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Abstract—Gaussian Mixture Models (GMMs) are the most 

popular techniques in background modeling but present some 
limitations when some dynamic changes occur like camera jitter, 
illumination changes, movement in the background. Furthermore, 
the GMM are initialized using a training sequence which may be 
noisy and/or insufficient to model correctly the background. All 
these critical situations generate false classification in the 
foreground detection mask due to the related uncertainty. In this 
context, we propose to model the background by using a Type-2 
Fuzzy Gaussian Mixture Models. The interest is to introduce 
descriptions of uncertain parameters in the GMM. Experimental 
validation of the proposed method is performed and presented on 
a diverse set of RGB and infrared videos. Results show the 
relevance of the proposed approach. 
 

Index Terms—Background Modeling, Gaussian Mixture 
Models, Foreground Detection.  
 

I. INTRODUCTION 

ANY video surveillance systems in visible spectrum [1],  
[2], [3] or infrared (IR) [4], [5], [ 6] need in the first step 

to detect moving objects in the scene. The basic operation used 
is the separation of the moving objects called foreground from 
the static information called the background. The process is 
called the background subtraction. In the literature, many 
background modeling methods have been developed and the 
most recent surveys can be found in [7], [8]. These 
background modeling methods can be classified in the 
following categories: Basic Background Modeling [9], [10], 
[11], Statistical Background Modeling [12], [13], [14] and 
Background Estimation [15], [16], [17]. Reading the literature, 
two remarks can be made: The most used models are the 
statistical ones due to their robustness to the critical situations. 
The first way to represent statistically the background is to 
assume that the history over time of intensity values of a pixel 
can be modeled by a single Gaussian (SG) [12]. However, a 
unimodal model cannot handle dynamic backgrounds when 
there are waving trees, water rippling or moving algae. To 
solve this problem, the Mixture of Gaussians (MOG) (or 
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Gaussian Mixture Model (GMM)) has been used to model 
dynamic backgrounds [13]. This model has some 
disadvantages. Background having fast variations cannot be 
accurately modeled with just a few Gaussians (usually 3 to 5), 
causing problems for sensitive detection. So, a non-parametric 
technique [14] was developed for estimating background 
probabilities at each pixel from many recent samples over time 
using Kernel density estimation (KDE) but it is time 
consuming. In [18], Subspace Learning using Principal 
Component Analysis (SL-PCA) is applied on N images to 
construct a background model, which is represented by the 
mean image and the projection matrix comprising the first p 
significant eigenvectors of PCA. In this way, foreground 
segmentation is accomplished by computing the difference 
between the input image and its reconstruction. These four 
models define the first category using basic statistical model. 
The second category uses more sophisticated statistical models 
as Support Vector Machines (SVM) [19], Support Vector 
Regression (SVR) [20] and Support Vector Data Description 
(SVDD) [21]. The third category generalizes the models of the 
first category as the single general Gaussian (SGG) [22], the 
mixture of general Gaussians (MOGG) [23] and subspace 
learning using Independent Component Analysis (SL-ICA) 
[24], [25] or using Incremental Non-negative Matrix 
Factorization (SL-INMF) [26], [27] or using Incremental 
Rank-(R1,R2,R3) Tensor (SL-IRT) [28]. The Table I shows an 
overview of the statistical background modeling. The first 
column indicates the categories and the second column the 
name of each method. Their corresponding acronym is 
indicated in the first parenthesis and the number of papers 
counted for each method in the second parenthesis. The third 
column gives the name of authors and the dates of the first 
related publication. We can see that the MOG (or GMM) with 
100 papers is the most used and improved due to a good 
compromise between robustness and time/memory 
requirements. In the GMM initialization, an expectation-
maximization (EM) algorithm is used and allows to estimate 
GMM parameters from a training sequence according to the 
maximum likelihood (ML) criterion. The GMM is completely 
certain once its parameters are specified. However, because of 
insufficient or noisy data in training sequence, the GMM may 
not accurately reflect the underlying distribution of the 
observations according to the ML estimation. It is 
problematical to use likelihoods that are themselves precise 
real numbers to evaluate GMM with uncertain parameters. 
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To solve this problem, we propose to model the background 
by using a Type-2 Fuzzy Gaussians Mixture Model (T2-
FGMM) recently developed by Zeng et al. [29] to introduce 
descriptions of uncertain parameters in the GMM. 

