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Abstract. We prove that, for the uniform distribution over all sets X

of m (that is a fixed integer) non-empty words whose sum of lengths is
n, DX , one of the usual deterministic automata recognizing X∗, has on
average O(n) states and that the average state complexity of X∗ is Θ(n).
We also show that the average time complexity of the computation of
the automaton DX is O(n log n), when the alphabet is of size at least
three.

1 Introduction

This paper addresses the following issue: given a finite set of words X on an
alphabet A and a word u ∈ A∗, how to determine efficiently whether u ∈ X∗ or
not?

With a non-deterministic automaton, one can determine whether a word u
is in X∗ or not in time proportional to the product of the lengths of u and X ,
where the length of X is the sum of the lengths of its elements.

With a deterministic automaton recognizing X∗, one can check whether a
word u is in X∗ or not in time proportional to the size of u, once the automaton is
computed. But in [5], Ellul, Krawetz, Shallit and Wand found an example where
the state complexity of X∗, i.e. the number of states of the minimal automaton of
X∗, is exponential. More precisely, for every integer h ≥ 3, they gave a language
Xh of length Θ(h2), containing Θ(h) words, whose state complexity is Θ(h2h).
Using another measure on finite sets of words, Campeanu, Culik, Salomaa and
Yu proved in [2, 3] that if the set X is a finite language of state complexity n ≥ 4,
the state complexity of X∗ is 2n−3+2n−4 in the worst case, for an alphabet with
at least three letters. Note that the state complexity of X∗ is 2n−1 +2n−2 in the
worst case when X is not necessarily finite [14, 15].

An efficient alternative using algorithms related to Aho-Corasick automaton
was proposed in [4] by Clément, Duval, Guaiana, Perrin and Rindone. In their
paper, an algorithm to compute all the decompositions of a word as a concate-
nation of elements in a finite set of non-empty words is also given.

This paper is a contribution to this general problem, called the noncommuta-
tive Frobenius problem by Shallit [10], from the name of the classical problem [8,



9] of which it is a generalization. Our study is made from an average point of
view. We analyse the average state complexity of X∗, for the uniform distribu-
tion of sets of m non-empty words, whose sum of lengths is n, and as n tends
towards infinity. We use the general framework of analytic combinatorics [6] ap-
plied to sets of words and classical automata constructions. Our main result is
that, on average, the state complexity of the star of a set X of m non-empty
words is linear with respect to the length of X . For an alphabet with at least
three letters, we also provide an algorithm to build a deterministic automaton
recognizing X∗ in average time O(n log n), where n is the length of X .

The paper is organized as follows. In Section 2 we recall some definitions,
usual automata constructions and combinatorial properties about words. In Sec-
tion 3 we sketch the proof of the linearity of the average number of states of a
deterministic automaton DX recognizing X∗. As a consequence of our construc-
tion, in Section 4, we prove that the average time complexity for the construction
of the automaton DX is in O(n log n) when the size of the alphabet is at least
three. In Section 5, we establish that the average state complexity of the star of
a finite set with m non-empty words whose sum of lengths is n is proportional
to n. In the case of sets of two words, we prove a stronger result: the average size
of the minimal automaton of X∗ is equivalent to n. Finally, in Section 6 we give
an algorithm to randomly and equiprobably generate sets X of m non-empty
words whose sum of lengths is n, and use it to obtain some experimental results
about the average number of states of DX .

2 Preliminary

2.1 Definitions and constructions

A finite automaton A over a finite alphabet A is a quintuple A = (A, Q, T, I, F )
where Q is a finite set of states, T ⊂ Q × A × Q is the set of transitions, I ⊂ Q
is the set of initial states and F ⊂ Q is the set of final states. The automaton
A is deterministic if it has only one initial state and for any (p, a) ∈ Q × A
there exists at most one q ∈ Q such that (p, a, q) ∈ T . It is complete if for
each (p, a) ∈ Q × A, there exists at least one q ∈ Q such that (p, a, q) ∈ T . A
deterministic finite automaton A is accessible when for each state q of A, there
exists a path from the initial state to q. The size #A of an automaton A is its
number of states. The minimal automaton of a regular language is the unique
smallest accessible and deterministic automaton recognizing this language. The
state complexity of a regular language is the size of its minimal automaton. We
refer the readers to [7, 13, 1] for elements of theory of finite automata.

