
HAL Id: hal-00452751
https://hal.science/hal-00452751v1

Submitted on 2 Feb 2010 (v1), last revised 9 Jul 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Average State Complexity of Rational Operations
on Finite Languages

Frédérique Bassino, Laura Giambruno, Cyril Nicaud

To cite this version:
Frédérique Bassino, Laura Giambruno, Cyril Nicaud. The Average State Complexity of Rational
Operations on Finite Languages. International Journal of Foundations of Computer Science, 2010, 22
p. �hal-00452751v1�

https://hal.science/hal-00452751v1
https://hal.archives-ouvertes.fr

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

The Average State Complexity of Rational Operations

on Finite Languages∗

Frédérique Bassino, LIPN UMR CNRS 7030, Université Paris 13, 93430 Villetaneuse, France.
Laura Giambruno, Dipartimento di Matematica e Applicazioni, Università di Palermo, Italy.

Cyril Nicaud, LIGM UMR CNRS 8049, Université Paris-Est, 77454 Marne-la-Vallée, France.

Considering the uniform distribution on sets of m non-empty words whose sum of lengths
is n, we establish that the average state complexities of the rational operations are
asymptotically linear.

1. Introduction

This paper first and foremost addresses the following issue: Given a finite set of

words X on an alphabet A and a word u ∈ A∗, how to determine efficiently whether

u ∈ X∗ or not?

With a nondeterministic automaton, one can determine whether a word u is in

X∗ or not in time proportional to the product of the lengths of u and X , where the

length of X is the sum of the lengths of its elements.

With a deterministic automaton recognizing X∗, one can check whether a word

u is in X∗ or not in time proportional to the size of u, once the automaton is

computed. But in [6], Ellul, Krawetz, Shallit and Wang found an example where

the state complexity of X∗, i.e. the number of states of the minimal automaton of

X∗, is exponential. More precisely, for every integer h ≥ 3, they gave a language Xh

of length Θ(h2), containing Θ(h) words, whose state complexity is Θ(h2h). Using

another measure on finite sets of words, Campeanu, Culik, Salomaa and Yu proved

in [3, 4] that if the set X is a finite language of state complexity n ≥ 4, the state

complexity of X∗ is 2n−3 + 2n−4 in the worst case, for an alphabet with at least

three letters. Note that the state complexity of X∗ is 2n−1 +2n−2 in the worst case

when X is not necessarily finite [16, 17].

An efficient alternative using algorithms related to Aho-Corasick automaton was

proposed in [5] by Clément, Duval, Guaiana, Perrin and Rindone. In their paper,

an algorithm to compute all the decompositions of a word as a concatenation of

elements in a finite set of non-empty words is also given.

This paper is a contribution to this general problem, called the non-commutative

Frobenius problem by Shallit [12], from the name of the classical problem [10, 11]

of which it is a generalization. Our study is made from an average point of view.

We analyze the average state complexity of X∗, for the uniform distribution of sets

∗The authors acknowledge partial support from the ESF program AutoMathA. The first and
third authors were supported by the ANR (project BLAN07-2 195422).

1

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

2

of m non-empty words, whose sum of lengths is n, and as n tends towards infinity.

We use the general framework of analytic combinatorics [7] applied to sets of words

and classical automata constructions. Our main result is that, in average, the state

complexity of the star of a set X of m non-empty words is linear with respect to

the length of X . For an alphabet with at least three letters, we improve slightly the

result, showing that the average state complexity of X∗ is equivalent to n.

As a natural extension of this result, we also propose an average-case analysis

of the two other rational operations for finite languages, namely the union and the

concatenation. In both cases we establish the linearity of the state complexity in

average.

The distribution chosen in this article is quite natural, since taking the sum of

the lengths of the words as the size of a finite language corresponds to the space

needed for its direct representation, i.e. by listing its elements. If one removes the

condition that the number of words is fixed, and consider the uniform distribution

on finite languages of length n, the probability that a random language contains

small words is very high. More precisely, all the words of length one, are contained

in a random set with a non-negligible probability. As our main focus is the star

operation, it is not an interesting distribution: the probability that the star of a

random set is A∗, of state complexity one, is too high.

Remark that an interesting and rather different distribution has been considered

in [8]. For a given n, they analyze the uniform distribution over finite languages

whose longest word is of length at most n. The distribution is quite different from

ours. For instance, there are 2(|A|n+1−1)/(|A|−1) distinct sets of size n, where we have

around
(

n−1
m−1

)

|A|n sets. For this distribution, it is likely to have a lot of words of large

size, and the authors proved that almost all languages have a state complexity in

Θ(|A|n/n). For the distribution studied in this article, the average state complexity

of a language of length n is equivalent to n, as we shall see in Proposition 9.

The paper is organized as follows. In Section 2 we recall some definitions, usual

automata constructions and establish some technical combinatorial properties about

words. In Section 3, we prove lower bounds for rational operation on finite languages,

in the average case. The average state complexities are established in Section 4 for

the union and the concatenation, and in Section 5 for the star operation. Finally,

some algorithmic perspectives are discussed in Section 6.

A preliminary version of this work has been presented in [1].

2. Preliminary

2.1. Automata and Words

We recall some definitions about automata and combinatorics on words. We refer

the readers to [9, 15, 2] for elements of theory of finite automata and to [13, 14, 15]

for combinatorics on words.

A finite automaton A over a finite alphabet A is a quintuple A = (A, Q, T, I, F)

where Q is a finite set of states, T ⊂ Q × A × Q is the set of transitions, I ⊂ Q is

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

3

the set of initial states and F ⊂ Q is the set of final states. The automaton A is

deterministic if it has only one initial state and for any (p, a) ∈ Q×A there exists at

most one state q ∈ Q such that (p, a, q) ∈ T . It is complete if for each (p, a) ∈ Q×A,

there exists at least one state q ∈ Q such that (p, a, q) ∈ T . A deterministic finite

automaton A is accessible when for each state q of A, there exists a path from the

initial state to the state q. The size #A of an automaton A is its number of states.

Any finite automaton A = (A, Q, T, I, F) can be transformed into a deterministic

automaton B = (A,P(Q), T ′, {I}, F ′) recognizing the same language and in which

F ′ = {P ∈ P(Q) | P ∩ F 6= ∅} and T ′ = {(P, a, R) with P ∈ P(Q), a ∈ A and R =

{q | ∃p ∈ P, (p, a, q) ∈ T }}. In practice only the accessible part of the automaton

B is built in this subset construction.

