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 40 
Abstract 

In this study we test if calcite shells of the common mussel, Mytilus edulis, contain 

barium in proportion to the water in which they grew. Similar to all bivalves analyzed 

to date, the [Ba/Ca]shell profiles are characterized by a relatively flat background 

[Ba/Ca]shell, interrupted by sharp [Ba/Ca]shell peaks. Previous studies have focused on 45 

these [Ba/Ca]shell peaks, but not on the background [Ba/Ca]shell. We show that in both 

laboratory and field experiments, there is a direct relationship between the 

background [Ba/Ca]shell and [Ba/Ca]water in M. edulis shells. The laboratory and field 

data provided background Ba/Ca partition coefficients (DBa) of 0.10 ± 0.02 and 0.071 

± 0.001, respectively. This range is slightly higher than the DBa previously determined 50 

for inorganic calcite, and slightly lower than foraminiferal calcite. These data suggest 

that M. edulis shells can be used as an indicator of [Ba/Ca]water, and therefore, fossil or 

archaeological M. edulis shells could be used to extend knowledge of estuarine 

dissolved Ba throughputs back in time. Moreover, considering the inverse relationship 

between [Ba/Ca]water and salinity, background [Ba/Ca]shell data could be used as an 55 

estuary specific indicator of salinity. The cause of the [Ba/Ca]shell peaks are more 

confusing, both the laboratory and field experiments indicate that they cannot be used 

as a direct proxy of [Ba/Ca]water or phytoplankton production, but may possibly be 

caused by barite ingestion. 

 60 

Keywords: Ba/Ca, biogenic carbonate, mollusk, estuary, isotope, diet, hemolymph, 

trace element, salinity 
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1. INTRODUCTION 

 

In recent years there has been an increasing amount of papers presenting high 65 

resolution elemental profiles in bivalve shells. Unlike corals and foraminifera, much 

of the bivalve data presented suggests that many of these elemental profiles (e.g., Sr, 

Mn, Pb, U), which often largely differ from expected concentrations based on 

inorganic and other biogenic carbonates, cannot be used as proxies of environmental 

conditions (e.g., Stecher et al., 1996; Purton et al., 1999; Vander Putten et al, 2000; 70 

Takesue and van Geen, 2004; Freitas et al., 2005; Gillikin et al., 2005a; Gillikin, 

2005). There have been some promising reports of bivalve shell Mg/Ca ratios as a 

proxy of sea surface temperature (SST) (Klein et al., 1996), but other reports illustrate 

that this is not always the case, and is apparently strongly species specific (Vander 

Putten et al, 2000; Takesue and van Geen, 2004; Freitas et al., 2005; Gillikin, 2005; 75 

Lorrain et al., in press). Bivalve shell Ba/Ca ratios on the other hand have been shown 

to be highly reproducible between specimens and have been hypothesized to be a 

proxy of both particulate Ba (Stecher et al., 1996; Vander Putten et al, 2000; Lazareth 

et al., 2003) and dissolved Ba (Torres et al., 2001), and therefore could be particularly 

promising. 80 

 

The oceanic barium cycle has received much attention over the past several decades 

(e.g., Chan et al., 1977; Dehairs et al., 1980; 1992; Paytan and Kastner, 1996; 

McManus et al., 2002; Jacquet et al., 2005). This is due in part to the use of Ba as a 

paleoproductivity and paleoalkalinity proxy (Dymond et al., 1992; Lea, 1993; 85 

McManus et al., 1999). Barium enters the oceans from river or ground water inputs, 

which pass through estuaries and the coastal zone (Carroll et al., 1993; Guay and 

Falkner, 1997; 1998; Shaw et al., 1998). Obtaining insight into the magnitude and 

temporal variability of these Ba inputs is important for understanding the oceanic Ba 

cycle and residence time, as shown by many studies (Edmond et al., 1978; Moore and 90 

Edmond, 1984; Coffey et al., 1997; Guay and Falkner, 1997; 1998); however, 

historical records of riverine inputs are lacking. Having a proxy of Ba inputs from 

estuaries or the coastal zone that can be extended back in time would be highly 

valuable. 

 95 
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Barium / calcium ratios have been proposed as a proxy of dissolved seawater Ba/Ca in 

aragonitic corals (Tudhope et al., 1996; McCulloch et al., 2003; Sinclair and 

McCulloch, 2004), calcitic foraminifera (Lea and Boyle, 1989; 1991) and vesicomyid 

clam shells (Torres et al., 2001), providing information on salinity, nutrient and 

alkalinity distributions in past oceans. 100 

 

To date, all published records of high resolution Ba profiles in bivalve shells (both 

aragonite and calcite) have similar characteristics with a more or less stable 

background Ba concentration, interspaced with sharp episodic Ba peaks (Stecher et 

al., 1996; Toland et al., 2000; Vander Putten et al., 2000; Torres et al., 2001; Lazareth 105 

et al., 2003; Gillikin, 2005). Stecher et al. (1996) first proposed that these peaks were 

the result of the filter feeding bivalves ingesting Ba-rich particles associated with 

diatom blooms, as either phytoplankton, or barite. It is well known that primary 

productivity and barite formation are closely associated (e.g., Dehairs et al., 1980; 

1987). Once inside the digestive tract, Ba may be metabolized and moved via the 110 

hemolymph to the extrapallial fluid (EPF), where shell precipitation occurs (Wilbur 

and Saleuddin, 1983). Vander Putten et al. (2000) found a remarkable coincidence of 

the Ba peaks in several mussel shells collected at the same site, providing further 

evidence that an environmental parameter controls their occurrence. However, this 

hypothesis remains untested. Furthermore, there are no studies reporting the Ba/Ca 115 

partition coefficient (DBa = (Ba/Ca)carbonate / (Ba/Ca)water) for bivalves and the only 

study suggesting that bivalves record dissolved Ba may possibly have included the 

effects of these shell Ba peaks (see Torres et al., 2001). Rosenthal and Katz (1989) 

found a good correlation between dissolved Ba/Ca and shell Ba/Ca in two species of 

freshwater aragonitic gastropods, but analyzed large shell sections and may have also 120 

included shell Ba/Ca peaks. 

 

The aim of this study was to assess if calcite shells of the common mussel, Mytilus 

edulis, contain barium in proportion to the water in which they grew. To validate this 

proxy, we measured Ba concentrations in the shells, soft tissues and hemolymph of 125 

mussels exposed to different levels of dissolved Ba in the laboratory as well as 

mussels fed diets with varying Ba concentrations. To calibrate the proxy on natural 

populations, a field study along the Westerschelde Estuary (The Netherlands) was 

conducted, where mussels were grown along a salinity gradient while elemental 
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concentrations and physico-chemical water parameters were regularly monitored. 130 

This experimental setup allowed us to compare data from both culture and natural 

situations. 