Any finite automaton A = (A, Q, T, I, F ) can be transformed into a deter-
ministic automaton B = (A,P(Q), T ′, {I}, F ′) recognizing the same language
and in which F ′ = {P ∈ P(Q) | P ∩ F 6= ∅} and T ′ = {(P, a, R) with P ∈
P(Q), a ∈ A and R = {q | ∃p ∈ P, (p, a, q) ∈ T }}. To be more precise only the
accessible part of the automaton B is really built in this subset construction.

Let X ⊂ A∗ be a finite set of words. Denote by Pr(X) the set of all prefixes of
elements of X . The automaton (A, Pr(X), TX , {ε}, X), where TX = {(u, a, ua) |



u ∈ Pr(X), a ∈ A, ua ∈ Pr(X)}, recognizes the set X and the automaton AX =
(A, Pr(X), TX ∪ T, {ε}, X ∪ {ε}), where T = {(u, a, a) | u ∈ X, a ∈ A ∩ Pr(X)}
recognizes X∗ (see Fig.1). We denote by AS the automaton defined for the set
of elements of any sequence S by the above construction. In such an automaton
only the states labelled by a letter have more than one incoming transition.
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Fig. 1. The automata ({a, b}, Pr(X), TX , {ε}, X) and AX , for X = {a, aba, bab}

For any finite set of words X ⊂ A∗ (resp. any sequence S), we denote by DX

(resp. DS) the accessible deterministic automaton obtained from the automaton
AX (resp. AS) making use of the subset construction and by MX the minimal
automaton of X∗.

Lemma 1. For any finite set of words X ⊂ A∗, the states of the deterministic
automaton DX recognizing X∗ are non-empty subsets {u1, · · · , uℓ} of Pr(X) such
that for all i, j ∈ {1, · · · , ℓ}, either ui is a suffix of uj or uj is a suffix of ui.

2.2 Enumeration

Let X ⊂ A∗ be a finite set of words. We denote by |X | the cardinality of X
and by ‖X‖ the length of X defined as the sum of the lengths of its elements:
‖X‖ =

∑

u∈X |u|. Let Setn,m be the set of sets of m non-empty words whose
sum of lengths is n:

Setn,m = {X = {u1, · · · , um} | ‖X‖ = n, ∀i ∈ {1, · · · , m} ui ∈ A+}

and Sn,m be the set of sequences of m non-empty words whose sum of lengths
is n:

Sn,m = {S = (u1, · · · , um) | ‖S‖ = n, ∀i ∈ {1, · · · , m} ui ∈ A+}

We denote by S 6=
n,m ⊂ Sn,m the set of sequences of pairwise distinct words. Recall

that f(n) = O(g(n)) if there exists a positive real number c such that for all n
big enough |f(n)| ≤ c|g(n)|.

Proposition 1. For any fixed integer m ≥ 2,

|Sn,m| =

(

n − 1

m − 1

)

|A|n and |Setn,m| =
1

m!
|Sn,m|

(

1 + O

(

1

n2

))

.



Proof. (sketch) Any sequence S of Sn,m can be uniquely defined by a word v of
length n, which is the concatenation of the elements of S, and a composition of
n into m parts, that indicates how to cut the word of length n into m parts.
Therefore |Sn,m| =

(

n−1
m−1

)

|A|n. Using methods from analytic combinatorics [6],
one can prove that

|S 6=
n,m| = |Sn,m|

(

1 + O

(

1

n2

))

.

Furthermore since an element of Setn,m is mapped to exactly m! sequences of
S 6=

n,m , we obtain |S 6=
n,m| = m!|Setn,m|, concluding the proof. ⊓⊔

We say that the word v is a proper prefix (resp. suffix ) of a word u if v is a
prefix (resp. suffix) of u such that v 6= ε and v 6= u. The word v is called a border
of u if v is both proper prefix and proper suffix of u. We denote by Pref(u) (resp.
Suff(u)) the set of proper prefixes (resp. suffixes) of u and by Bord(u) the set of
borders of u. A word is primitive when it is not the power of another one.