We say that the word v is a proper prefix (resp. suffix) of a word u if v is a

prefix (resp. suffix) of u such that v 6= ε and v 6= u. The word v is called a border

of u if v is both a proper prefix and a proper suffix of u. We denote by Pr(u) (resp.

Sf(u)) the set of all prefixes (resp. suffixes) of u, by Pref(u) (resp. Suff(u)) the set

of proper prefixes (resp. suffixes) and by Bord(u) the set of borders of u. A word

is primitive when it is not the power of another word. Let u, v and w be three

non-empty words such that w is a proper suffix of v that is a proper suffix of u and

define the following sets: Qu = {{u}∪P | P ⊂ Suff(u)}, Qu,v = {{u}∪P | P ∈ Qv}
and Qu,v,w = {{u} ∪ P | P ∈ Qv,w}. The cardinalities of Qu, Qu,v and Qu,v,w are

respectively equal to 2|u|−1, 2|v|−1 and 2|w|−1.

The minimal automaton of a regular language is the unique (up to isomorphism)

smallest accessible and deterministic automaton recognizing this language. The state

complexity of a regular language is the size of its minimal automaton. Therefore

the state complexity of a regular language L is equal to its number of distinct

left quotients, i.e. the languages of the form u−1L = {w ∈ A∗ | uw ∈ L}. Let

L ⊂ A∗ be a finite set of words. The automaton TL = (A, Pr(L), TL, {ε}, L), where

TL = {(u, a, ua) | u ∈ Pr(L), a ∈ A, ua ∈ Pr(L)}, recognizes the set L (See

Figure 1 p.13 for an example). Therefore the state complexity of a finite language,

whose sum of the lengths of its elements is n, is less or equal to n + 1.

2.2. Enumeration

Recall that f(n) = O(g(n)) if there exists a positive real c such that for all n big

enough |f(n)| ≤ c|g(n)|, that f(n) = Ω(g(n)) if there exists a positive real c such

that for all n big enough |f(n)| ≥ c|g(n)| and that f(n) = Θ(g(n)) if f(n) = O(g(n))

and f(n) = Ω(g(n)).

Let X ⊂ A∗ be a finite set of words. We denote by |X | the cardinality of X

and by ‖X‖ the length of X defined as the sum of the lengths of its elements:

‖X‖ =
∑

u∈X |u|. Let Setn,m be the set of sets of m non-empty words whose sum

of lengths is n: Setn,m = {X = {u1, · · · , um} | ‖X‖ = n, ∀i ∈ {1, · · · , m} ui ∈ A+}
and Sn,m be the set of sequences of m non-empty words whose sum of lengths is

n: Sn,m = {S = (u1, · · · , um) | ‖S‖ = n, ∀i ∈ {1, · · · , m} ui ∈ A+}. We denote by

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

4

S 6=
n,m ⊂ Sn,m the set of sequences of pairwise distinct words.

Proposition 1. For any fixed integer m ≥ 2, the number |Sn,m| of sequences and

the number |Setn,m| of sets of m non-empty words whose sum of lengths is n satisfy

|Sn,m| =

(

n − 1

m − 1

)

|A|n and |Setn,m| =
1

m!
|Sn,m|

(

1 + O
(

1

n2

))

.

Proof. Any sequence S of Sn,m can be uniquely defined by a word v of length

n, which is the concatenation of the elements of S, and a composition of n into

m parts, that indicates how to cut the word of length n into m parts. Therefore

|Sn,m| =
(

n−1
m−1

)

|A|n. Moreover, as m is fixed,
(

n − 1

m − 1

)

|A|n ∼ nm−1

(m − 1)!
|A|n. (1)

Let Fn,m be the set of the elements S = (u1, · · · , um) of Sn,m such that u1 = u2,

then:

|Fn,m| = |Sn,m|O
(

1

n2

)

. (2)

Indeed, if m = 2 then |Fn,2| =

{

0 if n is odd

|A|n/2 if n is even
which proves the result. If

m ≥ 3, the generating function for the number of pairs of non-empty words (u, v)

such that u = v is z 7→ |A|z2

1−|A|z2 , then

Fm(z) =
∑

n≥0

Fn,mzn =
|A|z2

1 − |A|z2
Sm−2(z) =

|A|z2

1 − |A|z2

(|A|z
1 − |A|z

)m−2

,

where Sm−2(z) =
∑

n≥0 Sn,m−2z
n. Therefore Fm(z) is a rational function with a

simple pole at 1√
|A|

and a pole of order m−2 at 1
|A| . Hence there exist a polynomial

P of degree m − 3 and a constant c, such that

Fn,m = P (n)|A|n + c |A|n/2 = P (n)|A|n
(

1 + O(|A|−n/2)
)

.

Equation (2) is then obtained using Equation (1) and the degree of P . Now let

i, j ∈ {1, . . . , m} and F (i,j)
n,m ⊂ Sn,m containing all sequences (u1, · · · , um) such that

ui = uj . Then Sn,m = S 6=
n,m ∪⋃1≤i<j≤m F (i,j)

n,m where S 6=
n,m ⊂ Sn,m is the subset of

sequences whose elements are pairwise distinct. By symmetry arguments |F (i,j)
n,m | =

|Fn,m| and consequently |Sn,m| − |S 6=
n,m| ≤

(

m
2

)

|Fn,m|. Hence from Equation (2),

|Sn,m| − |S 6=
n,m| = |Sn,m|O

(

1
n2

)

.

Finally since an element of Setn,m is mapped on exactly m! sequences of S 6=
n,m,

we obtain |S 6=
n,m| = m!|Setn,m|, concluding the proof.

In the following we shall count the number of states of automata according to

their labels. This enumeration is based on combinatorial properties of words.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

5

Lemma 2. Let u be a non-empty word of length ℓ. The number of sequences S ∈
Sn,m such that u is a prefix (resp. suffix) of a word of S is smaller or equal to

m
(

n−ℓ
m−1

)

|A|n−ℓ.