The rest of this paper is organized as follows: In the section 
II, we present briefly related works on GMM’s improvements. 
In the section III, the T2-FGMM is used for background 
modeling. In the section IV, qualitative and quantitative 
experiments on RGB videos and infrared videos show that T2-
FGMM outperforms the crisp GMM when dynamic changes 
occur. Finally, we present conclusions and perspectives in 
Section V. 

II. RELATED WORKS 

 
The original GMM for background modeling was proposed 

by Stauffer and Grimson [13] and present several advantages. 
Indeed, it can work without having to store an important set of 
input data in the running process. The multimodality of the 
model allows to tackle multimodal backgrounds and gradual 
illumination changes. Despite it, this model present some 
disadvantages: the number of Gaussians must be 
predetermined, the need for good initializations, the 
dependence of the results on the true distribution law which 
can be non-Gaussian and slow recovery from failures. Others 
limitations are the needs for a series of training frames absent 
of moving objects and the amount of memory required in this 
step. To alleviate these limitations, numerous improvements 
have been proposed over the recent years as shown by the 
different acronyms found like AKGMM [30], TLGMM [31], 
STGMM [32], SKMGM [33], TAPPMOG [34] and S-
TAPPMOG [35]. All the developed improvements can be 
classified following the strategies used to be more robust to the 
critical situations met in video sequences [15]. The first 
strategies called intrinsic strategies consist to be more rigorous 
in the statistical sense or to introduce spatial and/or temporal 
constraint in the different step of the model. For example, 
some authors propose to determine automatically and 

dynamically the number of Gaussians to be more robust to 
dynamic backgrounds [36], [37], [38], [39], [40], [41]. Other 
approaches use another algorithm for the initialization [42], 
[43] and allow presence of foreground objects in the training 
sequence [44]. For the maintenance, the learning rates are 
better set [45], [46] or adapt over time [47], [48]. For the 
foreground detection, some authors use a different measure for 
the matching test [42] or use a foreground model [49]. Another 
way to improve the efficiency and robustness of the original 
GMM consist in using extrinsic strategies. Some authors used 
Markov Random Fields [50], hierarchical approaches [51], 
multi-level approaches [52], multiple backgrounds [53], graph 
cuts [54], multilayer approaches [55] or specific post-
processing [56]. A recent complete survey of these 
improvements can be found in [57]. However, none of these 
improvements consider the uncertainty related to insufficient 
or noisy data in training sequence. Nevertheless, due to this 
uncertainty, the GMM may not accurately reflect the 
underlying distribution of the observations according to the 
ML estimation. One way to take into account this uncertainty 
is to use fuzzy concepts with the GMM. A first approach 
developed by [58] consists in the fuzzy GMM (FGMM) that 
estimates its parameters based on the modified fuzzy cmeans 
algorithm. So, the FGMM focuses on the precise parameter 
estimation of GMMs using fuzzy approaches rather than 
modeling GMMs uncertain parameters. On the other hand, 
Type-2 fuzzy sets (T2-FSs) [59] provide a theoretically well-
founded framework to handle GMMs uncertain parameters. 
Their recent success achieved in pattern recognition has been 
largely attributed to their three-dimensional membership 
functions (MFs) for modeling uncertainties. Recently, Zeng et 
al. [29] introduce the Type-2 fuzzy sets in the GMM and 
called it Type-2 Fuzzy Gaussian Mixture Model (T2-FGMM). 
Experimental validations made in [29] show the superiority of 
T2-FGMM in pattern classification. In this context, we 
propose to apply the T2-FGMM for background modeling to 
take into account the uncertainty. 

TABLE I 
STATISTICAL BACKGROUND MODELING: AN OVERVIEW  

 

Categories Methods Authors - Dates 

First Category Single Gaussian (SG) (5) 
Mixture of Gaussians (MOG - GMM) (~100) 
Kernel Density Estimation (KDE) (21) 
Principal Components Analysis (SL-PCA) (15) 
 

Wren et al. (1997) [12] 
Stauffer and Grimson (1999) [13]  
Elgammal et al. (2000) [14] 
Oliver et al. (1999) [18] 

Second Category Support Vector Machine (SVM) (3) 
Support Vector Regression (SVR) (2) 
Support Vector Data Description (SVDD) (5) 
 

Lin et al. (2002) [19] 
Wang et al. (2006) [20] 
Tavakkoli et al. (2006) [21] 