Let u, v and w be three non-empty words such that v is a proper suffix of u
and w is a proper suffix of v. We define the three following sets:

Qu = {{u} ∪ P | P ⊂ Suff(u)}

Qu,v = {{u} ∪ P | P ∈ Qv}

Qu,v,w = {{u} ∪ P | P ∈ Qv,w}.

Note that the cardinalities of Qu, Qu,v and Qu,v,w are respectively equal to
2|u|−1, 2|v|−1 and 2|w|−1.

In the proof of the main result (Theorem 1) of this paper, we count the
number of states of automata according to their labels. This enumeration is
based on the following combinatorial properties of words whose proofs derived
from classical results of combinatorics on words (see [11, 12]) are omitted.

Lemma 2. Let u be a non-empty word of length ℓ. The number of sequences S ∈
Sn,m such that u is a prefix of a word of S is smaller or equal to m

(

n−ℓ
m−1

)

|A|n−ℓ.

Lemma 3. Let u, v ∈ A+ such that v is not a prefix of u, |u| = ℓ and |v| = i.
The number of sequences S ∈ Sn,m such that both u and v are prefixes of words

of S is smaller or equal to m(m − 1)|A|n−ℓ−i
(

n−ℓ−i+1
m−1

)

.

Lemma 4 ([12] p. 270). For 1 ≤ i < ℓ, there are at most |A|ℓ−i pairs of
non-empty words (u, v) such that |u| = ℓ, |v| = i and v is a border of u.

Lemma 5. For 1 ≤ j < i < ℓ such that either i ≤ 2
3ℓ or j ≤ i

2 , there are at

most |A|ℓ−
i
2
−j triples of non-empty words (u, v, w) with |u| = ℓ, |v| = i, |w| = j

such that v is a border of u and w is a border of v.

Proposition 2. For 1 ≤ j < i < ℓ such that i > 2
3ℓ and j > i

2 and for any
triple of non-empty words (u, v, w) with |u| = ℓ, |v| = i, |w| = j such that v
is a border of u and w is a border of v, there exist a primitive word x, with
1 ≤ |x| ≤ ℓ − i, a prefix x0 of x and nonnegative integers p > q > s > 0 such
that u = xpx0, v = xqx0 and w = xsx0.



3 Main result

In this section we give the proof of the following theorem.

Theorem 1. For the uniform distribution over the sets X of m (a fixed integer)
non-empty words whose sum of lengths is n, the average number of states of the
accessible and deterministic automata DX recognizing X∗ is linear in the length
n of X.

First, note that to prove this result on sets it is sufficient to prove it on
sequences:

1

|Setn,m|

∑

X∈Setn,m

#DX =
1

m! |Setn,m|

∑

S∈S 6=
n,m

#DS ≤
1

m! |Setn,m|

∑

S∈Sn,m

#DS

and we conclude using Proposition 1.
Let Y ⊂ A∗ and S ∈ Sn,m, we denote by Det(S, Y ) the property: Y is the

label of a state of DS . Let P be a property, the operator [[ ]] is defined by [[P ]] = 1
if P is true and 0 otherwise.

To find an upper bound for the average number of states of the deterministic
automaton DS when the sequence S ranges the set Sn,m, we count the states of
all automata according to their labels. More precisely we want to estimate the
sum

∑

S∈Sn,m

#DS =
∑

S∈Sn,m

∑

Y ⊂A∗

[[Det(S, Y )]],

Taking into account the cardinality of the labels of the states:

∑

S∈Sn,m

#DS =
∑

S∈Sn,m

∑

|Y |=1

[[Det(S, Y )]] +
∑

S∈Sn,m

∑

|Y |≥2

[[Det(S, Y )]].

The first sum deals with states labelled by a single word. Since, for each
S ∈ Sn,m, the words that appear in the labels of states of DS are prefixes of
words of S, we have

∑

S∈Sn,m

∑

|Y |=1

[[Det(S, Y )]] =
∑

S∈Sn,m

∑

u prefix of
a word of S

[[Det(S, {u})]] ≤ (n + 1)|Sn,m|.