Proof. There are at most m
(

n−ℓ−1
m−2

)

|A|n−ℓ elements in Sn,m containing u, as tak-

ing an element of Sn−ℓ,m−1 and adding u at one of the m possible places covers

all the possibilities (with over-counting). There are at most m
(

n−ℓ−1
m−1

)

|A|n−ℓ ele-

ments in Sn,m containing a word having u as a prefix (resp. suffix), as taking an

element of Sn−ℓ,m and concatenating u at the beginning (resp. end) of one of the

words covers all the possibilities (with over-counting). We conclude the proof as

m
(

n−ℓ−1
m−2

)

|A|n−ℓ + m
(

n−ℓ−1
m−1

)

|A|n−ℓ = m
(

n−ℓ
m−1

)

|A|n−ℓ.

Lemma 3. Let u, v ∈ A+ such that v is not a prefix of u, |u| = ℓ and |v| = i. The

number of sequences S ∈ Sn,m such that both u and v are prefixes of words of S is

smaller or equal to m(m − 1)|A|n−ℓ−i
(

n−ℓ−i+1
m−1

)

.

Proof. Similarly to the proof of Lemma 2, we distinguish four cases: u and v are

strict prefixes of words in S, u ∈ S and v is a strict prefix, v ∈ S and u is a

strict prefix, and both u and v are in S. One can upper bound the number of

sequences for these different cases by m(m − 1)|Sn−ℓ−i,m|, m(m − 1)|Sn−ℓ−i,m−1|,
m(m − 1)|Sn−ℓ−i,m−1| and m(m − 1)|Sn−ℓ−i,m−2| respectively. We conclude since

(

n − ℓ − i − 1

m − 1

)

+ 2

(

n − ℓ − i − 1

m − 2

)

+

(

n − ℓ − i − 1

m − 3

)

=

(

n − ℓ − i + 1

m − 1

)

In the following we establish properties that link a word and its borders.

Lemma 4. For 1 ≤ i < ℓ, there are at most |A|ℓ−i pairs of non-empty words (u, v)

such that |u| = ℓ, |v| = i and v is a border of u.

Proof. Since v is a border of u, ℓ − i is a period of u ([14] p.270). The ℓ − i first

letters of u completely define u and v, hence there are at most |A|ℓ−i possible pairs.

Lemma 5. For 1 ≤ j < i < ℓ such that i ≤ 2
3ℓ or j ≤ i

2 , there are at most |A|ℓ− i
2
−j

triples of non-empty words (u, v, w) with |u| = ℓ, |v| = i, |w| = j such that v is a

border of u and w is a border of v.

Proof. If i ≤ ℓ
2 , as w is a border of v there are at most |A|i−j possible pairs (v, w).

Since v is a border of u and ℓ ≥ 2i, u can be defined with only ℓ − 2i letters for

fixed v, hence there are at most |A|ℓ−i−j < |A|ℓ− i
2
−j possible triples (u, v, w).

When i > ℓ
2 and j ≤ i

2 , since v is a border of u, there are at most |A|ℓ−i possible

pairs (u, v). Since −j ≥ − i
2 we get ℓ − i ≤ ℓ − i

2 − j and |A|ℓ−i ≤ |A|ℓ− i
2
−j .

Finally when ℓ
2 < i ≤ 2

3ℓ and j > i
2 , since w is a border of v, there are at most

|A|i−j possible pairs (v, w). As ℓ− i is a period of u, v completely define u. And as

i − j ≤ ℓ − i
2 − j, there are at most |A|l− i

2
−j possible triples (u, v, w).

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

6

Proposition 6. For 1 ≤ j < i < ℓ such that i > 2
3ℓ and j > i

2 and for any triple

of words (u, v, w) with |u| = ℓ, |v| = i, |w| = j such that v is a border of u and w

is a border of v, there exist a primitive word x, with 1 ≤ |x| ≤ ℓ − i, a prefix x0 of

x and integers p > q > s > 0 such that u = xpx0, v = xqx0 and w = xsx0.

Proof. Since v is a border of u, ℓ− i is a period of u. Let x be the unique primitive

word such that xk is the prefix of u of length ℓ− i, for some positive integer k. Then

there exist a prefix x0 of x and a positive integer p such that u = xpx0. Since v is a

suffix of u of length i, v = xp−kx0. And since ℓ − i < i, p − k > 0. As w is a prefix

of v and ℓ − i < i
2 < j, w = xsx1 where s > 0 and x1 is a prefix of x.

It remains to prove that x1 = x0. Since w is a suffix of v, there exist a suffix x2

of x and r ≥ 0 such that w = x2x
rx0. If x2 is empty, the result follows. Otherwise

xrx0 is a border of w, w is a power of x2 and x is a power of x2. But x cannot be

an integral power of x2 since it is primitive. Therefore x = x2
tx′

2 where t > 0 and

x′
2 is a prefix of x2. Since x2 is a suffix of x there exists a proper suffix x′′

2 of x2

such that x2 = x′′
2x′

2. Since x′
2 is a prefix of x2, x2 = x′

2x
′′
2 . And since x′′

2x′
2 = x′

2x
′′
2 ,

x′
2 and x′′

2 are integral powers of a same word [13], that is a contradiction with the

fact that x is primitive.

3. Lower Bounds

We first introduce the subsets S(p)
n,m of Sn,m that will be used to establish lower

bound results in average. Let S(p)
n,m denote the subset of Sn,m defined, for n ≥

(2p + 1)m, by

(u1, . . . , um) ∈ S(p)
n,m ⇔















|ui| > 2p, for every i ∈ {1, · · · , m}
the prefixes of length p of the ui are pairewise disjoint

the suffixes of length p of the ui are pairewise disjoint

Note that the set of words defined by a sequence in S(p)
n,m is a bifix, i.e. prefix and

suffix, code.

Next we prove that almost all sequences of Sn,m are in S(⌊log n⌋)
n,m , and that the

state complexity of the set associated to a sequence in S(⌊log n⌋)
n,m is asymptotically

equivalent to n.

Lemma 7. For any fixed m ≥ 1, |S(p)
n,m| ∼ |Sn,m| as n → ∞ and p → ∞, with

p = o(n).