2. MATERIALS AND METHODS 

 

2.1 Laboratory experiments 135 

 

2.1.1 Dissolved Ba experiment 

 

Mytilus edulis were collected from the Oosterschelde estuary near Wemeldinge, The 

Netherlands (salinity ~ 35; temperature ~ 8 ºC) on 1 March 2004 (Fig. 1). Epibionts 140 

were gently removed and the mussels were acclimated to laboratory conditions at 9.2 

± 0.3 ºC (mean ± standard deviation) for 7 days, then another 14 days at 14.7 ± 0.2 ºC 

(i.e., 21 days acclimation; temperature monitored hourly with a TidBit data logger, 

Onset Computer Corp.). During acclimation, mussels were fed three times per week 

with 12 mg of dried yeast per animal per week (Artemic Systems, LANSY PZ). After 145 

the acclimation period, 40 mussels (2.8 ± 0.3 cm length) were selected for the 

‘dissolved Ba’ experiment and were stained with calcein (200 mg l-1; C30H26N2O13; 

Sigmal Chemical) for 20 hours to mark the beginning of the experiment in the shell 

(see Rowley and Mackinnon, 1995). Afterwards, 10 mussels were placed in each of 

four aquaria containing 10 l of filtered (10 µm) North Sea water spiked with 150 

approximately 0, 110, 220 and 440 nmol l-1 of Ba (as BaCl2) (Table 1). Water was 

continuously circulated through acid washed plastic filters (except during feeding 

periods, see further) and was aerated. Mussels were fed the same quantities of yeast as 

during the acclimation period. Feeding took place for three hours, three times per 

week. Mussels were fed in their separate aquaria during which the filtration pumps 155 

were turned off. This experiment ran for 36 days, during which the water in all tanks 

was changed weekly (similar to Lorens and Bender, 1980) and was maintained at 16.4 

± 0.6 ºC with a pH of 7.9 ± 0.1 and salinity of 36.4 ± 0.9 (on occasion salinity was 

adjusted with deionized water (>18MΩ cm-1) to compensate for evaporation; pH and 

salinity were measured with a WTW multiline P4 multimeter). Water samples were 160 

taken two times per week for [Ba/Ca]water using syringe filters (Macherey-Nagel; 

Chromafil A45/25; cellulose mixed esters; 0.45 µm pore size), once just before and 
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after a water change, and were acidified with trace metal grade HCl to ~ pH 3. 

Procedural blanks were also taken by filtering deionized water (>18MΩ cm-1). 

 165 

 

2.1.2 Feeding experiment 

 

To assess the effect of Ba being ingested as food, a feeding experiment was 

conducted. In a fifth aquarium, two plastic mesh baskets, each with 10 mussels were 170 

held under the same conditions, except that there was 20 l of water to compensate for 

the higher density of animals and they were fed differently. These mussels were fed in 

separate aquaria with different foods. One batch was fed a slurry of living 

phytoplankton (Chlamidomonas reinhardii) grown in a ‘normal’ Tris-Acetate-

Phosphate (TAP) medium (hereafter referred to as phyto +0) with the phytoplankton 175 

containing 5.87 ± 0.51 nmol g-1 dry weight (DW) Ba (n = 3), whereas the other batch 

were fed the same phytoplankton species, which were grown in a Ba rich TAP 

medium (spiked with 730 nmol l-1 Ba; hereafter referred to as phyto +100; see 

Steenmans (2004) for more details regarding phytoplankton culturing) with [Ba] = 

14.56 ± 0.95 nmol g-1 DW (n = 3). Both batches were fed for 1 hour per day, five days 180 

per week, with a total of 18 mg phytoplankton (DW) per animal per week. This 

provided three levels of Ba in food given to mussels maintained in normal seawater 

Ba concentrations (i.e., yeast (with [Ba] = 3.35 ± 0.32 nmol g-1 DW (n = 3)), phyto +0 

and phyto +100). After feeding, mussels were returned to their aquarium. This 

experiment was run for 29 days; water maintenance and sampling was similar to the 185 

dissolved Ba experiment. Mussels were sampled (7 per treatment) approximately 24 

hours after the last feeding period. Mytilus edulis hemolymph has been determined to 

have a slow turnover time based on the residence time (> 3 days) of a fluorescent dye 

(Gillikin, 2005). Therefore, this sampling design should have captured any Ba 

entering the hemolymph from the food. 190 

 

2.1.3 Hemolymph, soft tissue and shell sampling 

 

After the experiments were complete, mussels were removed from their aquaria one at 

a time and were sampled for hemolymph, soft tissues and shells. Hemolymph was 195 

sampled by blotting the shell dry, and then gently prying open the valves with a 
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scalpel, draining the mantle cavity and then sampling the hemolymph from the 

adductor muscle with a sterile 5 ml syringe and needle. Procedural blanks were 

prepared by drawing deionized water into a new syringe. Whole tissues were 

dissected from the valves using a scalpel. Samples (hemolymph and tissues) and 200 

blanks were transferred to micro-centrifuge tubes and were immediately frozen to -20 

ºC until analysis. Shells were rinsed with deionized water (>18MΩ cm-1) and were air 

dried. 

 

A condition index was used to compare mussel health at the end of the experiments 205 

([shell length / shell width] / tissue dry weight) to mussels health at the end of the 

acclimation period (beginning of experiments), which indicated that all animals were 

healthy (ANOVA, LSD test, p > 0.05 for all). 

 

2.2 Field experiment 210 

 

Mytilus edulis (~ 3 cm) were collected from the Oosterschelde (The Netherlands; Fig. 

1). The Oosterschelde estuary was dammed in the late eighties and now has more or 

less marine salinities (S > 30; Gerringa et al., 1998). Mussels were transported back to 

the laboratory where epibionts were removed. They were then stained with calcein as 215 

in the previously described experiments. Within the next week (on 24 Oct. 2001), 50 

mussels were placed into four stainless steel cages and these were deployed along an 

estuarine salinity gradient in the Westerschelde estuary (Fig. 1; see Baeyens et al., 

1998 for a general description of the Westerschelde). Cages were attached at the same 

tidal level as the highest density of ‘local’ mussels at Ossenisse (OS; the most 220 

upstream occurrence of wild Mytilus populations), Griete (GR), Hooftplaat (HF), and 

Knokke (KN; Fig. 1). Water temperature was monitored at each site hourly using a 

TidBit data logger. Near-shore water was sampled monthly at high tide for one year 

(Nov. 2001- Nov. 2002) and every two weeks between March and May for salinity, 

dissolved Ba/Ca, and chlorophyll a (Chl a). Salinity was measured in situ with a 225 

WTW multiline P4 multimeter. [Ba/Ca]water was sampled by filtering 250 to 500 ml of 

seawater through 0.4 µm polycarbonate filters (Osmonics poretics). The filtrate was 

acidified with trace metal grade HNO3 to ~ pH 3. Blanks were prepared by filtering 

deionized water (>18MΩ cm-1) through the same system and blank filter. 