It remains to study the sum

∆ =
∑

S∈Sn,m

∑

|Y |≥2

[[Det(S, Y )]].

Let Y ⊂ A∗ be a non-empty set which is not a singleton. By Lemma 1, if Y
is the label of a state of an automaton DS , then Y belongs to a set Qu,v, for
some non-empty word u and some proper suffix v of u. Therefore

∆ =
∑

S∈Sn,m

∑

u∈A+

∑

v∈Suff(u)

∑

Y ∈Qu,v

[[Det(S, Y )]].



Changing the order of the sums we obtain

∆ =
∑

u∈A+

∑

v∈Suff(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y )]].

We then partition the sum ∆ into ∆1 + ∆2 depending on whether the word v is
prefix of u or not:

∆1 =
∑

u∈A+

∑

v∈Bord(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y )]]

∆2 =
∑

u∈A+

∑

v∈Suff(u)\Pref(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y )]]

To prove Theorem 1, we establish in the following that ∆1 and ∆2 are both
O(n |Sn,m|).

3.1 Proof for an alphabet of size at least 3

Let k ≥ 3 be the cardinality of the alphabet A. Using Lemma 3 we have that

∆2 ≤
∑

u∈A+

∑

v∈Suff(u)\Pref(u)

∑

Y ∈Qu,v

m(m − 1)kn−|u|−|v|

(

n − |u| − |v| + 1

m − 1

)

.

As |Qu,v| = 2|v|−1, with ℓ = |u| and i = |v|,

∆2 ≤
n−m+1

∑

ℓ=2

kℓ
ℓ−1
∑

i=1

2i−1m(m − 1)kn−ℓ−i

(

n − ℓ − i + 1

m − 1

)

.

Moreover, since 2ik−i ≤ 1 and since
∑n−m+1

ℓ=2

∑ℓ−1
i=1

(

n−ℓ−i+1
m−1

)

=
(

n−1
m

)

,

∆2 ≤
m(m − 1)

2
kn

(

n − 1

m

)

and thus, by Proposition 1, ∆2 = O(n |Sn,m|).
Now by Lemma 2, we have

∆1 ≤
∑

u∈A+

∑

v∈Bord(u)

∑

Y ∈Qu,v

m

(

n − |u|

m − 1

)

kn−|u|.

Since |Qu,v| = 2|v|−1 we get by Lemma 4

∆1 ≤
n−m+1

∑

ℓ=2

ℓ−1
∑

i=1

m

(

n − ℓ

m − 1

)

kn−ℓkℓ−i2i−1.

Since
∑ℓ−1

i=1

(

2
k

)i
≤ 2

k−2 , when k ≥ 3, and
∑n−m+1

ℓ=2

(

n−ℓ
m−1

)

=
(

n−1
m

)

,

∆1 ≤
m

(k − 2)
kn

(

n − 1

m

)

.

We use Proposition 1 to conclude that ∆1 = O(n |Sn,m|).



3.2 Proof for an alphabet of size 2

The study of ∆2 is the same as in the previous section. Now we partition the
sum ∆1 into two sums ∆1,1 and ∆1,2 depending on whether the set Y contains
exactly two elements or not (and therefore belongs to some set Qu,v,w). More
precisely,

∆1,1 =
∑

u∈A+

∑

v∈Bord(u)

∑

S∈Sn,m

[[Det(S, {u, v})]]

and
∆1,2 =

∑

u∈A+

∑

v∈Bord(u)

∑

w∈Suff(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y )]].

Using Lemmas 2 and 4, and since
∑ℓ−1

i=1 2−i ≤ 1 and
∑n−m+1

ℓ=2

(

n−ℓ
m−1

)

=
(

n−1
m

)

,
we obtain

∆1,1 ≤
n−m+1

∑

ℓ=2

ℓ−1
∑

i=1

m

(

n − ℓ

m − 1

)

2n−ℓ2ℓ−i ≤ m 2n

(

n − 1

m

)

.