Proof. Let P(p)
m be the set of sequences of m distinct words of length exactly p. As

p tends towards infinity, the cardinality of P satisfies

|P(p)
m | = |A|p(|A|p − 1) · · · (|A|p − m + 1) ∼ |A|mp

Separating prefixes and suffixes of length p in elements of S(p)
n,m, we obtain that

|S(p)
n,m| = |P(p)

m × Sn−2p,m × P(p)
m |. Therefore when n and p tend towards infinity

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

7

with p = o(n):

|S(p)
n,m| ∼ |A|mp

(

n − 2mp − 1

m − 1

)

|A|n−2mp |A|mp ∼
(

n − 1

m − 1

)

|A|n

Together with Proposition 1, this concludes the proof.

Lemma 8. For any sequence S in Sn,m, every singleton {v}, where v is a suffix of

a word in S, is a left quotient of the finite language associated to S. Moreover, if

S ∈ S(p)
n,m then there are at least n−2pm such suffixes. Therefore the state complexity

of S is at least n − 2pm.

Proof. Let v 6= v′ be two prefixes of the words u ∈ S and u′ ∈ S respectively, such

that p < |v| ≤ |u|−p and p < |v′| ≤ |u′|−p. Let w and w′ be the suffixes associated

to v and v′ respectively, i.e. u = vw and u′ = v′w′. We claim that w 6= w′. Indeed,

if w = w′ then u = u′, since the suffixes of length p of two distinct words in S

are distinct and since |w| > p. Hence v = v′ since they are both prefixes of length

|u| − |w| of u. Therefore, v−1S = {w} 6= {w′} = v′−1S: all the left quotients of

S defined by such prefixes are distinct. This concludes the proof since there are

n − 2pm such prefixes of words in S.

The proof of the following result is a direct consequence of Lemma 7, Lemma 8 and

Proposition 1:

Proposition 9. For any fixed m ≥ 1, the average state complexity of an element

in Setn,m is asymptotically equivalent to n as n tends towards infinity.

Proposition 10 (Union) For the uniform distribution over the pairs (X1, X2) of

Setn1,m1
×Setn2,m2

the average state complexity of X1 ∪X2 is lower bounded by a

function equivalent to n1 + n2 when both n1 and n2 tend towards infinity.

Proof. Using Proposition 1 we establish the result for pairs of sequences. Assume

by symmetry that n1 ≤ n2 and consider the subset X ⊂ S(p)
n1,m1

× S(p)
n2,m2

, with

p = ⌊log n1⌋, defined by

X = {(X1, X2) ∈ S(p)
n1,m1

× S(p)
n2,m2

| X1 ∪ X2 ∈ S(p)
n1+n2,m1+m2

}

In other words all prefixes (resp. suffixes) of length p of words either in X1 or in X2

are distinct.

For any fixed X1 ∈ S(p)
n1,m1 , using same arguments as in Lemma 7 the number of

sequences X2 ∈ S(p)
n2,m2 such that (X1, X2) ∈ X is asymptotically equal to |S(p)

n2,m2 |.
Hence by Lemma 7, |X | ∼ |S(p)

n1,m1 | · |S(p)
n2,m2 | ∼ |Sn1,m1

| · |Sn2,m2
|. Moreover for

every (X1, X2) ∈ X , X1 ∪ X2 ∈ S(p)
n1+n−2,m1+m2

. Therefore, by Lemma 8 the state

complexity of X1 ∪ X2 is at least equal to n1 + n2 − 2(m1 + m2)⌊log n1⌋. This

concludes the proof since this inequality holds for almost all pairs of sequences.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

8

Proposition 11 (Concatenation) For the uniform distribution over the pairs

(X1, X2) of Setn1,m1
× Setn2,m2

the average state complexity of X1 · X2 is lower

bounded by a function equivalent to n1 + n2, when both n1 and n2 tend towards

infinity.

Proof. Using Proposition 1 again, we establish the result for pairs of sequences. Let

X1 ∈ S(⌊log n1⌋)
n1,m1

and X2 ∈ S(⌊log n2⌋)
n2,m2

. Assume first that m2 = 1, and that X2 = (x).

The left quotients of X1 · X2 are either of the form {vx}, where v is a suffix of

a word in X1 or {v}, where v is a suffix of x. From Lemma 8 there are at least

n1 − 2m1 log n1 + n2 + 1 such classes.

Assume now that m2 ≥ 2. Let u be an element of X1. Since X1 is a prefix

code, for any word v ∈ A∗, uv ∈ X1 · X2 if and only if v ∈ X2. Therefore, when

w ranges over all the prefixes of words in X2, the left quotient (uw)−1(X1 · X2) =

w−1X2 ranges over all the left quotients of X2, that are singletons. Therefore from

Lemma 8 there are at least n2 − 2m2⌊log n2⌋ distinct left quotients of X1 ·X2 that

are singletons.

Let w be a prefix of a word of X1 of length at least ⌊log n1⌋. For any u ∈ X1

and any v ∈ X2, if w is a prefix of uv then either w is a prefix of u or u is a prefix of

w. The latter case is not possible since X1 is a prefix code. Hence u = ws for some

word s ∈ A∗, and w−1(X1 · X2) = s · X2. Let u = ws and u′ = w′s′ be two words

of X1 such that |s| ≥ ⌊log n1⌋ and |s′| ≥ ⌊log n1⌋. If s ·X2 = s′ ·X2, let y and y′ be

two elements of X2 such that sy = s′y′, then y = y′ since X2 is a suffix code and

consequently s = s′. So the sets s · X2 defined for such suffixes s are distinct and

there are at least n1−2m1⌊log n1⌋ such left quotients. Since they are not singleton,

there are at least n1−2m1⌊log n1⌋+n2−2m2⌊log n2⌋ left quotients of X1 ·X2. This

concludes the proof since this inequality holds for almost all pairs of sequences.

Proposition 12 (Star) For the uniform distribution over the sets X of Setn,m

the average state complexity of X∗ is lower bounded by a function equivalent to n,

when n tends towards infinity.

Proof. Using again Proposition 1 we establish the result for sequences. Recall that

if X is a prefix code, then the minimal automaton of X as only one final state.

Therefore the state complexity of X∗ when X is a prefix code of state complexity n

is either n or n− 1 (see [2] Proposition 2.4, p. 95). We conclude the proof as from

Lemma 8, every S ∈ S(⌊log n⌋)
n,m has a state complexity greater than n − 2n⌊logn⌋

and since by Lemma 7, almost all elements of Sn,m belongs to S(⌊log n⌋)
n,m .