Phytoplankton pigments were sampled by filtering 200 to 500 ml of seawater through 230 
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Whatman GF-F filters (nominal porosity = 0.7 µm). Filters were wrapped in 

aluminum foil and placed in liquid nitrogen; three replicates were taken at each 

sampling. Upon return to the laboratory, samples were transferred to a –85 ºC freezer 

until analysis. 

Mussels were collected on four different dates (29 Sept. 02, 9 Dec. 02, 20 Feb. 03 and 235 

21 Apr. 03). Mussels transplanted to OS did not survive (undoubtedly due to the 

salinity shock) and therefore local mussels from this site were used. Similarly, the 

wave action at KN repeatedly destroyed cages and all mussels were lost; so again at 

this site, mussels from the local population were used. 

 240 

2.3 Sample preparation and analysis 

 

All water samples for dissolved Ba and Ca analysis were diluted with deionized water 

(>18MΩ cm-1) to assure a salt concentration less than 0.2 %. Ba was measured on a 

VG PlasmaQuad II+ inductively coupled plasma mass spectrometer (ICP-MS) using 245 

In as an internal standard. Calcium was measured with an IRIS Thermo Jarrell Ash 

Corp. ICP- optical emission spectrometer (ICP-OES) using Yt and Au as internal 

standards. Certified reference materials (CRM) were run to check for precision and 

accuracy. The reproducibility of the SLRS-3 water standard was < 4 % (%RSD) for 

both Ba and Ca and mean values were within 5 % of the recommended values for 250 

both elements (n = 8). Phytoplankton pigments were analyzed at NIOO-CEME, 

Yerseke, NL, using reverse-phase HPLC (see Gieskes et al., 1988) with a 

reproducibility of 2.7 % (or 0.3 µg/l; 1σ) for Chl a, based on an in-house standard (n = 

7). 

 255 

Hemolymph samples were defrosted and 150 µl of sample was pipetted into a clean 

Teflon beaker. The sample was digested by adding 150 µl HNO3 and 150 µl H2O2 

(trace metal grade) and allowing the reaction to take place in the sealed beaker at 60 

°C for more than 12 hours. In and Re were used as internal standards to control 

instrument fluctuations. Samples were analyzed for Ba and Ca on a Finnigan 260 

Element2 High Resolution-Inductively Coupled Plasma-Mass Spectrometer (HR-ICP-

MS). Samples were diluted 20 times with deionized water (>18MΩ cm-1) to assure a 

salt concentration less than 0.2 %. Reproducibility of seawater and hemolymph 
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samples was < 5 % for both Ba and Ca ([Ba/Ca]hemolymph = 3.8 ± 0.2 µmol/mol, n = 9, 

and [Ba/Ca]water = 65.1 ± 2.1 µmol/mol, n = 9). 265 

 

Three animals from each laboratory treatment were randomly selected and their 

tissues were digested following the protocol of Blust et al. (1988). Briefly, samples 

were digested in 2 ml of bi-distilled HNO3 for at least 12 hours and were then 

microwave digested with the addition of 1 ml of Ultrapure H2O2. The digested tissue 270 

samples were then analyzed for Ba and Ca with the HR-ICP-MS in the same manner 

as hemolymph (see above). Reproducibility was established by running different 

CRMs, the DORM-2 Dogfish muscle (National Research Council of Canada) and the 

NIST 1566a oyster tissue. For DORM-2, reproducibility was 4.8 % ([Ba/Ca] = 1.16 ± 

0.05 mmol/mol, n = 5), while it was 7.6 % for 1566a oyster tissue ([Ba/Ca] = 0.22 ± 275 

0.02 mmol/mol, n = 7). Neither of these CRMs are certified for Ba concentrations, but 

values obtained for NIST 1566a were within 10 % of previously published values (see 

Buckel et al., 2004).   

 

Shells were sectioned along the axis of maximal growth using a wet diamond saw. 280 

Thick sections were viewed under an optical microscope with UV light and calcein 

marks were mapped for each shell. Only shells from the laboratory experiments with 

greater than 70 µm of new growth were used (the laser ablation spot is 50 µm in 

diameter, see further). Unfortunately, mussels from the feeding experiment were not 

exposed to calcein for a long enough period (4 hours). Therefore, the new growth 285 

could not be assessed and these shells could not be analyzed for Ba/Ca ratios. Shells 

from the field experiment were first sampled for stable isotopes. Carbonate powder 

was milled from the shell cross-sections using a 300 µm drill bit and a Merchantek 

Micromill (a fixed drill and computer controlled micro positioning device), which 

allows precise sampling. Samples were milled from the outer calcite shell layer. 290 

Various sampling distances were used (150 µm to 1 mm) depending on growth rate 

(i.e., fewer samples in regions of high growth). Oxygen and carbon isotope analyses 

were performed using a ThermoFinnigan Kiel III coupled to a ThermoFinnigan 

Delta+XL dual inlet isotope ratio mass spectrometer (IRMS). The samples were 

calibrated against the NBS-19 standard (δ18O = -2.20 ‰, δ13C = +1.95 ‰) and data 295 

are reported as ‰ VPDB using the conventional delta notation. The reproducibility 



Barium in Mytilus shells  Gillikin et al. 

 10

(1σ) of the routinely analyzed carbonate standard is better than 0.1 ‰ for both δ18O 

and δ13C (more details can be found in Gillikin et al., 2005b). High resolution Ba/Ca 

profiles from field grown shells were obtained using either solution nebulization HR-

ICP-MS (SN-HR-ICP-MS) on micromilled powders (powders were milled directly 300 

beneath the isotope sample to assure proper alignment of the data and to remove 

surface contamination) or by laser ablation ICP-MS (LA-ICP-MS; see below). All 

shells from the dissolved Ba experiment with adequate growth were analyzed for 

Ba/Ca using the LA-ICP-MS.  

 305 

Carbonate powders for Ba/Ca analyses (~ 150 µg) were dissolved in a 1 ml 5 % 

HNO3 solution containing 1 ppb of In and Re, which were used as internal standards. 

Reproducibility of Ba/Ca ratios over the sampling period was 6.6 % (1σ; or 0.06 

µmol/mol) based on replicate measurements of a M. edulis in-house reference 

material ([Ba/Ca] = 0.96 µmol/mol; n = 8). Accuracy was assessed using the USGS 310 

MACS1 carbonate standard ([Ba/Ca] = 84.76 µmol/mol) and was found to be within 1 

% of the recommended value (n = 6; values from S. Wilson, USGS, unpublished data, 

2004). 

 

Data from LA-ICP-MS were calibrated using both the NIST 610 (values from Pearce 315 

et al. (1997)) and the USGS MACS1 (values from S. Wilson, USGS, unpublished 

data, 2004). The laser was shot (~50 µm spots) directly in the holes of the isotope 

sampling allowing direct alignment of Ba/Ca and isotope profiles for the field 

experiment (cf. Toland et al., 2000). All shells from the laboratory experiment were 

analyzed in front of the calcein mark (one analysis per shell, if growth was less than 320 

50 µm, the shell was not sampled). Calibration (including gas blank subtraction, 43Ca 

normalization, and drift correction) was performed offline following Toland et al. 