Consequently, by Proposition 1, ∆1,1 = O(n |Sn,m|).
Next we decompose the sum ∆1,2 into the sums B1,2 + N1,2 depending on

whether w is a prefix (and therefore a border) of v or not.
When w is not a prefix of v, the number of sequences S ∈ Sn,m such that u

and w are prefixes of two distinct words of S is at most m(m−1)2n−ℓ−j
(

n−ℓ−j+1
m−1

)

from Lemma 3.
Since, from Lemma 4, there are less than 2ℓ−i pairs (u, v) such that v is a

border of u and since |Qu,v,w| = 2|w|−1, we get:

N1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

w∈Suff(v)\Pref(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y )]]

≤
n−m+1

∑

ℓ=3

ℓ−1
∑

i=2

i−1
∑

j=1

2ℓ−i2j−1m(m − 1)2n−ℓ−j

(

n − ℓ − j + 1

m − 1

)

≤ m(m − 1)2n−1
n−m+1

∑

ℓ=3

ℓ−1
∑

i=2

2−i
i−1
∑

j=1

(

n − ℓ − j + 1

m − 1

)

As
(

n−ℓ−j+1
m−1

)

≤
(

n−ℓ
m−1

)

, we obtain

N1,2 ≤ m(m − 1)2n−1
n−m+1

∑

ℓ=3

(

n − ℓ

m − 1

) ℓ−1
∑

i=2

(i − 1)2−i

Because of the convergence of the series,
∑ℓ−1

i=2 (i− 1)2−i is bounded. Therefore,

as
∑n−m+1

ℓ=3

(

n−ℓ
m−1

)

=
(

n−2
m

)

and |Sn,m| =
(

n−1
m−1

)

2n, we have N1,2 = O(n|Sn,m|).
When w is prefix of v, the associated sum B1,2 is partitioned into the following

sums:

B1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

w∈Bord(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y )]] = B′
1,2 + B′′

1,2



with
B′

1,2 =
∑

u∈A+

∑

v∈Bord(u)
|v|> 2

3
|u|

∑

w∈Bord(v)

|w|> |v|
2

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y )]]

and B′′
1,2 = B1,2 \ B′

1,2. Using Lemma 5, the fact that |Qu,v,w| = 2|w|−1 and
relaxing the constraints on the lengths of the words v and w, we get

B′′
1,2 ≤

n−m+1
∑

ℓ=3

ℓ−1
∑

i=2

i−1
∑

j=1

m

(

n − ℓ

m − 1

)

2n−ℓ2ℓ− i
2
−j2j−1.

Since
∑ℓ−1

i=2 (i − 1)2−
i
2 is bounded by a constant M ,

B′′
1,2 ≤ mM2n−1

n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

)

.

Finally as
∑n−m+1

ℓ=3

(

n−ℓ
m−1

)

=
(

n−2
m

)

and |Sn,m| =
(

n−1
m−1

)

2n, B′′
1,2 = O(n |Sn,m|).

Now from Lemma 2 and since |Qu,v,w| = 2|w|−1, we get:

B′
1,2 ≤

∑

u∈A+

∑

v∈Bord(u)
|v|> 2

3
|u|

∑

w∈Bord(v)

|w|> |v|
2

2|w|−1m

(

n − |u|

m − 1

)

2n−|u|.

Moreover, from Proposition 2, the words u, v and w of length respectively ℓ, i
and j are powers of a same primitive word x: u = xpx0, v = xqx0 and w = xsx0,
with p > q > s > 0 and x0 ∈ Pr(x). Let r be the length of x, then there are less
than 2r such words x and since 1 ≤ r ≤ ℓ − i and i > 2

3 ℓ, r < ℓ
3 . Finally the

lengths of v and w can be written i = ℓ−hr where 1 ≤ h < ℓ/3r and j = ℓ−h′r
where h < h′ < 1

2 ( ℓ
r + h), since j > i/2. Therefore

B′
1,2 ≤

n−m+1
∑

ℓ=3

ℓ
3
−1

∑

r=1

ℓ
3r

∑

h=1

1
2
( ℓ

r
+h)

∑

h′=h+1

m

(

n − ℓ

m − 1

)

2n−ℓ2r2ℓ−h′r−1

≤ m 2n−1
n−m+1

∑

ℓ=3

(

n − ℓ

m − 1

)

ℓ
3
−1

∑

r=1

2r

ℓ
3r

∑

h=1

1
2
( ℓ

r
+h)

∑

h′=h+1

(2−r)h′

.