4. Average State Complexity of the Union and the Concatenation

4.1. Average State Complexity of the Union

Due to the structure of finite languages, it is not difficult to compute the state

complexity of their union:

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

9

Theorem 13 (Union) For the uniform distribution over the pairs (X1, X2) of

Setn1,m1
× Setn2,m2

the average state complexity of X1 ∪ X2 is equal to (n1 +

n2) + O(1) when both n1 and n2 tend towards infinity.

Proof. This result comes from the fact that |X1 ∪ X2| ≤ |X1| + |X2| and that

‖X1 ∪ X2‖ ≤ ‖X1‖ + ‖X2‖ together with the lower bound of Proposition 10.

Note that the state complexity of the union is the same in the average case and

in the worst case.

4.2. Average State Complexity of the Concatenation

In the following we prove that the average state complexity of the concatenation of

two finite languages is linear in the sum of their lengths.

Theorem 14 (Concatenation) For the uniform distribution over the pairs

(X1, X2) of Setn1,m1
× Setn2,m2

the average state complexity of X1 · X2 is equal

to (n1 + n2) + O(1) when both n1 and n2 tend towards infinity.

Note that Proposition 11 already gives the lower bound (n1+n2)+O(1). The rest

of this section is devoted to the proof of the upper bound: From a nondeterministic

automata recognizing X1 · X2, we bound from above the number of states of its

associated deterministic automaton obtained by the subset construction, which is

greater than or equal to the state complexity of X1 · X2.

4.2.1. Construction

We associate to the finite languages X1 and X2 the automata TX1
and TX2

defined in

Section 2.1. The nondeterministic automaton AX1·X2
= (A, (Pr(X1)×{∅})∪({∅}×

Pr(X2)), T
′
X1

∪T ′
X2

∪T, (ε, ∅), F), where T ′
X1

= {((u, ∅), a, (ua, ∅)) | (u, a, ua) ∈ TX1
},

T ′
X2

= {((∅, v), a, (∅, va)) | (v, a, va) ∈ TX2
}, T = {((u, ∅), a, (∅, a)) | u ∈ X1, a ∈

Pr(X2)} and F = {∅} × X2 (note that ε /∈ X2) recognizes X1 · X2. We denote by

AS·T the automaton defined for the set of elements of any two sequences S and T

by the above construction. For any two finite sets of words X1, X2 ⊂ A∗ (resp. any

two sequences S, T), we denote by DX1·X2
(resp. DS·T) the accessible deterministic

automaton obtained from the automaton AX1·X2
(resp. AS·T) making use of the

subset construction.

Lemma 15. For any two finite sets of non-empty words X1, X2 ⊂ A∗, the states

of the deterministic automaton DX1·X2
recognizing X1 · X2 are couples (u, Z) in

(Pr(X1) ∪ ∅) × P(Pr(X2)), they satisfy the following properties:

• If u ∈ Pr(X1), there exists a unique Z ∈ P(Pr(X2)) such that (u, Z) is a

state of DX1·X2
.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

10

• If u = ∅ and Z = {v1, · · · , vℓ}, then for each i, j in {1, . . . , ℓ}, there exist

xi, xj ∈ X1 and pi, pj ∈ X2 such that xipi = xjpj. In particular, if v is the

longest word in Z, for any i ∈ {1, . . . , ℓ}, v = wivi, with wi ∈ X−1
1 X1.

Proof. The first property comes from the structure of the automaton TX1
: for any

u ∈ Pr(X1), there is only one path from the initial state to u in TX1
and therefore

only one path from the initial state to a state of the form (u, Z) in DX1·X2
.

Let (∅, Z) be a state in DX1·X2
. As (∅, Z) is accessible from the initial state, for

any word u ∈ Z there exists a path labelled by u from the initial state to (∅, Z) in

DX1·X2
. Therefore, by construction of DX1·X2

, there exist x ∈ X1 and p ∈ Pr(X2)

such that u = xp.

Using again Proposition 1 we establish the result for pairs of sequences instead

of pairs of sets. In the following let S denote the product Sn1,m1
× Sn2,m2

. Given

u ∈ A∗ ∪ ∅, Z ∈ P(A∗) and (S1, S2) ∈ S, we denote by Det(S1 · S2, (u, Z)) the

property: (u, Z) is the label of a state in DS1·S2
.

To find an upper bound on the average number of states of the deterministic

automaton DS1·S2
when the sequence S1 ranges over the set Sn1,m1

and S2 ranges

over the set Sn2,m2
, we count the states of all automata according to their labels.

More precisely we want to estimate the suma

∆ =
∑

(S1,S2)∈S

#DS1·S2
=

∑

(S1,S2)∈S

∑

u∈(A∗∪∅)

∑

Z∈P(A∗)

[[Det(S1 · S2, (u, Z))]]

Taking into account the cardinality of the labels of the states:

∆ =
∑

(S1,S2)∈S

∑

u∈A∗

∑

Z∈P(Pr(X2))

[[Det(S1 · S2, (u, Z))]]

+
∑

(S1,S2)∈S

∑

v∈A∗

[[Det(S1 · S2, (∅, {v}))]]

+
∑

(S1,S2)∈S

∑

u∈A+

∑

Z⊂A∗,|Z|≥2

[[Det(S1 · S2, (∅, Z))]]

From Lemma 15 the number of states labelled by (u, Z) with u 6= ∅ is equal to the

cardinality of Pr(X1), and therefore smaller or equal to n1 + 1. Hence,

∑

(S1,S2)∈S

∑

u∈A∗

∑

Z∈P(Pr(X1))

[[Det(S1 · S2, (u, Z))]] ≤
∑

(S1,S2)∈S

(n1 + 1) ≤ (n1 + 1)|S|

Moreover, if (∅, {v}) is a label of a state, then v is in Pr(X2), therefore:

∑

(S1,S2)∈S

∑

u∈A∗

[[Det(S1 · S2, (∅, v))]] ≤ (n2 + 1)|S|.

aThe operator [[]] is defined by [[P]] = 1 if the property P is true and 0 otherwise.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

11

It remains to study Γ, with

Γ =
∑

(S1,S2)∈S

∑

u∈A+

∑

Z⊂A∗,|Z|≥2

[[Det(S1 · S2, (∅, Z))]].

