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Abstract

This paper presents an efficient random generator, based on a Boltzmann sampler, for
accessible, deterministic and possibly not complete automata. An intermediate result is
that Θ(1) of accessible and deterministic automata are complete.

1 Introduction

The enumeration of finite automata according to various criteria (non-isomorphic [11], up
to permutation of the labels of the edges [11], with a strongly connected underlying graph
[15, 13, 19, 14], accessible [15, 13, 19], acyclic [16],...) is a problem that was studied since 1959
[21].

In [1] the first and third authors exhibit a bijection between the set An of deterministic,
complete and accessible automata with n states on a k-letters alphabet and some diagrams,
which can themselves be represented as partitions of the set {1, · · · , kn} into n non-empty
subsets. These combinatorial transformations show that the order of magnitude of the cardi-
nality |An| of the set An is related to the Stirling numbers of the second kind that can be be
used to reformulate an asymptotic estimate of |An| due to Korshunov [13]. They also provide
a uniform random generator for the automata of An, based on Boltzmann samplers [6, 7], that
is more efficient than former ones [17, 4] using a recursive algorithm [18, 9].

This paper is an extension of the study [1] of deterministic, complete and accessible
automata to possibly incomplete automata. The combinatorial transformations are slighty
changed and a careful analysis of the complexity is done to ensure that the generator obtained
is still efficient; as in the case of complete automata, its average complexity is O(n3/2), where
n is the number of states of automata. An interesting intermediate result is that for any fi-
nite alphabet, the proportion of complete automata with n states amongst deterministic and
accessible ones is greater than a positive constant.

The paper is organized as follows. Bijections used to transform automata into set partitions
are presented in Section 3. Section 4 is devoted to enumeration results used in the analysis
of the complexity of the generator. The random generator, together with the analysis of its
efficiency, is given in Section 5.



2 Automata

Our goal is to study from a combinatorial point of view the set of accessible and deterministic
automata with n states. Therefore we first recall some definitions about finite automata,
referring the readers to [12, 20] for basic elements of this theory.

2.1 Deterministic and accessible automata

A deterministic finite automaton A over a finite alphabet A is a quintuple A = (A,Q, ·, q0, F )
where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊂ Q is the set of final states and
the transition function · is an element of Q×A 7→ Q∪∅. If p ·a = ∅ for a given state p ∈ Q and
letter a ∈ A, then p · a is an undefined transition. A deterministic finite automaton without
undefined transition is complete. If A = (A,Q, ·, q0, F ) is a deterministic finite automaton, its
transition function is extended by morphism to Q×A∗ making use of the convention ∅ · a = ∅
for every a ∈ A.

A deterministic finite automaton A is accessible when for each state q of A, there exists a
word u ∈ A∗ such that q0 · u = q.

Two deterministic finite automata A = (A,Q, ·, q0, F ) and A′ = (A,Q′, ·, q′0, F ′) over the
same alphabet are isomorphic when there exists a bijection τ from Q∪ ∅ to Q′ ∪ ∅ such that,
τ(q0) = q′0, τ(∅) = ∅, τ(F ) = F ′ and for each (q, α) ∈ Q×A, τ(q ·α) = τ(q) ·α. Two isomorphic
automata only differ by the labels of their states.

2.2 Transition structures

Now we introduce a representation of accessible and deterministic automata that uses the
minimal labels of simple paths and allows us to enumerate and generate them easily. More
precisely a simple path in a deterministic automaton A is a path labelled by a word u whose
all prefixes v and v′ of u such that v 6= v′ satisfy q0 ·v 6= q0 ·v′. In other words, in the graphical
representation of A the path labelled by u does not go twice through the same state. Let A
be an accessible and deterministic automaton on the alphabet A and let w be the map from
Q to A∗ defined for every state q ∈ Q by

w(q) = min
lex

{u ∈ A∗ | q0 · u = q and u is a simple path in A},

where the mininum is taken according to the lexicographic order. Note that w(q) always
exists since A is accessible. An automaton A = (A,Q, ·, q0, F ) is called a base automaton
when Q ⊂ A∗ (the states are labelled by words) and for all u ∈ Q, w(u) = u. Note that by
construction, if u ∈ Q and v is a prefix of u, then v ∈ Q. As two distinct base automata cannot
be isomorphic, we can directly work on isomorphism classes using base automata.