(2000). Ba/Ca reproducibility over the sampling period was 0.11 µmol/mol (1σ; or 

12.8 %) at the 1 µg/g level (MACS2, mean = 0.9 µmol/mol, n = 17) and 5.9 µmol/mol 

(1σ; or 7.3 %) at the 80 µg/g level (MACS1, mean = 80.5 µmol/mol, n = 47), which 325 

covers the full range of Ba/Ca values encountered in this study (see results). Accuracy 

was assessed using MACS2; as there is no recommended value available for MACS2, 

we used our own SN-HR-ICP-MS data (MACS2 = 0.90 ± 0.07 µmol/mol (n = 5), 

which indicate a robust LA-ICP-MS calibration. Details of operating conditions can 



Barium in Mytilus shells  Gillikin et al. 

 11

be found in Lazareth et al. (2003). Briefly, the system consists of a Fisons-VG 330 

frequency quadrupled Nd-YAG laser (266 nm) coupled to a Fisons-VG PlasmaQuad 

II+ mass spectrometer.  

The background or baseline [Ba/Ca]shell was selected by first omitting obvious peaks 

(e.g., ~15 – 22 mm from the umbo in shell KN200203), then omitting all data that was 

greater than 50 % of the (peak-less) mean. This was repeated until the change in mean 335 

[Ba/Ca]shell was less than 5 %. This provided an objective criterion for selecting 

background [Ba/Ca]shell data. 

 

3. RESULTS 

 340 

3.1 Laboratory experiments 

 

3.1.1 Hemolymph 

 

In the dissolved Ba experiment, Mytilus edulis [Ba/Ca]hemolymph was only slightly 345 

different from the [Ba/Ca]water, with the linear least squares regression  

 

[Ba/Ca]hemolymph =  0.86 (±  0.04) * [Ba/Ca]water + 2.26 (± 1.49)  (1) 

 

 (in µmol/mol; R2 = 0.98, p < 0.0001, n = 36, in four treatments) (Fig 2, Table EA1). 350 

The errors of the regression coefficients reported above (and hereafter) represent the 

95 % confidence intervals (95 % CI), and are based on among individual variation 

and not among treatment variation. Despite the Ba difference in foods offered (3.35, 

5.87 and 14.56 nmol g-1 DW Ba), hemolymph was similar between the three 

treatments of the feeding experiment (Fig. 2, inset; Table EA1). 355 

 

3.1.2 Tissues 

 

In the dissolved Ba experiment, tissue Ba/Ca was slightly enriched as compared to 

[Ba/Ca]water in the ambient treatment but was reduced by almost half in the highest 360 

[Ba/Ca]water treatment (Fig. 3). This resulted in an exponential fit between water and 

tissue  
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[Ba/Ca]tissue = 35.36 (±  2.19) * (1-exp(-0.07 (± 0.01) *[Ba/Ca]water))   (2) 

 365 

(in µmol/mol; R2 = 0.99, p < 0.0001, n = 11, in four treatments) (Fig. 3, Table EA1). 

Although we do not have enough data for statistics, it is clear that there is a trend of 

increasing tissue Ba/Ca with increasing food Ba (Fig. 3, inset; Table EA1) in the 

feeding experiment.  

 370 

3.1.3 Shells 

 

Between six to nine shells were analyzed for each Ba treatment (see Table EA1). In 

the dissolved Ba experiment, [Ba/Ca]shell was directly proportional to [Ba/Ca]water with 

the linear relationship  375 

 

[Ba/Ca]shell =  0.10 (±  0.02) * [Ba/Ca]water + 1.00 (± 0.68)    (3) 

 

(in µmol/mol; R2 = 0.84, p < 0.0001, n = 28, in four treatments) (Fig 4, Table EA1). 

To calculate the partition coefficient (DBa), many studies force the regression through 380 

zero (see Lea and Spero, 1992; Zacherl et al., 2003); yet, considering that our 

intercept is well above zero, we chose not to force through the origin, resulting in a 

DBa of 0.10 ±  0.02 (95 % CI). However, it should be noted here that forcing through 

the origin does not significantly change the DBa (0.12 ± 0.01; 95 % CI) (t-test, p = 

0.38).  385 

 

Although shells were collected in early March, prior to the onset of the spring 

phytoplankton bloom (see further) and formation of the shell Ba/Ca peak, we 

analyzed a few shells just behind the calcein mark to assess if the shells were 

collected during the formation of a ‘Ba/Ca peak’, but these shell regions did not 390 

exhibit elevated [Ba/Ca]shell indicative of the Ba/Ca peak. 

 

3.2 Field experiment 

 

3.2.1 Environmental parameters 395 
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All four sites had significantly different salinity and [Ba/Ca]water values (Fig. 5A, B; 

ANOVA, p < 0.0001; post hoc LSD test, all p < 0.01; Table EA2) and there was a 

highly significant negative relationship between [Ba/Ca]water and salinity (Fig. 6; in 

µmol/mol; R2 = 0.73, n = 55, p < 0.0001) with the linear relationship 400 

 

[Ba/Ca]water = -1.22 (± 0.21) * Salinity + 46.05 (± 4.57)   (4) 

 

The large scatter in these data is undoubtedly due to changes in the effective river end 

member as was previously demonstrated for the Schelde estuary (Coffey et al., 1997). 405 

There was no overall difference between Chl a concentrations at any of the stations 

(ANOVA, p = 0.43), with the phytoplankton bloom starting in April and ending in 

late summer at all sites (Fig. 5C). The temperature profiles from the four sites were 

remarkably similar, with an annual range of 0 to 20 ºC (data not shown). 

 410 

3.2.2 Shells 

 

For the six shells analyzed, δ18O, δ13C and [Ba/Ca]shell profiles are plotted against 

distance from the umbo in Fig. 7. All profiles are characterized by the typical low 

level background [Ba/Ca]shell, interrupted by sharp episodic peaks (aside from one 415 

shell from OS, Fig. 7). Using the inverted δ18O scale as a temperature and season 

indicator (i.e., positive δ18O in winter), it is clear that these Ba peaks in the shell occur 

during spring when SST started to rise. The two shells which were transplanted from 

the Oosterschelde (sites HF and GR) showed clear calcein marks in their shells, which 

coincided with abrupt changes in the stable isotope profiles. The change in the δ13C 420 

profile is most pronounced in the GR shell as this site has a much lower salinity (Fig. 

5B) and hence more a negative δ13C of dissolved inorganic carbon (DIC), compared 

to the Oosterschelde, where these animals were collected. 

