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Abstract 
 

Bivalve shells can potentially record the carbon isotopic signature of the dissolved inorganic 

carbon (δ13CDIC) in estuarine waters, thereby providing information about past estuarine 

biogeochemical cycles. However, the fluid from which these animals calcify is a ‘pool’ of 

metabolic CO2 and external dissolved inorganic carbon (DIC). The incorporation of respired 13C 

depleted carbon into the skeletons of aquatic invertebrates is well documented, and may affect 

the δ13CDIC record of the skeleton. Typically, less than 10 % of the carbon in the skeleton is 

metabolic in origin, although higher amounts have been reported. If this small offset is more or 

less constant, large biogeochemical gradients in estuaries may be recorded in the δ13C value of 

bivalve shells.  In this study, it is assessed if the δ13C values of Mytilus edulis shells can be used 

as a proxy of δ13CDIC as well as provide an indication of salinity. First, the δ13C values of 

respired CO2 (δ13CR) was considered using the δ13C values of soft tissues as a proxy for δ13CR. 

Along the strong biogeochemical gradient of the Scheldt estuary (The Netherlands – Belgium), 

δ13CR was linearly related to δ13CDIC (r2 = 0.87), which in turn was linearly related to salinity (r2 

= 0.94). The mussels were highly selective, assimilating most of their carbon from 

phytoplankton out of the total particulate organic carbon (POC) pool. However, on a seasonal 

basis, tissue δ13C varied differently than δ13CDIC and δ13CPOC, most likely due to lipid content of 

the tissue. All shells contained less than 10 % metabolic C, but ranged from near zero to 10 %, 

thus excluding the use of δ13C in these shells as a robust δ13CDIC or salinity proxy. As an 

example, an error in salinity of about five would have been made at one site. Nevertheless, large 

changes in δ13CDIC (>2 ‰) can be determined using M. edulis shell δ13C.  
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1. INTRODUCTION 
 

The stable carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) in estuarine 

waters is a valuable tool for tracing biogeochemical cycling of carbon (Mook and Tan, 1991; 

Hellings et al., 1999; Bouillon et al., 2003). Having past records of δ13CDIC would not only be 

useful to determine past biogeochemical processing, but would also give insight into 

anthropogenic pollution (both atmospheric and riverine) (Hellings et al., 2001) and upwelling 

(Killingley and Berger, 1979). Bivalve shell geochemistry has long been known to reflect the 

environmental conditions under which the bivalve grew (Epstein et al., 1953; Mook and Vogel, 

1968; Mook, 1971; Dettman et al., 2004). Originally, bivalve shell carbonate δ13C was believed 

to track δ13CDIC (Mook and Vogel, 1968; Killingley and Berger, 1979; Arthur et al., 1983). 

However, more recently it has been proposed that the carbonate skeleton is synthesized from 

both DIC, as well as organically derived CO2 from internal respiration (Dillman and Ford, 1982; 

Swart, 1983; Tanaka et al., 1986; McConnaughey et al. 1997; Furla et al. 2000; Lorrain et al., 

2004; and others), which both affect the skeletal stable carbon isotopic signature (δ13CS). The 

amount of respired carbon ending up in the skeleton is species specific, with most aquatic 

animals incorporating less than 10 % (or < 2 ‰ offset from δ13CS equilibrium with δ13CDIC in 

marine settings) (McConnaughey et al., 1997; Kennedy et al., 2001; Lorrain et al., 2004; 

Gillikin et al., 2005a), but may reach as high as 35 % (Gillikin, 2005). Therefore it is of interest 

to have a better understanding of what controls the δ13C value of respired CO2. As there has 

been much work on the isotope geochemistry of Mytilus edulis shells (Epstein et al., 1953; 

Mook and Vogel, 1968; Mook, 1971; Tanaka et al., 1986; Vander Putten et al., 2000), this 

species is the ideal candidate for this study.  
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The δ13C value of respired CO2 (δ13CR) can be roughly estimated from the tissue δ13C value. At 

the pH of bivalve body fluids (7 – 8; Crenshaw, 1972), more than 90 % of CO2 hydrates and 

ionizes to produce HCO3
-, which should be at most 1 ‰ enriched in 13C compared to the 

respiring tissue (McConnaughey et al., 1997). Yet, considering other processes affecting the 