Let Z ⊂ A∗ be the subset of non-empty words, with |Z| ≥ 2. From Lemma 15 if

(∅, Z), with |Z| ≥ 2, is the label of a state of an automaton DS1·S2
, then Z belongs

to a set Qu,v, for some u, v in Z such that v is a proper suffix of u. Therefore

Γ =
∑

(S1,S2)∈S

∑

u∈A+

∑

v∈Suff(u)

∑

Z∈Qu,v

[[Det(S1 · S2, (∅, Z))]].

Changing the order of the sums we get

Γ =
∑

u∈A+

∑

v∈Suff(u)

∑

Z∈Qu,v

∑

(S1,S2)∈S

[[Det(S1 · S2, (∅, Z))]].

Partitioning the sum Γ into Γ1 ∪ Γ2, depending on whether the word v is prefix of

u or not, we obtain:

Γ1 =
∑

u∈A+

∑

v∈Suff(u)\Pref(v)

∑

Z∈Qu,v

∑

(S1,S2)∈S

[[Det(S1 · S2, (∅, Z))]]

Γ2 =
∑

u∈A+

∑

v∈Bord(u)

∑

Z∈Qu,v

∑

(S1,S2)∈S

[[Det(S1 · S2, (∅, Z))]]

To prove Theorem 16, we shall establish that Γ1 and Γ2 are both O(|S|).
• Γ1 is in O(|S|): For any u ∈ A+, for any v ∈ Suff(u) \ Pref(u) and for any

Z ∈ Qu,v, the number of pairs of sequences (S1, S2) ∈ S such that DS1·S2
contains

a state labelled by (∅, Z) is at most

m1|A|n1−|u|+|v|

(

n1 − |u| + |v|
m1 − 1

)

× m2(m2 − 1)|A|n2−|u|−|v|

(

n2 − |u| − |v| + 1

m2 − 1

)

The left part is a consequence of Lemma 2, v−1u being a suffix of an element in X1;

the right part is a consequence of Lemma 3, v and u being prefixes of two distinct

elements in X2. Hence, Γ1 is bounded above by

∑

u∈A+

∑

v∈Suff(u)
v/∈Pref(u)

∑

Z∈Qu,v

m1m2(m2−1)|A|n1+n2−2|u|

(

n1 − |u| + |v|
m1 − 1

)(

n2 − |u| − |v| + 1

m2 − 1

)

Moreover if u is longest word in Z , by Lemma 15, Z must be a subset of (X−1
1 X1)u

for (∅, Z) to be the label of a state. But |X−1
1 X1| ≤ m2

1. Therefore setting |u| = ℓ

and |v| = i we obtain:

Γ1 ≤
n2−m2+1
∑

ℓ=2

|A|ℓ
ℓ−1
∑

i=1

2m2
1 m1m2(m2−1)|A|n1+n2−2ℓ

(

n1 − ℓ + i

m1 − 1

)(

n2 − ℓ − i + 1

m2 − 1

)

.

Since 1 ≤ i ≤ ℓ − 1 and ℓ ≥ 2,
(

n1−ℓ+i
m1−1

)

≤
(

n1−1
m1−1

)

and
(

n2−ℓ−i+1
m2−1

)

≤
(

n2−2
m2−1

)

. Thus

Γ1 ≤ Dm1,m2
|A|n1+n2

(

n1 − 1

m1 − 1

)(

n2 − 2

m2 − 1

) n2−m2+1
∑

ℓ=2

|A|−ℓ(ℓ − 1),

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

12

where Dm1,m2
only depends on m1 and m2. As

∑∞
ℓ=2 |A|−ℓ(ℓ − 1) is a convergent

series, it is bounded above by a constant M . Therefore from Proposition 1, Γ1 ≤
MDm1,m2

|S| or in other words Γ1 = O(|S|).
• Γ2 is in O(|S|): For any u ∈ A+, any v ∈ Bord(u) and any Z ∈ Qu,v, the

number pairs of sequences (S1, S2) ∈ S such that DS1·S2
contains a state labelled

by (∅, Z) is at most

m1|A|n1−|u|+|v|

(

n − |u| + |v|
m1 − 1

)

× m2|A|n2−|u|

(

n2 − |u|
m2 − 1

)

.

Both the left and the right parts are consequence of Corollary 2.1, v−1u being a

suffix of an element in X1 and u being a prefix of a word in X2. Hence,

Γ2 ≤
∑

u∈A+

∑

v∈Bord(u)

∑

Z∈Qu,v

m1m2|A|n1+n2−2|u|+|v|

(

n1 − |u| + |v|
m1 − 1

)(

n2 − |u|
m2 − 1

)

.

As for Γ1 the number of subsets Z of Qu,v that can appear in a label of a state in

the automaton is at most 2m2
1 . Therefore setting |u| = ℓ and |v| = i, from Lemma 4,

we obtain:

Γ2 ≤
n2−m2+1
∑

ℓ=2

ℓ−1
∑

i=1

|A|ℓ−i2m2
1m1m2|A|n1+n2−2ℓ+i

(

n1 − ℓ + i

m1 − 1

)(

n2 − ℓ

m2 − 1

)

.

Hence there exists Em1,m2
such that

Γ2 ≤ Em1,m2

(

n1 − 1

m1 − 1

)(

n2 − 2

m2 − 1

)

|A|n1+n2

n2−m2+1
∑

ℓ=2

|A|−ℓ(ℓ − 1).

Thus Γ2 ≤ |S|Em1,m2

∑∞
l=2(ℓ − 1)|A|−ℓ or in other words Γ2 = O (|S|). This con-

cludes the proof since, putting all together, ∆ = (n1 + n2 + O(1))|S|.

5. Average State Complexity of the Star

In the following we study the average state complexity of the star of finite languages.

Theorem 16 (Star) For the uniform distribution over the sets X of Setn,m the

average state complexity of X∗ is in Θ(n) when n tends towards infinity. Moreover

if the cardinality of the alphabet is greater than or equal to 3, this state complexity

is asymptotically equivalent to n.

