visible spectrum. In these scenes, dbe main
types of dynamic backgrounds appear: camera jittaring
trees, water rippling and water surface. On a 3 Giiel
Pentium Duo processor with 2 GB RAM, an optimized
implementation of the proposed approach can proabssit
11 fps for a frame size of 240*360. All the algbnts were
implemented under Microsoft Visual C++ using thee®@@V
library. Firstly, qualitative comparative resultsitiw the
original mixture of Gaussians method [13] are shdhen a
guantitative evaluation is presented. For the psedo
algorithms, the best results are obtained by gk, =2and

k, =09.

A. Qualitative Analysis

Qualitative results on six sequences of dynamitceseare
presented in this section. Four sequences concettoar

scenes in RGB videos [62] [64] and two sequencesfiared
videos[65].

Frame 410 Fragbe 4

Fig. 2. Camera jitter: The first row are the or@iimages, the second row are the results obtdipesing the GMM [13], the third row arlee result obtaine
using the T2-FGMM-UM and the fourth row are theutesbtained by using the T2-FGMM-UV.
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Frame 100 Frame 210 Frame 325 Frame 500

Fig. 3. The first row shows the original frames &ampus sequences. The second row presents thersegnimages obtained by the GMM [13]. Thed
and the fourth rows illustrate the result obtainsihg the T2-FGMM-UM and the T2-FGMM-UV respectiyel

Frame 110 Frame 413 Frame 120 Frame 590

Fig. 4. The first row shows the original frames fwuntainand Water Surface sequences. The second row peensegmented imag
obtained by the GMM [13]. The third and the fourtiws illustrate the result obtained using the TAVWEUM and the T2-FGMMUV
respectively.
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1) RGB Videos B. Quantitative Analysis

We have tested our method on the sequence Cantina Ji 1) RGB Videos

which comes from [61] downloadable at [62]. We halso

tested our method on the sequences Campus, Fowmdin  |n order to provide a quantitative perspective abthe
Water Surface which come from [63] downloadabld6d].  quality of foreground detection with our approaete have
Fig. 2 shows the robustness of T2-FGMM-UM agairshera ysed a test sequence and the corresponding grouthd-t
jitter and respectively Fig. 3 for the waving tre@@ampus segmentation from [61]. This outdoor sequence weala
sequence) and Fig. 4 for the water rippling (Fowntacamera mounted on a tall tripod and was availdke wind
sequence) and water surface (Water Surface sequeimce caused the tripod to sway back and forth causingimel
each case, the T2-FGMM-UM gives the best resuloved  motion in the scene. To be more complete, we bawepared
by the T2-FGMM-UV and the GMM. These differentoyr method to the GMM, and two improved versionise irst
experiments confirm that to take into account theeutainty gne was developed by Bowden et al. [47] and peorie
using T2-FGMM performs the GMM. Furthermore, the- T2jnjtjalization and maintenance of the GMM'’s paraemst The
FGMM-UM is more robust than the T2F-GMM-UV like second one was proposed by Zivkovic et al. [36] alhzived

supposed in Section II. to adapt the number of Gaussian K overtime. In Fighe first
' row shows different current image and the secomd sioows
2) Infrared Videos the corresponding ground truth. The third row shaive

results obtained by the Bowden's GMM. The fourthl ahe

We have tested the proposed algorithm on the Terravisih rows show respectively the results obtainey the
datasets [65]. We have choosen the two sequendisi cacgorresponding T2-FGMM-UM and T2-FGMM-UV versions.
Uneventful Background Motion because they presgntwhic  The sixth row shows the results obtained by thek@iic’s
backgrounds as waving vegetations. In this sequematting MM, The seventh and eigth rows show respectivély t
must be detected. The Fig. 5 shows the result médailsing regyits obtained by the corresponding T2-FGMM-UM &i2-
the GMM, the T2-FGMM-UM and the T2-FGMM-UV on the FGMM-UV versions. Table 11, Table 1ll and Table Ishow
frame 150 of the sequence IRTRO1. The Fig. 6 shib&/'same  the performance in term on False Positive (FP)sé blegative
experiments on the frame 150 of the sequence IRTR02 (FN) and Total Error (TE) and Fig. 8 show grapHic#hese
results. In each case, the T2-FGMM-UM and T2-FGMM-U
give less error than the corresponding originasgciversion
and the T2FGMM-UM appears the best algorithm for
object/target detection.