The transition structure of an automaton A = (A,Q, ·, q0, F ) is D = (A,Q, ·, q0): in D
there is no more distinguished final states. We can define similarly accessible and deterministic
transition structures.

Denote by Dn the set of accessible and deterministic transition structures of base automata
with n states, and by Cn the set of complete transition structures belonging to Dn.

Given an element D of Dn, there are exactly 2n automata whose transition structure is
D, since the accessibility prevents distinct choices of final sets to form the same automaton.
Therefore the number of deterministic and accessible automata, up to isomorphism, is 2n|Dn|.



Note that forbidding or not the set of final states to be empty does not basically change
the results, since the probability of this event is 1/2n.

Our purpose is to enumerate the elements in Dn and to generate them randomly for the
uniform distribution on Dn.

3 Bijections

In this section we show that accessible and deterministic transition structures are in bijection
with pairs of integer sequences represented by boxed diagrams.

3.1 Boxed diagrams and k-Dyck boxed diagrams

A diagram of width m and height n is a sequence (x1, . . . , xm) of weakly increasing nonnegative
integers such that xm = n, classically represented as a diagram of boxes, see Figure 1. A k-Dyck
diagram of size n is a diagram of width (k − 1)n + 1 and height n such that xi ≥ ⌈i/(k − 1)⌉
for each i ≤ (k − 1)n. A boxed diagram is a pair of sequences ((x1, . . . , xm), (y1, . . . , ym))
where (x1, . . . , xm) is a diagram and for each i ∈ [[ 1..m ]], the yith box of the column i of the
diagram is marked, see Figure 1. As a consequence, a diagram gives rise to

∏m
i=1 xi boxed

diagrams. A k-Dyck boxed diagram of size n is a boxed diagram such that its first coordinate
(x1, . . . , x(k−1)n+1) is a k-Dyck diagram of size n.

(1,1,2,2,4)
(1,3,3,4,4)(1,1,2,4,4) (1,1,2,4,4)

(1,1,2,1,3)
(1,3,3,4,4)

Figure 1: A diagram of width 5 and height 4, a boxed diagram, a 2-Dyck diagram and a 2-Dyck
boxed diagram

3.2 From transition structures to k-Dyck boxed diagrams

First recall the bijection established in [17] for a two-letters alphabet and generalized to any
finite alphabet in [4]:

Theorem 1 There exists a bijection between the set Cn of accessible, complete and determin-
istic transition structures with n states on a k-letters alphabet A and the set of k-Dyck boxed
diagrams of size n. This transformation and its inverse can be computed in linear time.

For n ≥ 1, let D = (A,Q, ·, ε) ∈ Cn be a deterministic, accessible and complete transition
structure of a base automaton. Since D is complete, it contains kn transitions of the form (u, α),
with u ∈ Q and α ∈ A. We partition these transitions depending on whether they belong to
the spanning tree induced by the depth-first traversal according to the lexicographical order
of the structure or not. Using the properties of the labelling of the states of D, the partition
can be described as follows, for any u ∈ Q:

- If uα ∈ Q then u ·α = uα and (u, α) is a tree transition. It belongs to the spanning tree.



- If uα /∈ Q then u ·α <lex uα, and (u, α) is called a missing transition. It does not belong
to the spanning tree.