Third Category Single General Gaussian (SGG) (3) 
Mixture of General Gaussians (MOGG) (3) 
Independent Component Analysis (SL-ICA) (2) 
Incremental Non Negative Matrix Factorization (SL-INMF) (2) 
Incremental Rank-(R1,R2,R3) Tensor (SL-IRT) (1) 

Kim et al. (2007) [22] 
Allili et al. (2007) [23] 
Yamazaki et al. (2006) [24] 
Bucak et al. (2007) [26] 
Li et al. (2008) [28] 
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III.  BACKGROUND MODELING USING TYPE-2 FGMM 

In this section, we apply the Type-2 FGMM to background 
modeling and explain it in the case of RGB videos but it can 
be apply to infrared videos too by reducing the dimension of 
the observation to one dimension.  

 

A. Principle 

 
Each pixel is characterized by its intensity in the RGB color 

space. So, the observation o  is a vector tX  in the RGB space 

and 3=d . Then, the GMM is composed of K mixture 
components of multivariate Gaussian as follows: 
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where the parameters are K is the number of distributions, 
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For the T2-FGMM-UM, the multivariate Gaussian with 
uncertain mean vector is: 
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For the T2-FGMM-UV, the multivariate Gaussian with 
uncertain variance vector is: 
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with ],[~
ccc σσσ ∈  and { }BGRc ,,∈ . 

 

µ~  and ∑
~

 denote uncertain mean vector and covariance 

matrix respectively. Because, there is no prior knowledge 
about the parameter uncertainty, practically Zeng et al. [29] 
assume that the mean and standard deviation vary within 

intervals with uniform possibilities, i.e., ],[~ µµµ ∈  or 

],[~ σσσ ∈ .  Each exponential component in (3) and (4) is the 

Gaussian primary membership function (MF) with uncertain 

mean or standard deviation as shown in Fig. 1. The shaded 
region is the footprint of uncertainty (FOU). The thick solid 
and dashed lines denote the lower and upper MFs. In the 
Gaussian primary MF with uncertain mean, the upper MF is:  
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The lower MF is: 
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In the Gaussian primary MF with uncertain standard 

deviation, the upper MF is  );;()( σµofoh =  and lower MF is 

);;()( σµofoh = . 

 
The factor mk  and vk  control the intervals in which the 

parameter vary as follows: 
 

σµµ mk−= , σµµ mk+=             (7) 

 

σσ vk= , σσ )/1( vk=               (8) 

 
Because a one-dimensional gaussian has 99.7% of its 

probability mass in the range of ]3,3[ σµσµ +− , Zeng et al 

[29] constrain ]3,0[∈mk  and ]1,3.0[∈vk . These factors also 

control the area of the FOU. The bigger mk  or vk , the larger 

the FOU which implies the greater uncertainty. 
 

Both the T2-FGMM-UM and T2-FGMM-UV can be used to 
model the background and we can expect that the T2-FGMM-
UM will be more robust than the T2-FGMM-UV. Indeed, in 
the GMM maintenance, only the means are estimated and 
tracked correctly. The variance and the weights are unstable 
and unreliable as explained by Greiffenhagen et al. [60]. 
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B. Training 

 
Training the T2-FGMM consist to estimate the parameters 

µ , ∑  and the factor mk  or vk . Zeng et al. [29] set the factors 

mk  or  vk  as constants according to prior knowledge and then 

in our application are fixed depending to the video. Thus, 
parameters estimation of T2 FGMM includes three steps: 

 
- Step 1: Choose K between 3 and 5. 
- Step 2: Estimate GMM parameters by an EM algorithm 
- Step 3: Add the factor mk or vk  to GMM to produce 

T2- FGMM-UM or T2-FGMM-UV. 
 
Once the training is made, a first foreground detection can 

be processed. 
 

C. Foreground Detection 

 
Foreground detection consist to classify current pixel as 

background or foreground. By using the ratio jjjr σω= , we 

firstly ordered the K Gaussians as in [13]. This ordering 
supposes that a background pixel corresponds to a high weight 
with a weak variance due to the fact that the background is 
more present than moving objects and that its value is 
practically constant. The first B Gaussian distributions which 
exceed certain threshold T are retained for a background 
distribution: 
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The other distributions are considered to represent a 

foreground distribution. When the new frame incomes at times 
t+1, a match test is made for each pixel. For this, we use the 
log-likelihood, and thus we are only concerned with the length 
between two bounds of the log-likelihood interval, i.e., 

))(ln())(ln()( ttt XhXhXH −= . In Fig 1. (a), the Gaussian 

primary MF with uncertain mean has: 
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                      (10) 

2//2/)( 222
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In Fig 1.(b), the Gaussian primary MF with uncertain 

standard deviation has  
 

2222 2/)/1()( σµ−−= tvvt XkkXH         (11) 

 

 
 

 
 

Fig. 1. The upper image shows the Gaussian primary MF with uncertain mean 
and the lower image shows the Gaussian primary MF with uncertain std. Both 
of them have uniform possibilities. The hatched region is the FOU. The thick 
solid and dashed lines denote the upper and the lower MFs respectively. 