 

After selecting only the background [Ba/Ca]shell data from the shells (filled circles in 425 

Fig. 7, Table EA2), there was a highly significant linear relationship between 

background [Ba/Ca]shell and average [Ba/Ca]water data from the whole year: 

 

background [Ba/Ca]shell =  0.071 (± 0.001) * [Ba/Ca]water    (5) 

 430 
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(in µmol/mol; R2 = 0.96, p < 0.0001, n = 233 [data of 6 shells from 4 sites]). As 

opposed to the laboratory data, these data do include zero in the intercept, which was 

found to be not significant (p = 0.79; 95 % CI range = -0.16 to +0.12) and was 

therefore not included in the regression. Thus the DBa determined from the field 

experiment is 0.071 (± 0.001), which is significantly different from the DBa 435 

determined in the laboratory (Fig. 8; t-test, p < 0.001). 

 

4. DISCUSSION 

 

4.1 Pathway of barium incorporation into the shell 440 

 

Biomineralization in bivalves takes place in the extrapallial fluid (EPF), a thin film of 

liquid between the calcifying shell surface and the mantle epithelium (Wheeler, 

1992). The central EPF is where the inner aragonite shell layer is precipitated, 

whereas the outer calcite shell layer is precipitated from the marginal EPF (i.e., the 445 

layer analyzed in this study). The EPF is isolated from seawater and therefore may 

have different elemental concentrations than seawater. Although there are numerous 

reports on central EPF elemental concentrations (e.g., Crenshaw, 1972; Wada and 

Fujinuki, 1976), direct measurements of the marginal EPF are difficult and we know 

of only one report providing marginal EPF elemental concentrations, but 450 

unfortunately Ba was not measured (Lorens, 1978). However, there does not seem to 

be a difference in Ba concentrations between hemolymph and central EPF in other 

bivalve species (A. Lorrain, unpublished data).  

 

Elements move into the EPF through the epithelial mantle cells which are supplied 455 

from the hemolymph (Wilbur and Saleuddin, 1983). Ions enter the hemolymph of 

marine mollusks primarily through the gills, although they may also enter via the gut 

(see Wilbur and Saleuddin, 1983 and references therein). The relative contributions of 

Ba to the shell from food versus environment are unknown; however, mollusk guts 

are known to contain high Ba concentrations (Lobel et al., 1991; A. Lorrain, 460 

unpublished data). Therefore, it is possible that the gut is a source of Ba in mollusk 

shells. However, if food Ba impacted background [Ba/Ca]shell, the regression between 

background [Ba/Ca]shell and [Ba/Ca]water would not go through zero (meaning zero 

[Ba/Ca]water = zero [Ba/Ca]shell). In the field specimens, the regression does go through 
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zero (Fig. 8). This, together with the good correlation with [Ba/Ca]water, makes it very 465 

unlikely that food is a major source of Ba to the shell during those times when 

background [Ba/Ca]shell is observed. Nevertheless ingested particulate Ba may be 

involved in the formation of the [Ba/Ca]shell peaks (see section 4.3). 

 

4.2 Mytilus edulis calcite DBa 470 

 

Both the laboratory and field experiments verify that there is a direct relationship 

between background [Ba/Ca]shell and [Ba/Ca]water in M. edulis calcite. A possible 

reason for the difference in slopes between the laboratory and field experiment 

[Ba/Ca]shell vs. [Ba/Ca]water (Fig. 8) may be that we did not replicate treatments in the 475 

laboratory, but only individuals within a treatment, while we had an overall low 

number of samples form the field experiment. An alternative explanation could be 

that the stress of handling and the suddenly increased Ba concentration in the 

laboratory experiments caused a saturation of the ionoregulatory ability of the animal. 

Lorens and Bender (1980) found that elemental ratios in shells increased in laboratory 480 

held M. edulis for a short while, then decreased (they termed this section of the shell 

“transition zone calcite” (or TZC)). They proposed that this was caused by the stress 

of capture and the adjustment to a new environment. Although we acclimated these 

animals to laboratory conditions for three weeks, the change to the experimental 

conditions may have caused stress and we may have included TZC in our analyses. 485 

This could explain the higher DBa in the laboratory cultured mussels. Furthermore, the 

fact that the regression does not go through the origin supports this. As in the field 

population, it can be expected that when there is zero Ba in the water, there should be 

zero Ba in the shell. Interestingly, as the hemolymph can be expected to represent the 

crystallization fluid better than seawater, when a regression between hemolymph and 490 

shell is performed (laboratory experiment), the regression does go through the origin 

(intercept not significant, p = 0.07). The DBa calculated using hemolymph, 0.134 (± 

0.006) (R2 = 0.95, n = 25, p < 0.0001), is also more similar to that for planktonic 

foraminifera (see further).  

 495 

Alternatively, the field DBa may also not be accurate, we averaged the [Ba/Ca]water 

from the whole year, while it is clear that the background [Ba/Ca]shell is formed from 

approximately mid-summer to the end of the growing season. Selecting only the 
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[Ba/Ca]water from July to November changes the regression slightly, but significantly 

to background [Ba/Ca]shell =  0.091 (± 0.006) * [Ba/Ca]water – 0.52 (± 0.17) (R2 = 0.76, 500 

p < 0.0001), and when only selecting September to November it changes to 

background [Ba/Ca]shell =  0.081 (± 0.006) * [Ba/Ca]water – 0.26 (± 0.15) (R2 = 0.76, p 

< 0.0001). Therefore, considering both the laboratory and field data, we propose that 

the DBa for M. edulis lies within the range of 0.07 to 0.12. Furthermore, the algorithm 

used to select the background [Ba/Ca]shell data used here may be excluding some 505 

[Ba/Ca]water data stored in the shell. It is possible that all [Ba/Ca]shell data between 

large [Ba/Ca]shell peaks are recording [Ba/Ca]water. If this was the case, seasonal 

[Ba/Ca]water could be reconstructed; however, this could only be determined from 

more detailed experiments. Nevertheless, these data do illustrate that average 

[Ba/Ca]water can be estimated from M. edulis shells using the proposed algorithm to 510 

select the background [Ba/Ca]shell data. 

 

It should be noted that incorporation of elements in calcite with ionic radii larger than 

calcium (such as Ba) are expected to be strongly affected by external factors, such as 

temperature or salinity (Pingitore and Eastman, 1984; Morse and Bender, 1990). We 515 

are unable to determine if salinity has an effect or not. The strong relationship in the 

field between [Ba/Ca]water and salinity makes it difficult to deconvolve the effects, 

whereas in the laboratory salinity was similar in all treatments. Therefore, this could 

be another reason for the difference in intercepts between the two experiments. 

Considering the seasonal 20 ºC temperature range at these sites (from ~0 to 20 ºC), 520 

and the stable background [Ba/Ca] ratios observed in these shells, it does not seem 

likely that there is a major temperature effect on background DBa in M. edulis. This is 

most probably true for all bivalves as well, as the stable Ba background in all 

published data is evident and temperature almost always has a seasonal cyclicity. 

Similarly, Lea and Spero (1994) did not find an influence of temperature on DBa in 525 

foraminifera, and no temperature effect has been reported for inorganic calcite. 

However, definitive experiments should be carried out to confirm that temperature 

does not affect bivalve background [Ba/Ca] ratios. 