δ13CR, it has been estimated to be 0.5 ‰ heavier than the tissues on average, but this difference 

can generally be ignored (McConnaughey et al., 1997). However, a recent study on a 

zooxanthellate scleractinian coral suggested that δ13CR might not always follow tissue δ13C 

(Swart et al., 2005). The amount of respired CO2 in the skeleton can be approximated using the 

equation of McConnaughey et al. (1997): 
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M(δ13CR) + (1 – M) * δ13CDIC = δ13CS – εcl-b   (1) 

 

where M is the percent metabolic CO2 contribution and εcl-b is the enrichment factor between 

calcite and bicarbonate (1.0 ± 0.2 ‰ in Romanek et al., 1992). Other factors may also play a 

role in determining the δ13C value of the internal DIC pool. For example, the enzyme carbonic 

anhydrase (CA), which catalyses the reaction of bicarbonate to CO2 to facilitate the diffusion of 

DIC through membranes (Paneth and O’Leary, 1985), may add or remove carbon species from 

this pool. Activity of CA is known to change with salinity in some bivalves, but is tied to 

osmoregulation (Henry and Saintsing, 1983). Since M. edulis does not osmoregulate (Newell, 

1989), salinity should not affect CA activity in these organisms. Nevertheless, CA activity itself 

has been shown to be inhibited by Cl- ions (Pocker and Tanaka, 1978). A reduction in CA 

activity could cause a reduction in environmental DIC entering the animal, resulting in a larger 

ratio of metabolic DIC and more negative δ13C in the calcifying fluid. 

 

Considering that many bivalves incorporate only a small amount of respired CO2, their 

skeletons should be able to trace large changes in δ13CDIC, as was found by Mook and Vogel 

(1968) and Mook (1971) for M. edulis in the Scheldt estuary (The Netherlands). This is also true 

if the offset is constant as was found in a freshwater mussel (Kaandorp et al., 2003). Such shell 

data could then be useful for determining the δ13CDIC and the salinity where the animals grew. 

Considering that shell δ13C values are not dependent on temperature (i.e., the calcite-

bicarbonate enrichment factor is independent of temperature between 10 and 40 ºC; Romanek et 

al., 1992), this would also provide a valuable addition to the interpretation of shell δ18O profiles, 

which are dependent on both temperature and salinity, or more precisely, the δ18O value of the 

water (see Gillikin et al., 2005a for more discussion). Unfortunately, unlike other biogenic 

carbonates, many minor elements (e.g., Sr, Mg) in bivalves cannot be used to obtain reliable 

paleo-environmental information (Stecher et al., 1996; Vander Putten et al., 2000; Gillikin et al., 

2005b; Lorrain et al., 2006). Therefore, δ13CS may provide an alternative to estimate salinity and 

thus allow a better estimation of the δ18O value of the water. To evaluate this potential proxy, 

the δ13C values of M. edulis shells and mantle tissues, DIC, and particulate organic carbon 

(POC) were measured across a salinity gradient and over one year in the Scheldt estuary. 
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2. MATERIALS AND METHODS 
 

Mussels (Mytilus edulis) were collected from the intertidal zone along the salinity gradient of 

the Scheldt estuary (Westerschelde) from Knokke (KN), Hoofdplaat (HF), Griete (GR) and 

Ossenisse (OS; the most upstream occurrence of wild Mytilus populations) (Fig. 1) on various 

dates (see Baeyens et al., 1998 for a general description of the Scheldt estuary). Mussel tissues 

were sampled on 17 March (n = 3), 3 May (n = 7), and 29 September 2002 (n = 13) from KN; 

on 17 March (n = 5), 3 May (n = 7), 28 July (n = 9), and 29 September 2002 (n = 16) from HF; 

and on 23 March 2002 from GR (n = 7) and OS (n = 12). One shell was sampled from KN on 

20 February 2003 (shell KN1) and one on 29 September 2002 (shell KN1); from HF on 9 

December 2002; from GR on 21 April 2003; and from OS on 9 December 2002 (shell OS1) and 