 
µ  and σ are the mean end the std of the original certain T1 

MF without uncertainty. Both (10) and (11) are increasing 
functions in terms of the deviation µ−tX  . For example, 

given a fixed mk , the farther the tX  deviates from µ , the 

larger )( tXH  is in (12), which reflects a higher extent of the 

likelihood uncertainty. This relationship accords with the 
outlier analysis. If the outlier tX  deviates farther from the 

center of the class-conditional distribution, it has a larger 
)( tXH showing its greater uncertainty to the class model.  So, 

a pixel is ascribed to a Gaussian if: 
 

σkXH t <)(                   (12) 
 
where k is a constant threshold equal to 2.5. Then, two cases 
can occurs: (1) A match is found with one of the K Gaussians. 
In this case, if the Gaussian distribution is identified as a 
background one, the pixel is classified as background else the 
pixel is classified as foreground. (2) No match is found with 
any of the K Gaussians. In this case, the pixel is classified as 
foreground. At this step, a binary mask is obtained. Then, to 
make the next foreground detection, the parameters must be 
updated. 
 

D. Maintenance 

 
The T2-FGMM Maintenance is made as in the original 

GMM [13] as follows: 
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- Case 1: A match is found with one of the K Gaussians. 

For the matched component, the update is done as 
follows:  

 
( ) αωαω +−=+ titi ,1, 1              (13) 

 
where α is a constant learning rate. 
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where ( )iitX ∑= + ,,. 1 µηαρ            (16) 

 
For the unmatched components, µ  and ∑ are unchanged, 

only the weight is replaced by tjtj ,1, )1( ωαω −=+  (17). 

 
- Case 2: No match is found with any of the K Gaussians. In 

this case, the least probable distribution k is replaced with 
a new one with parameters:  

 
htPrior Weig Low1 =+k,tω             (18) 

11, ++ = ttk Xµ                  (19) 

Variance Initial Large2
1 =+k,tσ           (20) 

 

Once a background maintenance is made, another 
foreground detection can be processed. 
 

IV.  RESULTS AND DISCUSSION 

We have applied the T2-FGMM-UM and T2-FGMM-UV 
algorithms in different dynamic backgrounds in the visible and 
beyond the visible spectrum. In these scenes, the four main 
types of dynamic backgrounds appear: camera jitter, waving 
trees, water rippling and water surface. On a 3 GHz Intel 
Pentium Duo processor with 2 GB RAM, an optimized 
implementation of the proposed approach can process about 
11 fps for a frame size of 240*360. All the algorithms were 
implemented under Microsoft Visual C++ using the OpenCV 
library. Firstly, qualitative comparative results with the 
original mixture of Gaussians method [13] are shown then a 
quantitative evaluation is presented. For the proposed 
algorithms, the best results are obtained by setting 2=mk and  

9.0=vk .  

A. Qualitative Analysis 

 
Qualitative results on six sequences of dynamic scenes are 

presented in this section. Four sequences concern outdoor 
scenes in RGB videos [62] [64] and two sequences in infrared 
videos[65]. 

 

Frame 271      Frame 373      Frame 410     Frame 465 
 

    

    

    

    
 

 
Fig. 2. Camera jitter: The first row are the original images, the second row are the results obtained by using the GMM [13], the third row are the result obtained 
using the T2-FGMM-UM and the fourth row are the result obtained by using the T2-FGMM-UV. 
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Frame 100     Frame 210     Frame 325    Frame 500 
 

    

     

    

    
 
Fig. 3. The first row shows the original frames for Campus sequences. The second row presents the segmented images obtained by the GMM [13]. The third 
and the fourth rows illustrate the result obtained using the T2-FGMM-UM and the T2-FGMM-UV respectively. 