There are n − 1 tree transitions and (k − 1)n + 1 missing transitions.
Let ν be the unique increasing bijection from the set Q (lexicographically ordered) to

{1, · · · , n}, that is, ν(q) is the number of elements of Q smaller or equal to q for the lexico-
graphical order. To any missing transition t = (q, α) we associate the pair of integers (xt, yt)
defined by

{

xt = |{u ∈ Q | u <lex qα}|
yt = ν(q · α)

We then order the transitions of D accordin to the relation (u, α) < (v, β) if and only if
uα <lex vβ. The bijection Ψ between Cn and the set of k-Dyck boxed diagrams of size n can
be defined as follows: let (t1, · · · , t(k−1)n+1) be the ordered sequence of missing transitions of
D,

Ψ(D) = ((xt1 , · · · , xt(k−1)n+1
), (yt1 , · · · , yt(k−1)n+1

)).

The map Ψ is a bijection (see [17, 4] for details). The sequence (xt1 , · · · , xt(k−1)n+1
) represents

the depth-first spanning tree of D and defines the labelling of the states of D; the sequence
(yt1 , · · · , yt(k−1)n+1

) carries all the informations about missing transitions:

u · α = ν−1(y(u,α)).

3.3 From transition structures to complete transitions structures

In theory of automata an incomplete automaton is classically changed into a complete one
recognizing the same language by the addition of a sink state. This transformation is not
suitable for our combinatorial construction. Indeed if two incomplete automata have the same
depth-first spanning tree, they may not have the same one after the addition of a sink state.

Therefore we introduce another transformation denoted by φ and defined as follows: to
any D ∈ Dn, with D = (A,Q, ·, ε), we associate the complete transition structure φ(D) =
(A,Q′, ∗, ε) in Cn+1 with Q′ = {ε}∪akQ where ak = maxlex{α ∈ A} and whose transitions are
defined by:























ε ∗ α = ε if α 6= ak

ε ∗ ak = ak

q′ ∗ α = ak(q · α) if ∃q ∈ A∗, q′ = akq and q · α 6= ∅
q′ ∗ α = ε if ∃q ∈ A∗, q′ = akq and q · α = ∅

This construction consists of
- adding a new state, that becomes the initial state ε of φ(D) and a transition ε ∗ ak = q0,

labelled by the greatest letter and where q0 is the initial state D,

- relabelling the transition structure to obtain the transition structure of a base automaton,

- changing any undefined transition q · α = ∅ into q ∗ α = ε.
Note that φ does not preserve the language recognized.

Lemma 1 Denote by En the subset of transition structures of Cn such that ε · α = ε for
α ∈ A \ {maxlex{α ∈ A}}. The function φ is a bijection from Dn to En+1.

By definition of φ, En+1 = φ(Dn). Moreover the inverse of φ is obtained by removing the
initial state, making the state ak initial, and relabelling the states.



3.4 The k-Dyck boxed diagrams associated with the elements of En

For n ≥ 2, the image Ψ(En) is easy to characterize.

Lemma 2 Denote by Fn the set of k-Dyck boxed diagrams

((x1, · · · , x(k−1)n+1), (y1, · · · , y(k−1)n+1))

such that for all i ∈ {1, · · · , k− 1}, xi = 1 and yi = 1. For any n ≥ 2, Ψ is a bijection between
En and Fn.

Proof : Let A = {a1 < . . . < ak}. If D = (A,Q, ·, ε) ∈ En then for i ∈ {1, · · · , k − 1},
ε · ai = ε. Moreover, ε is the only word of Q that does not start with ak. Thus, the first
k − 1 missing transitions of D are (ε, a1), · · · , (ε, ak−1). Therefore for any i ∈ {1, · · · , k − 1},
{u ∈ Q | u <lex ai} = {ε} and x(ε,ai) = 1. Moreover since 1 ≤ y(ε,ai) ≤ x(ε,ai), y(ε,ai) = 1.

If D = (A,Q, ·, ε) /∈ En, let i be the smallest integer such that ε · ai 6= ε. Then the word
ai is the smallest word in Q \ {ε}. If a missing transition (u, α) is such that uα <lex ai, then
u = ε and α < ai: there are exactly i − 1 such missing transitions. Hence, the i-th missing
transition ti, in the ordered sequence, is such that xti ≥ 2. �

4 Enumeration

This section is devoted to enumeration problems. The number of accessible automata is re-
lated to the Stirling numbers of the second kind whose definition and asymptotic estimate are
recalled.