21 April 2003 (shell OS2). It is well known that bivalve shell growth slows in colder weather 

(e.g., Gillikin et al., 2005a, b); therefore, even the shells sampled after the last water sampling 

date (Nov. 2002) will mostly correspond to the water sampling period. However, it should be 

kept in mind that water was sampled over the full year (monthly and bi-weekly in the spring), 

whereas shell growth probably is highest in spring. Mussels at HF and GR were transplanted 

from Wemmeldinge (WD; Fig. 1) (see Gillikin et al., 2006 for a more detailed description). 
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Mantle tissues were collected using a scalpel and were stored frozen (-20 ºC). After thawing, 

tissues were dried in an oven at 60 ºC for 24 h, homogenized with a mortar and pestle, and 

about 1 mg was placed into a silver cup. Two to three drops of 5 % HCl were added to 

decarbonate the sample and the cups were allowed to dry in an oven overnight, after which they 

were folded closed. Tissue δ13C was measured on an Element Analyzer (Flash 1112 EA 

ThermoFinnigan) coupled via a CONFLO III to a ThermoFinnigan DeltaplusXL isotope ratio 

mass spectrometer (IRMS). Using this same instrument and method, Verheyden et al. (2004) 

report a long term analytical precision for δ13C of 0.08 ‰ on 214 analyses of the IAEA-CH-6 

standard (1σ).  

 

Shells were sectioned along the axis of major growth and samples were drilled from the calcite 

layer along the growth-time axis every 300 µm using a Merchantek MicroMill and 300 µm drill 

bit. Although M. edulis has both calcite and aragonite shell layers, the aragonite layer is not 

suitable for time resolved sampling (see Vander Putten et al. 2000). Carbonate powders were 

reacted in a Kiel III coupled to a ThermoFinnigan DeltaplusXL dual inlet IRMS with a long-term 
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δ13C precision of 0.039 ‰ on the NBS-19 standard (δ13C = + 1.95 ‰, n = 292) and 0.068 ‰ on 

the NBS-18 standard (δ13C = - 5.04 ‰, n = 22). More details regarding the treatment of these 

shells can be found in Gillikin et al. (2006). 
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Near-shore water was sampled during high tide at least monthly from Nov. 2001 to Nov. 2002 

for salinity, chlorophyll a concentrations (Chl a), δ13CDIC, δ13CPOC and suspended particulate 

matter (SPM). Water temperature was monitored hourly at each site using a TidBit data logger 

(from November 2001 to May 2003) (Fig. 2). Salinity was measured in situ with a WTW 

multiline P4 multimeter. Chlorophyll a concentrations were determined by filtering 200 to 500 

ml of seawater through Whatman GF-F filters in the field. Filters were wrapped in aluminum 

foil and placed in liquid nitrogen; three replicate filters per site were taken on each sampling 

date. In the laboratory, samples were transferred to a –85 ºC freezer until analysis at NIOO-

CEME, Yerseke, NL, using reverse-phase HPLC (Gieskes et al., 1988) with a reproducibility of 

2.7 % (or 0.3 µg/l; 1σ) for Chl a (based on an in-house standard, n = 7). The δ13CDIC was 

determined by acidifying 5 ml of water in an 8 ml helium-flushed headspace vial, followed by 

overnight equilibration, and subsequently injecting 400 μl of the headspace into the carrier gas 

stream of the continuous flow EA-IRMS. Precision of δ13CDIC was better than 0.2 ‰ based on 

replicate measurements; data were corrected using calibrated CO2 gas according to Miyajima et 

al. (1995) (see Gillikin et al., 2005a and Gillikin, 2005). To approximate the δ13C value of 

phytoplankton, 20 ‰ was subtracted from the δ13CDIC values (δ13CDIC–20; see Discussion). The 

δ13CPOC was measured following Lorrain et al. (2003). Briefly, 200 to 500 ml of seawater was 

filtered through Whatman GF-F filters, which were dried at 50 ºC, weighed, fumed in HCl 

vapors, wrapped in silver cups and analyzed on the EA-IRMS described above. Concentrations 

of SPM are based on the dry weights of these filters. 