In order to prove Theorem 16 we show that the average number of states of the

deterministic automaton DX (defined in the next section) recognizing X∗ is linear

in the length of X and that, if the alphabet is of cardinality greater than two, this

complexity is smaller or equal to n + O(1). The result holds for the average state

complexity of X∗ since, for each X in Setn,m, the size of the minimal automaton

MX of X∗ is smaller or equal to the size of DX .

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

13

5.1. Construction

Let X ⊂ A∗ be a finite set of words. The automaton TX defined in Section 2.1.

recognizes the set X and the automaton AX = (A, Pr(X), TX ∪ T, {ε}, X ∪ {ε}),
where T = {(u, a, a) | u ∈ X, a ∈ A∩Pr(X)} recognizes X∗ (see Fig.1). We denote

by AS the automaton defined for the set of elements of any sequence S by the above

construction. In such an automaton only the states labelled by a letter have more

than one incoming transition.

ε a ab

abab

ba bab

a b

ab

a

b

ε a ab

abab

ba bab

a b

ab

a

b

a

b

a

b

ab

Fig. 1. The automata TX and AX , for X = {a, aba, bab}

For any finite set of words X ⊂ A∗ (resp. any sequence S), we denote by DX

(resp. DS) the accessible deterministic automaton obtained from the automaton

AX (resp. AS) making use of the subset construction and by MX the minimal

automaton of X∗.

Lemma 17. For any finite set of words X ⊂ A∗, the states of the deterministic

automaton DX recognizing X∗ are non-empty subsets {u1, · · · , ul} of Pr(X) such

that for all i, j ∈ {1, · · · , l},

• either ui is a suffix of uj or uj is a suffix of ui.

• there exist x0, . . . , xhi
, y0, . . . , yhj

∈ X such that x0 . . . xhi
ui = y0 . . . yhj

uj

Proof. If {u1, · · · , ul} is a state of DX then, for each i, ui is a prefix of a word

of X by construction. Since every state in DX is accessible then there exists a

path from the initial state {ε} to {u1, · · · , ul} with label α. By definition of subset

construction, for each ui, there exists in AX a path pi with label α from the initial

state ε to the state ui. Moreover the path pi must have as suffix a path with label ui,

starting at a final state and ending at ui. So, for each i, there exist x0, . . . , xhi
∈ X

such that α = x0 . . . xhi
ui concluding the proof of the second item.

Corollary 18. Let X be a finite set and u, v ∈ A∗, |u| > |v|. If DX has a state

containing u and v then u and v are prefixes of two words in X and there exists

w ∈ Suff(X)X∗ ∪ X+ such that u = wv.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

14

5.2. Upper Bound

First, note that to prove the result on sets it is sufficient to prove it on sequences:

1

|Setn,m|
∑

X∈Setn,m

#DX =
1

m! |Setn,m|
∑

S∈S 6=
n,m

#DS ≤ 1

m! |Setn,m|
∑

S∈Sn,m

#DS

and we conclude using Proposition 1.

Let Y ⊂ A∗ and S ∈ Sn,m. Recall that Det(S, Y) denotes the property: Y is the

label of a state of DS .

To find an upper bound for the average number of states of the deterministic

automaton DS when the sequence S ranges the set Sn,m, we count the states of all

automata according to their labels. More precisely we want to estimate the sum
∑

S∈Sn,m

#DS =
∑

S∈Sn,m

∑

Y ⊂A∗

[[Det(S, Y)]],

Taking into account the cardinality of the labels of the states:
∑

S∈Sn,m

#DS =
∑

S∈Sn,m

∑

|Y |=1

[[Det(S, Y)]] +
∑

S∈Sn,m

∑

|Y |≥2

[[Det(S, Y)]].

The first sum deals with states labelled by a single word. Since, for each S ∈
Sn,m, the words that appear in the labels of states of DS are prefixes of words of

S, we have
∑

S∈Sn,m

∑

|Y |=1

[[Det(S, Y)]] =
∑

S∈Sn,m

∑

u prefix of
a word of S

[[Det(S, {u})]] ≤ (n + 1)|Sn,m|.

It remains to study the sum

∆ =
∑

S∈Sn,m

∑

|Y |≥2

[[Det(S, Y)]].

Let Y ⊂ A∗ be a non-empty set which is not a singleton. By Lemma 17, if Y

is the label of a state of an automaton DS , then Y belongs to a set Qu,v, for some

non-empty word u and some proper suffix v of u. Therefore

∆ =
∑

S∈Sn,m

∑

u∈A+

∑

v∈Suff(u)

∑

Y ∈Qu,v

[[Det(S, Y)]].

Changing the order of the sums we obtain

∆ =
∑

u∈A+

∑

v∈Suff(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y)]].

We then partition the sum ∆ into ∆1 + ∆2 depending on whether the word v is

prefix of u or not:

∆1 =
∑

u∈A+

∑

v∈Bord(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y)]] (3)

∆2 =
∑

u∈A+

∑

v∈Suff(u)\Pref(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y)]] (4)

To prove Theorem 16 we study the asymptotic behavior of ∆1 and ∆2.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

15

5.3. For Alphabets With at Least Three Letters

The following lemmas are stated in order to prove the second part of Theorem 16.

They use the condition w ∈ Suff(X)X∗ ∪ X+ of Corollary 18.

Lemma 19. Let u, v be two words in A+ such that v is a suffix of u, but not a

prefix of uand w be the word such that u = wv. Setting |u| = ℓ and |v| = i, there

are at most

Cm|A|n−2ℓ

(

n − 2ℓ + 1

m − 1

)

+ CmAn−ℓ−i

(

n − ℓ − i

m − 2

)

sequences S in Sn,m such that u et v are prefixes of two words in S and such that

w ∈ Suff(S)S∗ ∪ S+. Moreover Cm only depends on m.

Proof. We consider two cases, depending on whether w ∈ Suff(S) or not. If w ∈
Suff(S), for a sequence S that satisfies the conditions of the lemma,there exist three

words xu, xv and xw in S such that u is a prefix of xu, v is a prefix of xv and w

is a suffix of xw. Necessarily, xu 6= xv, since v is not a prefix of u. Consider several

families of such sequences:

• xu = xw and |u|+ |w| ≥ |xu|. Such a sequence can be built from a sequence

in Sn−j,m−1 having v as a prefix of one of its words, with j = |xu|, by

adding xu at some position. Hence, using Lemma 2, there are at most

m(m − 1)
(

n−i−j
m−2

)

|A|n−j−i such sequences. Summing for j ranging from

ℓ+1 to 2ℓ−1, we find an upper bound of Km

(

n−i−ℓ
m−2

)

|A|n−ℓ−i for some Km

that only depends on m.