 

Abiogenic experiments on the DBa in calcite have provided a range of values, which is 530 

probably due to unconstrained precipitation rates in many of the experiments 

(Tesoriero and Pankow, 1996). For the range of M. edulis shell precipitation rates 
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estimated by Lorens (1981), DBa is expected to range between 0.03 and 0.05 

according to the abiogenic calcite experiments of Tesoriero and Pankow (1996). 

Pingitore and Eastman (1984) provided an inorganic DBa of 0.06 ± 0.01, which is very 535 

similar to the low end of the range we estimate for M. edulis DBa (i.e., 0.07). 

Planktonic foraminifera, on the other hand can have higher DBa than M. edulis, 

ranging from 0.09 to 0.19 (Lea and Boyle, 1991; Lea and Spero, 1992; 1994), 

whereas benthic foraminifera have an even higher DBa in both laboratory (0.2 – 0.5; 

Havach et al., 2001) and field based studies (0.37; Lea and Boyle, 1989). It can 540 

generally be considered that when the partition coefficient of a particular element 

(DMe) is far from inorganically determined DMe, then other factors most likely 

influence DMe, such as the physiology of the organism or other biological factors. For 

example, Sr/Ca in corals has been shown to be a good SST proxy and the DSr is close 

to one (Weber, 1973), which is similar to abiogenic aragonite (Kinsman and Holland, 545 

1969), whereas in aragonitic bivalve shells the DSr is around 0.25 and there is no link 

with SST (Gillikin et al., 2005a). The fact that foraminiferal Ba/Ca has successfully 

been used as a proxy of dissolved Ba/Ca, and that the foraminiferal DBa is farther from 

expected values than M. edulis, further implies that Ba/Ca in M. edulis has great 

potential as a robust proxy of dissolved seawater Ba/Ca, as there should be an even 550 

smaller biological effect in M. edulis calcite. 

 

To test this proxy further, we use the shell GR210403 data for the period preceding 

transplantation. These data should be representative of Oosterschelde conditions with 

salinity above 30 (see section 2.2). The background [Ba/Ca]shell before transplantation 555 

is 0.98 ± 0.05 (n = 13), which corresponds to a  [Ba/Ca]water of 13.8 ± 0.7 when using 

a DBa of 0.07 and 8.2 ± 0.4 when using a DBa of 0.12. A range of [Ba/Ca]water of 8 to 

14 is reasonable for a salinity of about 30 (Fig. 6) and provides additional evidence 

that even at low [Ba/Ca]water, this is a good proxy. 

 560 

4.3 High resolution barium profiles 

 

Our results confirm the general Ba profiles recorded in other bivalves (e.g., Stecher et 

al., 1996; Toland et al., 2000; Vander Putten et al., 2000; Torres et al., 2001; Lorrain, 

2002; Lazareth et al., 2003; Gillikin, 2005), with a stable background signal 565 

interrupted by sharp episodic peaks, generally occurring in the spring (using δ18O as a 
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relative temperature scale). The unstable background Ba in OS shells probably 

reflects the highly variable salinity at this site. Another striking feature of the profiles 

is that the peak amplitude seems to be correlated to the mussels’ age, with younger 

shell sections having larger peaks. For example, shell KN200203 has a large Ba/Ca 570 

peak ~ 20 µmol/mol at 15 – 22 mm of growth, while in the same shell at 38 – 40 mm 

the peak only reaches ~ 5 µmol/mol (Fig. 7). This is reproduced in the other shells as 

well, with a large peak around 24 mm in shell GR210403 and small peaks around 35 

– 40 mm in shells KN9 290902 and HF091202 (Fig. 7). This trend was also found by 

Vander Putten et al. (2000), who collected their M. edulis shells from the same 575 

estuary in 1997, suggesting that peak amplitude is not environmentally controlled. 

However, this could be an averaging effect, with the sample size integrating more 

growth time as shell growth slows with age (see Goodwin et al., 2001). Considering 

the width of the peaks, this does not seem probable and is more likely a physiological 

effect of ageing (see further). 580 

 

There are several hypotheses which could explain the [Ba/Ca]shell peaks. The 

hypothesis of Stecher et al. (1996), that either Ba-rich phytoplankton or barite formed 

in decaying phytoplankton flocs are ingested by the filter feeding bivalve and 

eventually the Ba is sequestered in the shell, is plausible. However, our data do not 585 

support a direct incorporation of Ba from phytoplankton ingestion into the shell. 

Although we could not measure Ba in the shell in the feeding experiment, it can be 

assumed that ingested Ba would have to pass through the hemolymph to get to the 

EPF and be taken up in the shell (see section 4.1). We fed mussels food with different 

Ba concentrations, which was taken up in the bulk tissues (Fig. 3 inset), but 590 

hemolymph Ba concentrations did not increase (Fig. 2 inset). However, it is possible 

that Ba concentrations in the food offered in this study were not high enough to have 

an effect (maximum ~ 15 nmol/g). Although many marine phytoplankton species 

contain barium concentrations similar to that of the food used in this study, certain 

species can have barium concentrations as high as 420 nmol/g (dry weight; Dehairs et 595 

al., 1980) (see Fisher et al. (1991) for review). Therefore, as previously suggested by 

Stecher et al. (1996), the [Ba/Ca]shell peaks can still be related to phytoplanktonic 

events in some way; for example, barite ingestion (see further) or uptake of specific 

phytoplankton species containing high levels of barium. However, the lack of a 

[Ba/Ca]shell peak in the shell OS 091202 (Fig. 7) and the large Chl a peak at this site 600 
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(Fig. 5C) suggest that phytoplankton blooms are not the direct cause. Nevertheless, 

this does not exclude barite ingestion as a cause. Indeed, invertebrates are known to 

directly ingest barite crystals (Brannon and Rao, 1979). It is possible that barite 

formation only occurs downstream from the OS site (see Stecher and Kogut, 1999), 

explaining the lack of a [Ba/Ca]shell peak at this site. This would also explain the large 605 

sharp [Ba/Ca]shell peak in the KN shells (Fig. 7), despite the lower broad Chl a peak at 

this site (Fig. 5C). However, particulate Ba data from the Schelde, which show a peak 

in the spring only at mid-salinities (Zwolsman and van Eck, 1999), do not agree with 

this scenario; but a more detailed sampling campaign is needed to be conclusive. 

Clearly, more work is needed to understand the relationship between these [Ba/Ca]shell 610 

peaks and phytoplankton. Therefore, further experiments for longer time periods 

using a larger range of [Ba] in food and possibly even barite would be useful. 