As
∑

ℓ
3r

h=1

∑
1
2
( ℓ

r
+h)

h′=h+1(2−r)h′

≤ 4/22r when r ≥ 1, we obtain

B′
1,2 ≤ m2n+1

n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

)

ℓ
3
−1

∑

r=1

2−r ≤ m2n+1
n−m+1

∑

ℓ=3

(

n − ℓ

m − 1

)

Finally, since
∑n−m+1

ℓ=3

(

n−ℓ
m−1

)

=
(

n−2
m

)

and |Sn,m| =
(

n−1
m−1

)

2n, we obtain that
B′

1,2 = O(n |Sn,m|), concluding the proof.



4 Average time complexity of the determinization

The state complexity of a language recognized by a non-deterministic automaton
with n states is, in the worst case, equal to 2n. Therefore the lower bound of the
worst-case time complexity of the determinization is Ω(2n). In such cases, it is
interesting to measure the time complexity according to the size of the output
of the algorithm and to try to design algorithms whose efficiency is a function
of the size of the result instead of the one of the input. In particular they should
be fast when the output is small, even if it is not possible to prevent the output
from being of exponential size in the worst case.

The complexity of the subset construction basically depends upon the en-
coding and the storage of the set of states. At each step, for a given set of states
P and a letter a ∈ A, the algorithm computes the set P ·a of states of the initial
automaton that can be reached from a state of P by a transition labelled by a.
Then it tests whether this set has already been computed before or not.

For general non-deterministic automata, the choice of an appropriate data
structure for the determinization is not easy. The use of a hashtable may not
be an efficient strategy: it is hard to choose the size of the table and the time
complexity grows when the table has to be resized and new hashvalues have to
be computed for every subset.

Here the automata AX to be determinized are specific: for any state u and
any letter a, the set u ·a can only be ∅, {a}, {ua} or {a, ua}. The sets of states of
AX can be encoded with lists ordered according to the suffix order, i.e. v ≤suff u
if and only if v ∈ Suff(u) ∪ {ε}. By Lemma 1, it is a total order over the set of
states of DX . Hence for any state P of DX , which is also a set of states of AX ,
and any letter a ∈ A, the set P · a can be computed in O(|P |) operations using
theses data structures. Moreover as the lists are sorted, the comparison of two
sets of states P and P ′ can be done, in the worst case, with O(min{|P |, |P ′|})
operations. To store the sets of states of AX we use n+1 balanced trees T0, · · · , Tn

where each tree Ti contains only subsets of size i. When a new set of states P
is computed, it is inserted in the tree T|P |. To check whether the set of states
P has already been created it is sufficient to search P in the tree T|P |. These
operations can be done with O(log |T|P ||) set comparisons, therefore their time

complexity is O(|P | log |T|P ||). As there are at most
(

n
|P |

)

≤ n|P | elements in

T|P |, the insertion or the search of a set of states P can be done in O(|P |2 log n)
arithmetic operations.

Using this data representation, we can prove the following result whose proof,
similar to the proof of Theorem 1, is omitted.

Theorem 2. For an alphabet of size at least 3, the average time complexity, for
the uniform distribution over the sets X of Setn,m, of the construction of the
accessible and deterministic automaton DX is O(n log n).

The estimation of the time complexity of the determinization of AX remains
an open problem in the case of a two-letters alphabet.



5 Minimal automata

In Section 3 we have proved that the average number of states of DX , for X in
Setn,m, is linear in the length of X . The same result holds for the average state
complexity of X∗ since, for each X in Setn,m, the size of the minimal automaton
MX of X∗ is smaller or equal to the size of DX . Moreover, we prove that the
average state complexity of X is Ω(n).

Theorem 3. For the uniform distribution over the sets X of Setn,m the average
state complexity of X∗ is Θ(n).