4.1 The Stirling numbers of the second kind

The Stirling number of the second kind {n
m}, where n and m are two non-negative integers, is

the number of partitions of a set with n elements into m non-empty subsets.

Lemma 3 ([1]) The number of boxed diagrams of width m and height n is equal to {m+n
n }.

Recall that the LambertW-function [3] is the inverse of the function x → xex. Its principal
branch W0 is real-valuted for x in [−e−1,+∞[ and is the unique branch which is analytic at
zero. Its series expansion is

W0(z) =
∞
∑

n=1

(−n)n−1

n!
zn = z − z2 + O

(

z3
)

(1)

The Stirling numbers of the second kind are asymptotically estimated with the saddle point
method.

Theorem 2 (Good [10]) For n and m both tending towards infinity, and such that n =
Θ(m), the following result holds:

{n
m} ∼ n!(eρ − 1)m

m!ρn
√

2πn(1 − n
me−ρ)

where ρ = W0(− n
me−

n
m ) + n

m is the unique positive root of the equation mρ = n(1 − e−ρ).



4.2 Enumeration of accessible deterministic automata

Recall that the number of automata in a specific class is equal to the number of transition
structures of the same class multiplied by 2n.

Complete automata

Korshunov [14] gave an asymptotic equivalent of the cardinality |Cn| of complete, determinis-
tic and accessible transition structures, that can be reformulated [1] in terms of the Stirling
numbers of the second kind:

Theorem 3 (Korshunov [13, 14]) The number |Cn| of accessible complete and deterministic
transition structures with n states on a k-letters alphabet satisfies

|Cn| ∼ Ek n
{

kn
n

}

where Ek =
1 +

∑∞
r=1

1
r

(

kr
r−1

)(

ek−1βk

)−r

1 +
∑∞

r=1

(kr
r

)(

ek−1βk

)−r , βk =
(kζk)

k

ek−1(eζk − 1)

and ζk is the positive root of ρ = k(1 − e−ρ).

Possibly incomplete automata

In the proof of the main theorem of this section, we use the following lemma:

Lemma 4 For any fixed k ≥ 2, as n tends toward infinity, one has

{

kn+1
n+1

}

∼ eζk
{

kn
n

}

with ζk = W0(−ke−k) + k.

Proof : The following proof is based on the comparison of the estimations of
{

kn
n

}

and
{

kn+1
n+1

}

obtained with Theorem 2.
In the case of

{

kn
n

}

, ζk = W0(−ke−k) + k is the positive root of ρ = k(1− e−ρ). Theorem 2
and Stirling’s formula give (see [1] for details):

{

kn
n

}

∼ (kn)!

n!

(eζk − 1)n

ζkn
k

√

2πkn(1 − ke−ζk)
∼ αkβ

n
k n(k−1)n−1/2

with αk = (2π(ζk − (k − 1)))−
1
2 and βk = (kζk)k

ek−1(eζk−1)
.

Denote by f the function f(x) = W0(−xe−x) + x. To use Theorem 2 for
{

kn+1
n+1

}

we have

to compute ρn,k = f
(

kn+1
n+1

)

= f(k − k−1
n+1). Because of the analycity of f , we can use Taylor

expansion:

ρn,k = f

(

k − k − 1

n + 1

)

= f(k) − k − 1

n + 1
f ′(k) + O

(

1

n2

)

= ζk − (k − 1)f ′(k)
1

n
+ O

(

1

n2

)

.

From Theorem 2 we get:

{

kn+1
n+1

}

∼ (kn + 1)!(eρn,k − 1)n+1

(n + 1)!ρkn+1
n,k

√

2π(kn + 1)(1 − kn+1
n+1 e−ρn,k)

.



Usual estimations and Stirling’s formula lead to:

(kn + 1)!