 

3. RESULTS 
 

The strong salinity gradient of the Schelde is obvious from the data presented in figure 3. There 

is a significant positive linear relationship between δ13CDIC and salinity, with δ13CDIC = Salinity 

* 0.39 (± 0.03) – 13.71 (± 0.57) (r2 = 0.94, p < 0.0001, n = 63; for the salinity range of ~ 5 to 

30) (Fig. 4).  
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There were strong linear relationships between mantle tissue and both δ13CPOC and δ13CDIC–20 

for samples collected from all four sites in March 2002 (Fig. 5). The relationships are: Tissue 

δ13C = 0.99 (± 0.16) * δ13CDIC-20 + 4.89 (± 4.48) (r2 = 0.87, n = 27, p > 0.0001), and Tissue δ13C 

= 1.97 (± 0.31) * δ13CPOC + 25.39 (± 7.87) (r2 = 0.87, n = 27, p > 0.0001). δ13CPOC and δ13CDIC 

were also significantly correlated (δ13CPOC = 0.42 (± 0.09) * δ13CDIC – 21.0 (± 0.5); r2 = 0.61, n 

= 59, p < 0.0001). The slope of the relationship between mantle tissue and δ13CDIC–20 was not 

significantly different from one (p < 0.0001). SPM was generally high at all four sites (range = 

13 to 550 mg/l, mean = 86 mg/l). 
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Mantle tissue δ13C varied considerably throughout the year at HF and KN, with a 2 to 3 ‰ 

decrease between March and September 2002 (Fig. 6). At both sites, mantle tissue was least 

negative in March, just before the phytoplankton bloom (as indicated by the Chl a data), but 

was more similar to the δ13C of potential food sources (i.e., δ13CDIC–20) in May, July and 

September. 

 

High resolution δ13CS data are provided in figure 7 and are discussed in more detail in Gillikin 

et al. (2006). The average annual shell δ13C is compared with the average annual δ13CDIC at each 

site in figure 8 along with the predicted equilibrium calcite based on the εcl-b from Romanek et 

al. (1992). Average shell and DIC δ13C are presented in table 1 along with average salinity and 

metabolic C contribution to the shell. With the exception of the two shells from KN, shells were 

on average in equilibrium with δ13CDIC (Fig. 8).  

 

 

4. DISCUSSION 
 

Metabolic carbon sources 

 

Although it is well established that the carbon isotope fractionation between phytoplankton and 

DIC is variable (Rau et al., 1992; Hinga et al., 1994; Boschker et al., 2005), a value between 18 

and 22 ‰ is often used as an estimate (Cai et al., 1988; Hellings et al., 1999; Fry, 2002; 

Bouillon et al., 2004). Therefore, similar to Fry (2002), an average value of 20 ‰ is used in this 

study. From Fig. 5 it is clear that M. edulis is a highly selective feeder, as the slope between the 

expected δ13C of phytoplankton (i.e. δ13CDIC–20) and tissues is not significantly different from 
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one, whereas the slope between δ13C of tissues and δ13CPOC was far from one (slope  = 2.0 

±0.3). The suspended POC pool is a mixture of different sources of carbon, each with an often 

distinct δ13C value, such as phytoplankton, terrestrial carbon (in general, ~ -27 ‰ from C3 

plants and ~ -14 ‰ from C4 plants; Mook and Tan, 1991), resuspended sediments (Scheldt: ~ -

19 to -24 ‰; Middelburg and Nieuwenhuize, 1998; Herman et al., 2000), marine macro-algae 

detritus (Scheldt: green algae ~ -17 ‰, brown algae ~ -25 ‰; Gillikin unpublished data), 

microphytobenthos (Scheldt: ~ -15 ‰; Middelburg et al., 2000; Herman et al., 2000), and other 

components from which the mussels must select. As our samples were taken near the shore, 

there was probably a large amount of suspended sediments, which is indicated by the high SPM 

content. Particle selection can occur both at the gills (pre-ingestive) and in the gut (post-

ingestive) (reviewed in Ward and Shumway, 2004), but using δ13C as a tracer deals only with 

assimilated carbon.  Moreover, using the selectivity equation from Bouillon et al. (2004),  
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Selectivity = (Δδ13Ctissue – Δδ13CPOC / Δδ13CDIC – Δδ13CPOC) *100 [%]  (2) 