Proof. (sketch) Let Slog ⊂ Sn,m be the subset of sequences S = (u1, . . . , um)
such that for i ∈ {1, . . . , m}, |ui| > 2 ⌊log n⌋ and the prefixes (resp. suffixes) of
length ⌊log n⌋ of words in S are pairwise distinct.

For any S = (u1, . . . , um) ∈ Slog, the set {u1, · · · , um} is a prefix code.
Therefore, making use of a usual construction of the minimal automaton MS

from the literal automaton of {u1, · · · , um} [1, Prop. 2.4], we prove that MS has
at least n − 2m logn states.

Next, using asymptotic estimations, we show that the cardinalities of Slog

and Sn,m are asymptotically close: |Sn,m| = |Slog|(1+o(1)). Moreover, as Slog ⊂
S 6=

n,m, we have:

1

|Setn,m|

∑

X∈Setn,m

#MX ≥
1

m!|Setn,m|

∑

S∈Slog

#MS ≥
|Slog|(n − 2m logn)

m!|Setn,m|

Finally we conclude the proof using Proposition 1. ⊓⊔

Corollary 1. For the uniform distribution over the sets X of Setn,m, the aver-
age number of states of DX is Θ(n).

Now we study the case m = 2 of sets of two non-empty words:

Theorem 4. For the uniform distribution over the sets X of Setn,2, the average
state complexity of X∗ is asymptotically equivalent to n.

Proof. First the proof of Theorem 3 leads to a lower bound asymptotically equiv-
alent to n. Second Kao, Shallit and Xu recently proved [10] that

{

#M{u,v} ≤ |u| + |v| if u, v ∈ A+ are not powers of the same word
#M{u,v} ≤ (|u| + |v|)2 otherwise.

Let Pn be the subset of Sn,2 containing all sequences (u, v) such that u and v
are powers of a same word. For any non-empty word u of size |u| ≤ n

2 there is
at most one word v in A+ such that (u, v) ∈ Pn. Therefore

∑

(u,v)∈Pn

#M{u,v} ≤ 2
∑

u∈A+,|u|≤n
2

n2 ≤ 2n2

⌊n/2⌋
∑

i=1

|A|i = O
(

n2|A|n/2
)

.

Consequently, as |Sn,2| ∼ n|A|n when n tends towards infinity, the contribution
of Pn to the average is negligible. And since, for (u, v) ∈ Sn,2 \ Pn, the size of
M{u,v} is lower or equal to n, the average state complexity of X∗ is equivalent
to n. ⊓⊔



6 Random generation and experimental results
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Fig. 2. The average number of states of DX for random sets of words X ∈ Setn,m on
a 3-letters alphabet. For each value of m, 20 points have been computed using 1000
random draws each time.

In the following we explain how to build a random generator for the uniform
distribution over the set Setn,m. Recall that each element of Setn,m corresponds
to exactly m! elements of S 6=

n,m. Therefore a uniform random generator for S 6=
n,m

provides a uniform generator for Setn,m.

We use a rejection algorithm to generate elements of S 6=
n,m: we repeatedly

generate a random element of Sn,m, reject it if it is not in S 6=
n,m, stop if it is

in S 6=
n,m. One can show that the average number of elements to be generated

is equal to 1
p , where p is the probability for an element of Sn,m to be in S 6=

n,m,

which is O(1) from Proposition 1.

To draw uniformly at random an element (u1, · · · , um) of S 6=
n,m, we first

generate the lengths of the ui. More precisely a random composition of n into
m parts is generated making use of the bijection (see Proposition 1) with the
subsets of {1, · · · , n − 1} of size m − 1, themself seen as the m − 1 first values
of a random permutation of {1, · · · , n − 1}. When the lengths of the words are
known, each letter is drawn uniformly at random from the alphabet A.

Because of the rejection algorithm, this method may never end, but its av-
erage complexity is O(n). Indeed all algorithms are linear, testing whether the
sequence is in S 6=

n,m is also linear, and the average number of rejects is O(1). This
algorithm has been used to obtain the results shown in Figure 2.

From these experimental results, the average number of states of the de-
terministic automaton DX recognizing X∗ seems asymptotically of the form
n − cm + o(1), where cm is a positive number depending on m.
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