(n + 1)!
∼ e−(k−1)nk3/2kknn(k−1)n

√

2π(kn + 1)(1 − kn + 1

n + 1
e−ρn,k) ∼

√

2πkn(1 − ke−ζk)

(eρn,k − 1)n+1 ∼ (eζk − 1)n+1e
−

(k−1)f ′(k)eζk

eζk−1

ρkn+1
n,k ∼ ζkn+1

k e
−

k(k−1)f ′(k)
ζk

Moreover as ζk satisfies ζk = k(1 − e−ζk), eζk/(eζk − 1) = k/ζk. Finally we obtain

{

kn+1
n+1

}

∼ α′
kβ

n
k n(k−1)n−1/2

with α′
k = eζk√

2π(ζk−(k−1))
. Thus

{

kn+1
n+1

}

∼ eζk
{

kn
n

}

, concluding the proof. �

Theorem 4 The number |Dn| of accessible and deterministic transition structures of base
automata with n states is Θ(n

{

kn
n

}

).

Proof : First, as Cn ⊂ Dn, |Cn| ≤ |Dn|. And Theorem 3 leads to the lower bound.
In Section 3 we exhibited a bijection in two steps between the set Dn and the set Fn+1

of k-Dyck boxed diagrams ((x1, · · · , x(k−1)(n+1)+1), (y1, · · · , y(k−1)(n+1)+1)) such that for all
i ∈ {1, · · · , k − 1}, xi = 1 and yi = 1.

Now the number of elements in Fn+1 is smaller than the number of boxed diagrams of
width (k − 1)(n + 1) + 1 = (k − 1)n + k and height n + 1, whose k − 1 first columns have
height 1, and the last column has height n + 1. Note that it is an overestimation of |Fn+1|
since diagrams that do not satisfy the diagonal condition are taken into account. Therefore the
elements of Fn+1 are approximated by boxed diagrams made of k − 1 columns of height 1, a
boxed diagram of width (k−1)n and height n+1 and a column of height n+1. There are n+1
possibilities for the last column. Thus, by Lemma 3, we obtain that |Dn| ≤ (n + 1)

{

kn+1
n+1

}

.
We conclude using Lemma 4. �

Corollary 1 As n tends towards infinity, |Cn| = Θ(|Dn|).

5 Random generation

In this section, in order to uniformly generate deterministic and accessible automata, we adapt
an algorithm described in [1] and used to generate complete automata.

The first step of the algorithm is based on a Boltzmann sampler that generates specific set
partitions. The second one consists of the transformation of these set partitions into accessible
and deterministic automata.



5.1 A Boltzmann sampler to generate random partitions

The Boltzmann sampler used here is a direct application of the work of Duchon, Flajolet,
Louchard and Schaeffer [6]. Boltmann samplers do not generate fixed size objects. They depend
on a real parameter x > 0 and, for any given integer n, the value of x can be chosen so that
the average size of the generated elements is n. The size is not fixed, but Bolztmann samplers
guarantee that two elements of the same size have the same probability to be generated.

In order to uniformly generate set partitions of a set with kn + 1 elements into n + 1 non-
empty subsets, we first consider the set of partitions of a set into n + 1 non-empty sets. Its

exponential generating function is Pn+1(z) = (ez−1)n+1

(n+1)! . Using Boltzmann sampler construc-
tion, each of the n + 1 sets are generated assuming that its size follows a Poisson law Pois≥1

of parameter x (a truncated Poisson variable K, where K is conditionned to be ≥ 1). The
average size of the partition is then:

Ex(size of the partition) = x
P ′

n+1(x)

Pn+1(x)
= (n + 1)x

ex

ex − 1
.

Since we want a partition of a set having kn + 1 elements, the value of the parameter xn is
chosen so that

(n + 1)xn
exn

exn − 1
= kn + 1,

that is, xn = ρn,k (see the proof of Lemma 4). When the Boltzmann parameter xn is equal to
ρn,k, the probability for a random partition to be of size kn + 1 is [6]:

Pρn,k
(N = nk + 1) =

ρkn+1
n,k [zkn+1]Pn+1(z)

Pn+1(ρn,k)
=

{

kn+1
n+1

}

ρkn+1
n,k

(kn + 1)!