 

where Δ is the overall estuarine gradient in tissue, POC and DIC δ13C values (assumes that 

selectivity is similar at all stations, see Bouillon et al., 2004), suggests that the mussels are ~90 

% selective, which further illustrates that they assimilate their carbon primarily from 

phytoplankton, which in turn obtains its carbon from the DIC pool. It is generally accepted that 

the δ13C value of an organism reflects the δ13C value of its diet, with little (∆δ13C = +1 ‰) or no 

change (DeNiro and Epstein, 1978; Fry and Sherr, 1984). However, extreme values are not 

uncommon with some ∆δ13C values being greater than +3 ‰ (Post, 2002; McCutchan et al., 

2003). Therefore, the intercept of the regression between tissue δ13C and phytoplankton δ13C 

(δ13CDIC-20) should be +1. Nevertheless, it should be kept in mind that the 20 ‰ fractionation 

used in this paper is a rough estimate. The intercept of 4.89 ± 4.48 ‰ in our dataset (Fig. 5) can 

therefore be explained by an extreme fractionation factor between mussel tissue and 

phytoplankton, an error in the phytoplankton fractionation used, and/or by individual variation 

in tissue δ13C. Moreover, errors in this simplified model can arise from the mussels feeding on 

food items other than phytoplankton. Mussels have been shown to feed on dissolved organic 

carbon (DOC) (Roditi et al., 2000), their own and other bivalve larvae (Lehane and Davenport, 

2004), zooplankton (Lehane and Davenport, 2002; Wong et al., 2003), and macroalgae detritus 

(Levinton et al., 2002); all with different δ13C values (see above). Nevertheless, as a first 

approximation, δ13CR values should roughly mirror δ13CDIC values, as has been noticed in other 

bivalves (e.g., Fry, 2002). However, Swart et al. (2005) found that δ13CR from a coral deviated 
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significantly from the δ13C of tissues (both positive and negative deviations of up to 3 ‰), 

which they attributed to different compounds (e.g., lipids) being respired at various times of the 

year.  

 

It is evident that the relationship between tissue δ13C and δ13CDIC found in March (Fig. 5) does 

not necessarily hold true for the whole year (Fig. 6). This could be attributed to changing food 

sources, such as resuspended benthic algae, or variable fractionation between phytoplankton 

and DIC throughout the year. Indeed, Boschker et al. (2005) found that DIC – diatom 

fractionation varied from about 16 ‰ to 24 ‰ along this same estuary. Other factors such as 

temperature and phytoplankton growth rate can also influence the fractionation between 

phytoplankton and DIC (see Savoye et al., 2003). However, a more likely explanation is 

changing lipid levels in M. edulis tissues. In this species, the mantle contains much of the gonad 

(Morton, 1992); and in this region, M. edulis spawning peaks when temperatures exceed 

approximately 10 ºC (Hummel et al., 1989). At all four sites this occurs in mid-March (Fig. 2), 

approximately at the same time as the tissue samples were collected. As a result of spawning, 

the tissues would have a lower lipid content (see de Zwaan and Mathieu, 1992). Since lipids 

have a lighter δ13C signal than other biochemical components (Abelson and Hoering, 1961; 

Tieszen et al., 1983; Focken and Becker, 1998) and since the mantle exhibits a sharp drop in 

lipid content just after spawning (de Zwaan and Mathieu, 1992), the more positive tissue δ13C 

values observed for March can be explained. After the phytoplankton bloom, which begins in 

April or May, tissue lipid reserves would be restored, thus lowering the δ13C value. Indeed, 

Lorrain et al. (2002) found that δ13C of scallop tissues were highest in spring when lipids were 

low, and decreased as lipids accumulated toward late summer. In the shells, however, the 

spawning period is reflected by more negative δ13CS values (data not shown; see Gillikin et al., 

2006), although the δ13CDIC is generally becoming more positive (Fig. 6). This could be 

explained by higher metabolic rates just after spawning, as energy lost during spawning is 

restored. Vander Putten et al. (2000) also described these patterns in δ13CS in M. edulis from the 

Scheldt as being a result of increased respiration associated with periods of higher food 

availability. 
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Shell carbon isotopic signature 

 

There are several hypotheses that try to explain disequilibrium isotopic fractionation (or vital 

effects) in biological carbonates. The two leading hypothesis are the “kinetic” model 
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(McConnaughey, 1989a, b) and the “carbonate” model (Adkins et al., 2003), which each lead to 

disequilibrium of both δ13C and δ18O (reviewed in Shanahan et al., 2005). As bivalves are 

known to precipitate in oxygen isotopic equilibrium (Epstein et al., 1953; Chauvaud et al., 

2005), these effects do not seem to be acting on bivalve carbonates.  