 
Frame 110    Frame 413     Frame 120     Frame 590 

 

    

    

    

    
 

Fig. 4. The first row shows the original frames for Fountain and Water Surface sequences. The second row presents the segmented images 
obtained by the GMM [13]. The third and the fourth rows illustrate the result obtained using the T2-FGMM-UM and the T2-FGMM-UV 
respectively. 
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1) RGB Videos 
 

We have tested our method on the sequence Camera Jitter 
which comes from [61] downloadable at [62]. We have also 
tested our method on the sequences Campus, Fountain and 
Water Surface which come from [63] downloadable at [64]. 
Fig. 2 shows the robustness of T2-FGMM-UM against camera 
jitter and respectively Fig. 3 for the waving trees (Campus 
sequence) and Fig. 4 for the water rippling (Fountain 
sequence) and water surface (Water Surface sequence). In 
each case, the T2-FGMM-UM gives the best result followed 
by the T2-FGMM-UV and the GMM. These different 
experiments confirm that to take into account the uncertainty 
using T2-FGMM performs the GMM. Furthermore, the T2-
FGMM-UM is more robust than the T2F-GMM-UV like 
supposed in Section III. 

 
2) Infrared Videos 

 
We have tested the proposed algorithm on the Terravic 

datasets [65]. We have choosen the two sequences called 
Uneventful Background Motion because they present dynamic 
backgrounds as waving vegetations. In this sequence, nothing 
must be detected. The Fig. 5 shows the result obtained using 
the GMM, the T2-FGMM-UM and the T2-FGMM-UV on the 
frame 150 of the sequence IRTR01. The Fig. 6 shows the same 
experiments on the frame 150 of the sequence IRTR02.  

 

  

  
 
Fig. 5. Sequence IRTR01 - First row: The current image, Result with the 
GMM [47 Second Row: Result with T2-FGMM-UM, Result with T2-FGMM-
UV 
 

  

  
 
Fig. 6. Sequence IRTR02 - First row: The current image, Result with the 
GMM [47]. Second Row: Result with T2-FGMM-UM, Result with T2-
FGMM-UV 

 
The motion causes substantial false positive detection in the 
GMM. The more robust is the T2-FGMM-UM followed by the 
T2-FGMM-UV. These results confirm the robustness of the 
proposed method in the presence of dynamic backgrounds in 
infrared videos. 

B. Quantitative Analysis 

 
1) RGB Videos 

 
In order to provide a quantitative perspective about the 

quality of foreground detection with our approach, we have 
used a test sequence and the corresponding ground-truth 
segmentation from [61]. This outdoor sequence involved a 
camera mounted on a tall tripod and was available. The wind 
caused the tripod to sway back and forth causing nominal 
motion in the scene.  To be more complete, we have compared 
our method to the GMM, and two improved versions: The first 
one was developed by Bowden et al. [47] and performed the 
initialization and maintenance of the GMM’s parameters. The 
second one was proposed by Zivkovic et al. [36] and allowed 
to adapt the number of Gaussian K overtime. In Fig. 7, the first 
row shows different current image and the second row shows 
the corresponding ground truth. The third row shows the 
results obtained by the Bowden’s GMM. The fourth and the 
fifth rows show respectively the results obtained by the 
corresponding T2-FGMM-UM and T2-FGMM-UV versions. 
The sixth row shows the results obtained by the Zivkovic’s 
GMM. The seventh and eigth rows show respectively the 
results obtained by the corresponding T2-FGMM-UM and T2-
FGMM-UV versions. Table II, Table III and Table IV show 
the performance in term on False Positive (FP), False Negative 
(FN) and Total Error (TE) and Fig. 8 show graphically these 
results. In each case, the T2-FGMM-UM and T2-FGMM-UV 
give less error than the corresponding original crisp version 
and the T2FGMM-UM appears the best algorithm for 
object/target detection. 
 