2) Infrared Videos

For the evaluation beyond the visible spectrum, hage
used the Dataset 01: OSU Thermal Pedestrian Datatdzish
Fig. 5. Sequence IRTRO1 - First row: The currenage Result with the comes from the OTCBVS 2009 dataset [66]. The Figh®ws
S\I\//II\/I [47 Second Row: Result with T2-FGMM-UM, Resulith T2-FGMM- the results obtained on the Sequence 1 using th&! GAT],
the T2-FGMM-UM and the T2-FGMM-UV on the frame 27.
Silhouettes are well detected by the three algmsthout the
T2-FGMM-UM gives less false detection followed e tT2-
FGMM-UV and the crisp GMM. Then, to evaluate
guantitatively our method, we have used the siitylaneasure
derived by Li et al. [63]. Let A be a detected megand B be
the corresponding ground truth, the similarity begw A and
B can be defined as:

Fig. 6. Sequence IRTRO2 - First row: The currenagm Result with the S(A B) = ANB (21)
GMM [47]. Second Row: Result with T2-FGMM-UM, Rebtukith T2- (AB) = AUB
FGMM-UV

If A and B are the same, S (A,B) approaches 1,raike 0
i.e. A and B have the least similarity. The groungth is
marked manually. Table V shows similarity valueaotéd for
this experiment. It confirms the qualitative evdioa.

The motion causes substantial false positive dete¢h the
GMM. The more robust is the T2-FGMM-UM followed tye
T2-FGMM-UV. These results confirm the robustnesstted
proposed method in the presence of dynamic backdgsoin
infrared videos.



> Paper Id: Invited-0102-39 < 8

Frame 271 Frame 373 Frame 410 Fragbe 4

Fig. 7. Camera jitter. The first row shows the orég images and the second row the correspondingngr truth. In the third, the fourth and thehfifows
respectively, the segmented images by the BowdaNM [47], the T2-FGMM-UM and T2-FGMM-UV versions @shown. The sixth, the severgthd the eigt
rows present respectively the segmented imagédseh¥ivkovic's GMM [36], the T2 FGMM-UM and T2 FGMNUJV versions.
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TABLE Il
PERFORMANCEANALYSIS WITH GMM FROM STAUFFER AND GRIMSON [13]
Fr. Fr. Fr Fr Total Error
Method Error Type 271 373 410 465
FN 0 1120 4818 2050
GMM Stauffer [13] P 2093 4124 2782 1589 18576
FN 0 1414 6043 2520
T2-GMM-UM FP 203 153 252 46 10631
FN 0 957 2217 1069
T2-GMM-UV FP 3069 1081 1119 1158 10670
TABLE IIl
PERFORMANCEANALYSIS WITH THE MODIFIED GMM FROMBOWDEN ET AL [47]
Fr. Fr. Fr Fr Total Error
Method Error Type 271 373 410 465
FN 0 265 637 413
GMM Bowden et al.[47] P 1034 1359 3308 814 7830
FN 0 522 2179 1251
T2-GMM-UM FP 37 287 787 122 5185
FN 0 757 4130 1818
T2-GMM-UV FP 0 162 252 21 7140
TABLE IV
PERFORMANCEANALYSIS WITH THE MODIFIED GMM FROM ZIVKOVIC [36]
Fr. Fr. Fr Fr Total Error
Method Error Type 271 373 410 465
o FN 0 1152 6688 3009
GMM Zivkovic [36] FP 341 1404 1077 310 13981
FN 8 1414 6043 2520
T2-GMM-UM FP 204 154 252 48 10635
FN 0 957 2216 1068
T2-GMM-UV FP 3072 1082 1119 1166 10680
T2-FGMM-UV T2-FGMM-UV
2 2
é T2-FGMM-UM é T2-FGMM-UM
ES O Total FP S O Total FP
< <
GMM Stauffer l GMM Bowden et al. l
0 2000 4000 6000 8000 10000 12600 14600 16(;00 18600 20000 0 1000 2000 3000 4000 5000 6000 7000 8(;00 9000
Total Errors Total Errors

T2-FGMM-UV

W Total FN
T2-FGMM-UM
O Total FP

GMM Zivkovic

Algorithms

0 2000 4000 6000 8000 10000 12000 14000 16000
Total Errors

Fig. 8. Performance analysis The upper left imdgevs the performance of the GMM [13] and their esponding T2-FGMM-UM and T2-FGMM-UV versians
The upper right image shows the performance oBbwden’'s GMM [47], the T2-FGMM-UM and T2-FGMM-UVersions. The lower image the shoths
performance of Zivkovic’'s GMM [36], the T2 FGMM-Uldnd T2 FGMM-UV versions.
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Fig. 9. Sequence OSU - First row: The current imabe ground truth.

Second row: Results with T2-FGMM-UM and
respectively. Third row: Result with the GMM [47].

the T2-FGMW

TABLE V
PERFORMANCEANALYSIS IN INFRARED VIDEOS
Method T2-FGMM-UM T2-FGMM-UV GMM [47]
S(A B) 48% 43% 36%

V. CONCLUSION

In this work, we have modeled the background bygisi
Type-2 Fuzzy Gaussian Mixture Models.
validations on RGB and infrared videos show vetistctory
performance and more robustness than the crisp G

difficult environments. The proposed approach addresses

most of the four main dynamic backgrounds: Camdéter,
waving trees, water rippling and water surface. T

FGMM-UM is more robust than the T2-FGMM-UV due to a

better estimation of the mean than the variance.

This work confirms the pertinence of the fuzzy cepts in
the field of background subtraction. Future worlenaern
applications of fuzzy concepts in other steps afkigeound
subtraction like in the background initializationthe
background maintenance and the foreground detection
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