290 

300 

310 

320 

 

In order to compare the δ13CDIC with shell δ13C, the shell data must be assigned calendar dates. 

Typically, the δ18O signal in the shell can be used to date the samples, based on the marked 

winter-summer temperature contrast (e.g., Klein et al, 1996; Gillikin et al., 2005a); however, 

this was difficult with these samples due to the large salinity influence (more precisely, the δ18O 

of the water) on the δ18O signal in shells from upstream sites (data presented in Gillikin et al., 

2006). The δ18O signal from the KN shells had a clear periodicity indicating that a full year was 

sampled. Shells from HF and GR were stained with calcein (Oct 01; see Gillikin et al., 2006) 

and cover a full year, but growth seems reduced. Shells from OS were each sampled along 2 cm 

of growth (~15-35 mm from umbo), so should be at least one year of growth. Therefore, the 

average annual shell δ13C was compared with the average annual δ13CDIC at each site (Fig. 8). 
 

Despite the variability in tissue δ13C throughout the year, the mean shell values closely match 

equilibrium values (δ13CDIC + 1‰; Romanek et al., 1992) for three of the four sites (Fig. 8). The 

differences between measured and predicted values vary between sites (Table 1), with salinity 

apparently having little to do with disequilibrium as would be expected if the enzyme CA was 

responsible for changing the δ13C value of the internal DIC pool (see Introduction). 

Nevertheless, all shells generally fall within the 10 % metabolic C incorporation suggested to be 

typical for aquatic marine invertebrates by McConnaughey et al. (1997) (Table 1). 

 

Although δ13CR does not seem to largely affect the δ13CS (~< 10 % incorporation of metabolic 

CO2 into the shell), the variability in the percent incorporated is enough to preclude its use as a 

robust δ13CDIC proxy, and hence a salinity proxy. For example, if the δ13CS values of the 

seaward KN shells were used to predict δ13CDIC and salinity, one would conclude that this shell 

came from a site similar to HF (Fig. 8), even though the difference in salinity between these 

sites is typically around five. From Figure 8, it may seem that mussel shells from the same 

environment could be used to determine δ13CDIC, but another study has shown that Mercenaria 

mercenaria shells collected from similar environments had very different metabolic 

contributions to their shells (Gillikin, 2005), suggesting this might not generally be the case. 

The reason why the KN shells were farther from equilibrium than the others could be linked to 
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higher metabolic rates caused by the stronger wave action at this site, which increases water 

flow and thus food availability. Moderate wave action has been shown to increase growth rates 

and condition values in Mytilus (Steffani and Branch, 2003), which would lead to higher 

metabolic rates. There are also other possibilities which can increase metabolic rate, such as 

epibiont cover (e.g., barnacles (Buschbaum and Saier, 2001) which are more abundant at the 

KN site), exposure to predators (Frandsen and Dolmer, 2002), and pollution (Wang et al., 

2005).  
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An alternative explanation for the higher metabolic C incorporation in shells at the KN site may 

be the differences in the ambient CO2/O2 ratios. McConnaughey et al. (1997) describe a simple 

respiratory gas exchange model, where the inward flux of environmental CO2 dilutes the CO2 

produced internally by respiration (see also Shanahan et al., 2005). In this model, the ambient 

CO2/O2 ratios and blood O2/ambient O2 ratios control the amount of respired CO2 in the tissues 

and precipitating carbonates of the bivalve. With higher ambient CO2/O2 ratios there is more 

flushing of CO2 produced internally by respiration. The Scheldt estuary is known to have 

particularly high pCO2 values (Frankignoulle et al. 1998). The pCO2 and pO2 data collected in 

the Scheldt estuary in July 2000 by Frankignoulle and Borges (2002) indeed show that the 

upstream sites have higher ambient CO2/O2 ratios (ranging from 0.11 at HF to 0.22 at OS) as 

compared to a site with salinity similar to the KN site (~0.06). However, if this were the main 

factor controlling the amount of metabolic C incorporation into the shells, then a steady increase 

would be expected from low salinity (OS) to high salinity (KN), which was not observed in our 

data (Table 1). 