(n + 1)!

(eρn,k − 1)n+1

This quantity can be asymptotically estimated using the same method as in the proof of
Lemma 4:

Pρn,k
(N = nk + 1) ∼ αk√

kn
(2)

5.2 Random generator of deterministic and accessible automata

The two following algorithms, that are described into details in [1], basically change a set
partition into a transition structure:

• PartitionToBoxed(P) transforms a partition P of {1, · · · , n} in m non-empty subsets
into a boxed diagram of width n−m and height m. To do this, first order the subsets of
P according to their smallest element: the smallest element is in E1, the next ones are
in E2, · · · , Em. For any i ∈ {1, · · · , n} let E(i) be the subset containing i. From left to
right, for i from 1 to n, build a column of height max1≤j≤i{E(j)} with a mark at height
E(i). Remove for every i ∈ {1, · · · , n} the left most occurence of a column of height i
marked at height i.

• kDyckBoxedToCn(B) builds from a k-Dyck boxed diagram B the associated accessible
and deterministic transition structure as briefly described in Section 3. Let

B = ((x1, · · · , x(k−1)n+1)(y1, · · · , y(k−1)n+1))

be the k-Dyck boxed diagram. Then (x1, · · · , x(k−1)n+1) determines uniquely the depth-
first spanning tree of the transition structure, and (y1, · · · , y(k−1)n+1) represents the
states where the missing transitions end.



The following algorithm generates uniformly an accessible and deterministic automaton
with n states over a k-letters alphabet

0. Compute ρn,k using Equation (1) p.5. For fixed n and k this step is performed once.

1. Following Section 5.1, generate n + 1 integers, λ1, · · · , λn+1, with a Poisson law Pois≥1

of parameter ρn,k.

2. If λ1 + · · · + λn+1 6= kn + 1, return to step 1.

3. Generate uniformly a permutation σ of {1, · · · , kn+1}. Label the partition P = E1∪E2∪
· · ·En+1 with σ. In other words, since |Ei| = λi, Ei = {σ(l) | l = λ1 + · · ·+ λi−1 + j, j ∈
{1, · · · , λi}}.

4. Use PartitionToBoxed(P) to produce a boxed diagram B of width (k − 1)n and height
n + 1.

5. Add k−1 boxed columns of height 1 at the left of B and a column of height n+1, marked
at random, at its right. The result is is a new boxed diagram B′.

6. If B′ is not a k-Dyck boxed diagram of size n + 1, return to step 1.

7. Use kDyckBoxedToCn(B′) to change B′ into an element A′ ∈ En+1.

8. Compute A = φ−1(A′), where φ−1 is described in Section 3.3.

9. For every state of A, choose uniformly whether it is a final state or not.

Theorem 5 The average complexity of this random generator is O(n3/2).

Proof : All steps can be performed in linear time, if we do not take into account the rejects.
In a rejection algorithm, if a test is positive with probability p, the average number of rejects
is 1/p. Therefore, as a consequence of Theorem 4 and Lemma 4, the average number of rejects
at step 6 is bounded by a constant. Moreover Equation (2) p. 8 shows that step 2 produces in
average O(

√
n) rejects. �

5.3 Experimental results

The random generator has been implemented in REGAL [2], a C++ library to generate random
automata. We made some tests using this library mostly to compare deterministic and ac-
cessible automata with complete ones. For each test 10, 000 automata with 5, 000 states have
been generated:

• For k = 2, 80.1% of automata are not complete. For k = 3, this proportion raises to
94.1%. Note that Lemma 4 show that proportions are similar before the rejection step.

• For k = 2, 85.4% of automata are minimal, it is roughtly the same proportion as for
complete automata.

• For k = 2, 79.0% are strongly connected, it is about the same as for complete automata.

• For k = 2, in average an automaton has about 1.6 undefined transitions.

Acknowledgments The authors were supported by the ANR (project BLAN07-2 195422).
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