2) Infrared Videos 
 

For the evaluation beyond the visible spectrum, we have 
used the Dataset 01: OSU Thermal Pedestrian Database which 
comes from the OTCBVS 2009 dataset [66]. The Fig. 9 shows 
the results obtained on the Sequence 1 using the GMM [47], 
the T2-FGMM-UM and the T2-FGMM-UV on the frame 27. 
Silhouettes are well detected by the three algorithms but the 
T2-FGMM-UM gives less false detection followed by the T2-
FGMM-UV and the crisp GMM. Then, to evaluate 
quantitatively our method, we have used the similarity measure 
derived by Li et al. [63]. Let A be a detected region and B be 
the corresponding ground truth, the similarity between A and 
B can be defined as: 

 

BA

BA
BAS

∪

∩
=),(                 (21) 

 
If A and B are the same, S (A,B) approaches 1, otherwise 0 

i.e. A and B have the least similarity. The ground truth is 
marked manually. Table V shows similarity value obtained for 
this experiment. It confirms the qualitative evaluation. 
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Frame 271      Frame 373      Frame 410     Frame 465 

 

    
 

    
 

       
 

    
 

    
 

    
 

    
 

    
 
Fig. 7. Camera jitter. The first row shows the original images and the second row the corresponding ground truth.  In the third,  the fourth and the fifth rows 
respectively, the segmented images by the Bowden’s GMM [47], the T2-FGMM-UM and T2-FGMM-UV versions are shown. The sixth, the seventh and the eigth 
rows present respectively the segmented images by the Zivkovic’s GMM [36], the T2 FGMM-UM and T2 FGMM-UV versions. 
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TABLE II 
PERFORMANCE ANALYSIS WITH GMM FROM STAUFFER AND GRIMSON [13] 

Method Error Type 
Fr. 
271 

Fr. 
373 

Fr 
410 

Fr 
465 

Total Error 

GMM Stauffer [13] 
FN 
FP 

0 
2093 

1120 
4124 

4818 
2782 

2050 
1589 

 
18576 

T2-GMM-UM 
FN 
FP 

0 
203 

1414 
153 

6043 
252 

2520 
46 

 
10631 

T2-GMM-UV 
FN 
FP 

0 
3069 

957 
1081 

2217 
1119 

1069 
1158 

 
10670 

 
TABLE III 

PERFORMANCE ANALYSIS WITH THE MODIFIED GMM FROM BOWDEN ET AL. [47] 

Method Error Type 
Fr. 
271 

Fr. 
373 

Fr 
410 

Fr 
465 

Total Error 

GMM Bowden et al.[47] 
FN 
FP 

0 
1034 

265 
1359 

637 
3308 

413 
814 

 
7830 

T2-GMM-UM 
FN 
FP 

0 
37 

522 
287 

2179 
787 

1251 
122 

 
5185 

T2-GMM-UV 
FN 
FP 

0 
0 

757 
162 

4130 
252 

1818 
21 

 
7140 

 
TABLE IV 

PERFORMANCE ANALYSIS WITH THE MODIFIED GMM  FROM ZIVKOVIC [36] 

Method Error Type 
Fr. 
271 

Fr. 
373 

Fr 
410 

Fr 
465 

Total Error 

GMM Zivkovic [36] 
FN 
FP 

0 
341 

1152 
1404 

6688 
1077 

3009 
310 

 
13981 

T2-GMM-UM 
FN 
FP 

8 
204 

1414 
154 

6043 
252 

2520 
48 

 
10635 

T2-GMM-UV 
FN 
FP 

0 
3072 

957 
1082 

2216 
1119 

1068 
1166 

 
10680 
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Fig. 8. Performance analysis The upper left image shows the performance of the GMM [13] and their corresponding T2-FGMM-UM and T2-FGMM-UV versions. 
The upper right  image shows the performance of the Bowden’s GMM [47], the T2-FGMM-UM and T2-FGMM-UV versions. The lower image the shows the 
performance of Zivkovic’s GMM [36], the T2 FGMM-UM and T2 FGMM-UV versions. 

 



> Paper Id: Invited-0102-39 < 
 

10 

 

  

  

 
 
Fig. 9. Sequence OSU - First row: The current image, the ground truth. 
Second row: Results with T2-FGMM-UM and the T2-FGMM-UV 
respectively. Third row: Result with the GMM [47]. 

 

V. CONCLUSION 

In this work, we have modeled the background by using a 
Type-2 Fuzzy Gaussian Mixture Models. Experimental 
validations on RGB and infrared videos show very satisfactory 
performance and more robustness than the crisp GMM in 
difficult environments. The proposed approach also addresses 
most of the four main dynamic backgrounds: Camera jitter, 
waving trees, water rippling and water surface. The T2-
FGMM-UM is more robust than the T2-FGMM-UV due to a 
better estimation of the mean than the variance. 

This work confirms the pertinence of the fuzzy concepts in 
the field of background subtraction. Future works concern 
applications of fuzzy concepts in other steps of background 
subtraction like in the background initialization, the 
background maintenance and the foreground detection. 
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