 

The difference between the results presented here and those from earlier studies for the same 

species and estuary (i.e., Mook and Vogel, 1968; Mook, 1971), who state that δ13CS is a good 

proxy of δ13CDIC, can be explained by three main considerations. First, these earlier authors 

analysed mixtures of aragonite and calcite from the shells, which differ greatly in equilibrium 

δ13C values with HCO3
- (i.e., +1 ‰ for calcite and + 2.7 ‰ for aragonite; Romanek et al., 

1992). Second, they roasted their samples and found significant differences between roasted and 

non-roasted δ-values, while Vander Putten et al. (2000) found no difference in calcite due to 

roasting samples from this same species, indicating a possible isotopic alteration in these earlier 

studies. Finally, these earlier studies did not consider metabolic effects, and perhaps did not 

sample populations with markedly different metabolic rates. 
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In conclusion, although δ13CR values can closely follow δ13CDIC values, and although the 

percentage of metabolic C incorporated into the shells of M. edulis is low, the variability in 

metabolic C incorporation is too high to allow confident δ13CDIC and salinity determinations 

based on δ13CS. The data presented here could not be used to differentiate between sites with a 

salinity difference of five, which in terms of δ18O paleothermometry would correspond to about 

4 ºC at these sites (Gillikin, 2005). Thus, δ13CS is not a robust proxy of environmental 

conditions in M. edulis calcite, but may be useful for assessing metabolic differences between 

different populations, and can nevertheless be used as an indicator of large δ13CDIC (and salinity) 

differences. It remains possible that samples from within the estuary proper, or samples from 

the same site, may have similar metabolic contributions to the shell δ13C and therefore could 

provide a better indication of changes in δ13CDIC through time; however, more samples from the 

same site are needed to test this hypothesis. 
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Table 1. Average shell and water δ13C data, predicted minus 
measured δ13CS (pred – meas, in ‰) and percent metabolic C 
incorporation (%M) in M. edulis shells at each site. %M was 
calculated using average data and the equation of McConnaughey et 
al. (1997, see text). 590 

 Shell KN1 KN2 HF GR OS1 OS2 
 Ave δ13CS (‰) -2.98 -2.43 -3.50 -5.54 -7.45 -7.73 

 SD δ13CS (‰) 0.79 0.57 0.49 0.56 0.80 0.92 

 n δ13CS 68 57 35 26 80 86 

 δ13CDIC*  (‰) -1.9 -1.9 -4.0 -6.2 -7.9 -7.9 

 SD δ13CDIC (‰) 0.9 0.9 1.2 1.2 1.7 1.7 

 n δ13CDIC 15 15 15 15 16 16 

 Salinity* 29 29 25 20 14 14 

 pred – meas  (‰) 2.04 1.49 0.33 0.36 0.51 0.79 

 %M 10.9 8.0 1.8 2.3 3.0 4.7 

  *Annual mean.  SD = standard deviation. 
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Figure Captions 
 
Figure 1. Map of the Westerschelde estuary (referred to as the Scheldt estuary in the text). The four 

study sites are indicated Knokke (KN), Hooftplaat (HF), Griete (GR) and Ossenisse (OS). 
Scale bar = 10 km. Wemmeldinge (WD) is also shown. 

 
 

600 
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Figure 2. Water temperature recorded hourly using Onset TidBit dataloggers at all four sites. The 
weekly running average is shown. The loggers failed at GR and HF for about a month as is 
indicated on the graph.  

 
 
Figure 3. Salinity at the four Schelde sites measured over one year (Nov. 2001 - Nov. 2002).  
 
 
Figure 4. δ13CDIC versus salinity from samples taken over one year at the four sites along the Scheldt 

estuary (r2 = 0.94, p < 0.0001). 
 