 

An increase in [Ba/Ca]water is highly unlikely to be the cause of [Ba/Ca]shell peaks, as 

the 20 – 25 µmol/mol [Ba/Ca]shell peaks would require [Ba/Ca]water to be around 300 615 

µmol/mol, which is clearly not the case (Fig 5A). An alternative hypothesis may be 

that Ba is remobilized from tissue stores during spawning, which also occurs in the 

spring. Indeed, M. edulis tissue dry weight also exhibits sharp episodic peaks 

throughout the life of the animal (Kautsky, 1982). The lack of a [Ba/Ca]shell peak in 

the OS shell could possibly be due to this mussel not spawning. Osmotic stress may 620 

have required a large part of this animals’ energy budget, leaving no energy for 

spawning (cf. Qiu et al., 2002; Gillikin et al., 2004). It is also interesting to note that 

the δ13C profiles coincide with changes in [Ba/Ca]shell. This is most evident in shells 

KN9 290902 and HF092102, where the δ13C values are more negative when the 

[Ba/Ca]shell deviates from background concentrations and are more positive when the 625 

[Ba/Ca]shell is at background levels (Fig. 7). Bivalve shell δ13C values are known to be 

influenced by the incorporation of metabolically derived light carbon (i.e., 12C) 

(McConnaughey et al., 1997). Furthermore, it has been shown that increased 

metabolism in larger bivalves, relative to growth rate, leads to a larger availability of 

metabolic C for CaCO3 precipitation and therefore results in a more negative δ13C in 630 

the shell (Lorrain et al., 2004). Using this rationale, higher metabolic rates from either 

spawning or seasonally increased growth, caused by an increase in food supply, 

would also result in a more negative shell δ13C. This could explain the pattern we see 

in these shells, and also agrees with a metabolic control on [Ba/Ca]shell peak amplitude 
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as described above. However, data from the scallop, Pecten maximus, do not 635 

corroborate this hypothesis, with their [Ba/Ca]shell peaks not being correlated with 

spawning (Lorrain, 2002). Alternatively, the higher [Ba/Ca]shell could be a kinetic 

growth rate effect, which has been noted in inorganic calcite (Tesoriero and Pankow, 

1996). Higher growth rates would also increase metabolic rates and thus lower shell 

δ13C. Finally, it can be argued that the [Ba/Ca]shell peaks can be caused by higher 640 

organic matter content in the shell. Bivalve shells can contain up to 5 % organic 

matter (see Marin and Luquet, 2004, and references therein) and Ba is known to be 

associated with organic matter (Lea and Boyle, 1993). However, neither Hart et al. 

(1997) nor Sinclair (2005) found a relationship between organic matter and Ba 

concentrations in other biogenic carbonates (i.e., corals), and Rosenthal and Katz 645 

(1989) suggest that Ba is bound to the crystal in mollusks. Thus it is unlikely that the 

Ba peaks are associated with shell regions containing higher organic content. 

 

Remarkably, a similar phenomenon also occurs in corals, with sharp episodic Ba 

peaks occurring at the same time each year, which are not related to river discharge 650 

(Sinclair, 2005). However, unlike bivalves, Sinclair (2005) found that the timing of 

the peaks differed between coral colonies, even when they grew within 20 km of each 

other. The main conclusion of Sinclair (2005) regarding the cause of these peaks in 

corals was that there is currently no satisfactory hypothesis to explain them. This is 

also the case for bivalves. However, the similarities between coral and bivalve Ba/Ca 655 

peaks may suggest a common cause for these peaks. This in itself would be amazing 

considering the large difference in biology, ecology, and biomineralization 

mechanisms between these two phyla of invertebrates. 

 

4.4 Implications for estuarine paleo-seawater chemistry 660 

 

Our data suggest that M. edulis shells have potential as a proxy of dissolved 

[Ba/Ca]water. However, it should be clear that only high resolution profiles covering an 

adequate amount of growth may be used to assure the correct background [Ba/Ca]shell 

is selected. This selection can also be aided using the δ18O and δ13C profiles. Selecting 665 

the mid-summer growth region (or the most negative δ18O) along with the most 

positive δ13C should result in a good selection of background [Ba/Ca]shell. Obviously 

whole shell analyses are not suitable to determine [Ba/Ca]water, because peaks would 
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be integrated. Once the correct background [Ba/Ca]shell is obtained, the [Ba/Ca]water 

may be approximated using a DBa of about 0.1. These data can be useful for giving a 670 

relative indication of salinity (different estuaries can be expected to have different 

salinity - [Ba/Ca]water relationships (Coffey et al., 1997)), which could assist with δ18O 

interpretations (see Gillikin et al., 2005b for more explanation). Furthermore, if 

[Ba/Ca]water was extended back through geologic time for the world’s large estuaries, 

the overall change in the oceanic Ba budget could be better constrained. However, we 675 

stress that this proxy needs to be further refined before it should be used as a proxy of 

environmental conditions.  

 

5. SUMMARY 

 680 

In both the field and laboratory we have verified that background Ba/Ca ratios in 

Mytilus edulis shells are directly related to the Ba/Ca ratios of the water in which they 

grew. Our data suggest that the DBa of M. edulis calcite is within the range of 0.07 to 

0.12, which is very close to the expected DBa range determined from inorganic calcite 

studies (0.03 to 0.07; Pingitore and Eastman, 1984; Tesoriero and Pankow, 1996) and 685 

is lower than foraminiferal calcite (see previous references). Although our laboratory 

data on the effect of Ba in food was inconclusive, they, along with data from the field, 

suggest that the nearly ubiquitous Ba/Ca peaks found in bivalve shells are not related 

to phytoplankton blooms in a simple manner, but might be related to barite ingestion. 

Finally, the Ba/Ca (background) proxy in bivalve shells can be used as a relative 690 

indicator of salinity, and if better constrained, can extend our knowledge of estuarine 

Ba cycling back through time by using fossil or archaeological shells. 
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Table 1. Summary of average seawater [Ba/Ca]water (± SE) for each laboratory 
[Ba/Ca]water treatment group. N = 8 water samples per treatment, spread over the 
experiment. 915 
Tank Treatment * [Ba/Ca]water (µmol/mol) 
1 Ambient 5.08 ± 0.22 
2 +110 nmol l-1 19.38 ± 0.71 
3 +220 nmol l-1 36.34 ± 0.91 
4 +440 nmol l-1 65.05 ± 2.37 
5 Feeding* 4.61 ± 0.45 
*see text  
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Figure legends 
 
Figure 1. Map of the Westerschelde and Oosterschelde estuaries. The mussel 920 

collection site at Wemeldinge (WD) and the four study sites are indicated: 

Knokke (KN), Hooftplaat (HF), Griete (GR) and Ossenisse (OS). Scale bar 

= 10 km. 

 

Figure 2. Mean Ba/Ca ratios (± SE) in hemolymph of laboratory grown Mytilus 925 

edulis versus Ba/Ca ratios of culturing water (± SE; solid circles). Some 

error bars are smaller than the symbols. The solid line shows the linear least 

squares regression, with the relationship [Ba/Ca]hemolymph =  0.86 (±  0.04) * 

[Ba/Ca]water + 2.26 (± 1.49) (R2 = 0.98, p < 0.0001, n = 36 in 4 treatments). 

The 1:1 line is also shown (dashed). Data from the feeding experiment, 930 

where the mussels were fed food enriched in Ba are shown as the X and 

diamond. The inset graph illustrates that food [Ba] does not influence 

hemolymph Ba/Ca ratios (y-axis legend is the same as the main graph). 