 
Figure 5. Linear regressions between mantle tissue δ13C and both δ13CPOC (open symbols) and δ13CDIC– 20 

(solid symbols) (in ‰) from mussels collected at all four sites in March 2002. n = 27 for 
each.  

 
 
Figure 6. Temporal variations in mantle tissue δ13C, δ13CPOC, δ13CDIC–20 (in ‰), and chlorophyll a for 

Hooftplaat (A) and Knokke (B) for the period November 2001 to November 2002. Error bars 
represent standard deviations. 

 
 
Figure 7. High resolution δ13C shell data from the six shells plotted versus distance from the umbo 

(growth direction is from left to right). See figure 1 for site codes. 
 
Figure 8. Mean δ13Cs and δ13CDIC (in ‰) averaged over the full year for the four sites (noted above data 

points, see Fig. 1 for description of site codes). High-resolution profiles can be found in 
Gillikin et al. (2006). Also plotted are the expected shell values based on the fractionation 
factor between δ13CDIC and calcite (+1.0 ‰; Romanek et al., 1992). Error bars represent 
standard deviations.  
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Figure 1. Map of the Westerschelde estuary (referred to as the Scheldt estuary in 
the text). The four study sites are indicated Knokke (KN), Hooftplaat (HF), Griete 
(GR) and Ossenisse (OS). Scale bar = 10 km. Wemmeldinge (WD) is also shown. 

Antwerp

Oosterschelde 
North  
Sea 

Westerschelde 

France

Netherlands

Belgium

North Sea

U.K.

WD

Belgium

OSGRHF
KN

The Netherlands

North Sea

Antwerp

Oosterschelde 
North  
Sea 

Westerschelde 

France

Netherlands

Belgium

North Sea

U.K.

WD

Belgium

OSGRHF
KN

The Netherlands

North Sea

 19



 
 

0

5

10

15

20

25

O N D J F M A M J J A S O N D J F M A M J

Date

Te
m

pe
ra

tu
re

 (º
C

)
Logger failure

 
 
 
 
Figure 2. Water temperature recorded hourly using Onset TidBit dataloggers at all four sites. The 
weekly running average is shown from Oct. 2001 to May 2003. The loggers failed at GR and HF for 
about a month as is indicated on the graph.  
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Figure 3. Salinity at the four Schelde sites measured over one year (Nov. 2001 - Nov. 2002).  
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Figure 4. δ13CDIC versus salinity from samples taken over one year at the four sites along the Scheldt 

estuary (r2 = 0.94, p < 0.0001). 

 22



 
 

 

-28

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21

 δ13CPOC and δ13CDIC-20 (‰)

Ti
ss

ue
 δ

13
C

 (‰
)

DIC-20
POC

 
650 Figure 5. Linear regressions between mantle tissue δ13C and both δ13CPOC (open symbols) and δ13CDIC– 20 

(solid symbols) (in ‰) from mussels collected at all four sites in March 2002. n = 27 for 
each.  

 23



 
 

-26

-25

-24

-23

-22

-21

-20

-19

-18

δ13
C

 (‰
)

0

5

10

15

20

25

30

35

40

C
hl

 a
 ( μ

g/
l)

DIC -20
POC
tissue
Chl a

-25

-24

-23

-22

-21

-20

-19

-18

N D J F M A M J J A S O N D

δ13
C

 (‰
)

0

5

10

15

20

25

C
hl

 a
 ( μ

g/
l)

 
 
 
 
Figure 6. Temporal variations in mantle tissue δ13C, δ13CPOC, δ13CDIC–20 (in ‰), and chlorophyll a for 
Hooftplaat (A) and Knokke (B) for the period November 2001 to November 2002. Error bars represent 
standard deviations. 
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Figure 7. High resolution δ13C shell data from the six shells plotted versus distance from the umbo 
(growth direction is from left to right). See figure 1 for site codes.
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Figure 8. Mean δ13Cs and δ13CDIC (in ‰) averaged over the full year for the four sites (noted above data 
points, see Fig. 1 for description of site codes). High-resolution profiles can be found in Gillikin et al. 
(2006). Also plotted are the expected shell values based on the fractionation factor between δ13CDIC and 
calcite (+1.0 ‰; Romanek et al., 1992). Error bars represent standard deviations.  
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