 

Figure 3. Mean Ba/Ca ratios (± SE) in bulk tissue of laboratory grown Mytilus edulis 935 

versus Ba/Ca ratios of culturing water (± SE; solid circles). Some error bars 

are smaller than the symbols. The solid line shows the exponential fit, with 

the relationship [Ba/Ca]tissue = 35.36 (±  2.19) * (1-exp(-0.07 (± 0.01) * 

[Ba/Ca]water)) (R2 = 0.99, p < 0.0001, n = 11 in 4 treatments). Data from the 

feeding experiment, where the mussels were fed food enriched in Ba are 940 

shown as the open symbols. The inset graph illustrates that food [Ba] 

clearly does influence tissue Ba/Ca ratios (y-axis legend is the same as the 

main graph). 

 

Figure 4. Mean Ba/Ca ratios (± SE) in shells of laboratory grown Mytilus edulis 945 

versus Ba/Ca ratios of culturing water (± SE). Some error bars are smaller 

than the symbols. The solid line shows the linear least squares regression, 

with the relationship [Ba/Ca]shell =  0.10 (±  0.02) * [Ba/Ca]water + 1.00 (± 

0.68) (R2 = 0.84, p < 0.0001, n = 28 in 4 treatments). The dashed line 

represents the regression forced through zero. 950 
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Figure 5. Dissolved [Ba/Ca]water (A), salinity (B) and Chl a (C) at the four Schelde 

sites measured over one year (Nov. 2001 - Nov. 2002). See Fig. 1 for site 

abbreviations. 

 955 

Figure 6. Salinity versus [Ba/Ca]water, including data from all sites and sampling 

dates, with the linear relationship [Ba/Ca]water = -1.22 (± 0.21) * Salinity + 

46.05 (± 4.57) (R2 = 0.73, n = 55, p < 0.0001). See Fig. 1 for site 

abbreviations. 

 960 

 

Figure 7. High resolution δ18O, δ13C, and [Ba/Ca]shell profiles from the six shells. 

Black filled symbols denote data selected as background [Ba/Ca]shell data. 

Vertical lines correspond to the time of transplantation (HF and GR shells 

only, see Materials and methods) as determined from the calcein stain. 965 

Shell codes represent collection site and date (format: ddmmyy). Note that 

the isotope axes are inverted. 

 

Figure 8. Mean [Ba/Ca]shell (± SE) in shells of laboratory grown (closed symbols; 

based on 28 shells from 4 treatments) and field grown (open symbols; 970 

based on multiple data from 6 shells from 4 sites, background data only) 

Mytilus edulis versus Ba/Ca ratios of water (± SE). The average [Ba/Ca]water 

over the whole year is used for the field regression (see text, section 4.2). 

The solid line shows the linear least squares regressions and the dashed 

lines the 95 % CI. Slopes are significantly different (t-test) at p < 0.0001. 975 



 
 
Figure 1. Map of the Westerschelde and Oosterschelde estuaries. The mussel collection 
site at Wemeldinge (WD) and the four study sites are indicated: Knokke (KN), 
Hooftplaat (HF), Griete (GR) and Ossenisse (OS). Scale bar = 10 km. 
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Figure 2. Mean Ba/Ca ratios (± SE) in hemolymph of laboratory grown Mytilus edulis 
versus Ba/Ca ratios of culturing water (± SE; solid circles). Some error bars are smaller 
than the symbols. The solid line shows the linear least squares regression, with the 
relationship [Ba/Ca]hemolymph =  0.86 (±  0.04) * [Ba/Ca]water + 2.26 (± 1.49) (R2 = 0.98, p 
< 0.0001, n = 36 in 4 treatments). The 1:1 line is also shown (dashed). Data from the 
feeding experiment, where the mussels were fed food enriched in Ba are shown as the X 
and diamond. The inset graph illustrates that food [Ba] does not influence hemolymph 
Ba/Ca ratios (y-axis legend is the same as the main graph). 
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Figure 3. Mean Ba/Ca ratios (± SE) in bulk tissue of laboratory grown Mytilus edulis 
versus Ba/Ca ratios of culturing water (± SE; solid circles). Some error bars are smaller 
than the symbols. The solid line shows the exponential fit, with the relationship 
[Ba/Ca]tissue = 35.36 (±  2.19) * (1-exp(-0.07 (± 0.01) * [Ba/Ca]water)) (R2 = 0.99, p < 0.0001, n = 
11 in 4 treatments). Data from the feeding experiment, where the mussels were fed food 
enriched in Ba are shown as the open symbols. The inset graph illustrates that food [Ba] 
clearly does influence tissue Ba/Ca ratios (y-axis legend is the same as the main graph). 
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Figure 4. Mean Ba/Ca ratios (± SE) in shells of laboratory grown Mytilus edulis versus 
Ba/Ca ratios of culturing water (± SE). Some error bars are smaller than the symbols. The 
solid line shows the linear least squares regression, with the relationship [Ba/Ca]shell =  
0.10 (±  0.02) * [Ba/Ca]water + 1.00 (± 0.68) (R2 = 0.84, p < 0.0001, n = 28 in 4 
treatments). The dashed line represents the regression forced through zero. 
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Figure 5. Dissolved [Ba/Ca]water (A), salinity (B) and Chl a (C) at the four Schelde sites 
measured over one year (Nov. 2001 - Nov. 2002). See Fig. 1 for site abbreviations. 
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Figure 6. Salinity versus [Ba/Ca]water, including data from all sites and sampling dates, 
with the linear relationship [Ba/Ca]water = -1.22 (± 0.21) * Salinity + 46.05 (± 4.57) (R2 = 
0.73, n = 55, p < 0.0001). See Fig. 1 for site abbreviations. 
 
 



Figure 7. High resolution δ18O, δ13C, and [Ba/Ca]shell profiles from the six shells. Black filled symbols denote data 
selected as background [Ba/Ca]shell data. Vertical lines correspond to the time of transplantation (HF and GR shells 
only, see Materials and methods) as determined from the calcein stain. Shell codes represent collection site and 
date (format: ddmmyy). Note that the isotope axes are inverted. 
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Figure 8. Mean [Ba/Ca]shell (± SE) in shells of laboratory grown (closed symbols; based 
on 28 shells from 4 treatments) and field grown (open symbols; based on multiple data 
from 6 shells from 4 sites, background data only) Mytilus edulis versus mean [Ba/Ca]water 
(± SE). The average [Ba/Ca]water over the whole year is used for the field regression (see 
text, section 4.2). The solid line shows the linear least squares regressions and the dashed 
lines the 95 % CI. Slopes are significantly different (t-test) at p < 0.0001. 
 

Laboratory DBa = 0.10 ± 0.02 

Field DBa = 0.071 ± 0.001 



Electronic Annex  Captions 
 
EA1: Summary of Ba/Ca data 
 
EA2: Summary of field data 