• xv = xw and |v| + |w| ≥ |xv|. Similarly, there are at most

K ′
m

(

n−i−ℓ
m−2

)

|A|n−ℓ−i such sequences.

• In all other cases, the sequences can be built from a sequence of Sn−(ℓ−i),m

having u and v as prefixes of two of its words, by adding w at the end of

some element. Hence from Lemma 3 there are at most K ′′
m

(

n−2ℓ+1
m−1

)

|A|n−2ℓ

such sequences.

If w /∈ Suff(S), then w ∈ (Suff(S)∪{ε})X+. Therefore there exist a word xw ∈ S

such that xw is a suffix of w and two words xu and xv having respectively u and v

as prefixes. As |w| < |u|, |xw| < |xu| and the words xu and xw are distinct. As v is

not a prefix of u, xu and xv are distinct too. Let j be the length of xw.

If xv 6= xw, the number of sequences that satisfies the properties is at most

m(m − 1)
(

n−i−ℓ−j+1
m−2

)

|A|n−ℓ−i−j , using Lemma 3 and the fact that xw is a word

in such a sequence. Summing for j from 1 to ℓ − i, we find that there are at most

Lm|A|n−i−ℓ
(

n−i−ℓ
m−2

)

such sequences, where Lm only depends on m.

If xv = xw, then from Lemma 2 there are at most B′
m

(

n−j−ℓ
m−2

)

|A|n−j−ℓ such

sequences. Summing for j from i to ℓ − i − 1, we find that there are at most

L′
m|A|n−i−ℓ

(

n−i−ℓ
m−2

)

such sequences, where L′
m only depends on m.

Adding all the contributions, we get the announced upper bound.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

16

Lemma 20. Let u, v be two words in A+ such that v is a strict border of u. and w

be the word such that u = wv. Setting |u| = ℓ and |v| = i, there are at most

Dm|A|n−2ℓ+i

(

n − 2ℓ + i

m − 1

)

+ Dm|A|n−ℓ

(

n − ℓ − 1

m − 2

)

sequences S in Sn,m such that u et v are prefixes of two words in S and such that

w ∈ Suff(S)S∗ ∪ S+. Dm only depends on m.

Proof. We consider two cases depending on whether w ∈ Suff(S) or not. If w ∈
Suff(S), there exist xu and xw in S such that u is a prefix of xu and w is a proper

suffix of xw. The number of such sequences with xu = xw and |u| + |w| ≤ |xu| is

smaller or equal to m
(

n−j−1
m−2

)

|A|n−j . Summing for j from ℓ+1 to 2ℓ−1, we find that

there are at most Em

(

n−ℓ−1
m−2

)

|A|n−ℓ such sequences, for some Em depending only

on m. On the other hand, if xu 6= xw or |u| + |w| > |xu|, the number of sequences

is smaller or equal to E′
m

(

n−ℓ−(ℓ−i)+1
m−1

)

|A|n−ℓ−(ℓ−i).

If w /∈ Suff(S), w ∈ (Suff(S)∪ {ε})X+ and there exists a word xw in S that is a

suffix of w. Setting |xw | = j, from Lemma 2 there are at most Fm

(

n−ℓ−j
m−2

)

|A|n−ℓ−j

such sequences. Summing for j from 1 to ℓ − i, we find that there are at most

F ′
m

(

n−ℓ−1
m−2

)

|A|n−ℓ such sequences.

Adding all the contributions, we get the announced upper bound.

In the following we prove that ∆1 and ∆2 from Equation (3) (p.14) are both in

O(|Sn,m|).
From Corollary 18 and Lemma 20, one has ∆1 ≤ ∆1,1 + ∆1,2 with

∆1,1 =
∑

u∈A+

∑

v∈Bord(u)

∑

Y ∈Qu,v

Dm|A|n−2|u|+|v|

(

n − 2|u| + |v|
m − 1

)

∆1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

Y ∈Qu,v

Dm|A|n−|u|

(

n − |u| − 1

m − 2

)

Setting |u| = ℓ and |v| = i and using Lemma 4

∆1,1 ≤
n−m+1
∑

ℓ=2

ℓ−1
∑

i=1

|A|ℓ−i2i−1Dm|A|n−2ℓ+i

(

n − 2ℓ + i

m − 1

)

.

Since for 2 ≤ ℓ ≤ n − m + 1 and 1 ≤ i ≤ ℓ − 1,
(

n−2ℓ+i
m−1

)

≤
(

n−3
m−1

)

∆1,1 ≤ 1

2
Dm|A|n

(

n − 3

m − 1

)

(

∞
∑

ℓ=2

|A|−ℓ

)(

∞
∑

i=1

|A|−i2i

)

and since |A| ≥ 3, we obtain ∆1,1 = O(|Sn,m|).
The same arguments lead to

∆1,2 ≤
n−m+1
∑

ℓ=2

ℓ−1
∑

i=1

|A|ℓ−i2i−1Dm|A|n−ℓ

(

n − ℓ − 1

m − 2

)

.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

17

Moreover using the fact that
∑N

j=m−2

(

j
m−2

)

=
(

N+1
m−1

)

we obtain

∆1,2 ≤ 1

2
Dm|A|n

(

n − 2

m − 1

)

(

∞
∑

i=1

|A|−i2i

)

or in other words ∆1,2 = O(|Sn,m|) since |A| ≥ 3.

Using exactly the same kind of computations, one can prove from Lemma 19

that ∆2 = O(|Sn,m|), concluding the proof.

5.4. For Binary Alphabets

We now prove that the average state complexity of the star of a finite language on a

binary alphabet is linear. More precisely we show that ∆1 and ∆2 from Equation (3)

(p.14) are both in O(n|Sn,m|).
From Lemma 3

∆2 ≤
∑

u∈A+

∑

v∈Suff(u)\Pref(u)

∑

Y ∈Qu,v

m(m − 1)2n−|u|−|v|

(

n − |u| − |v| + 1

m − 1

)

.

As |Qu,v| = 2|v|−1, with ℓ = |u| and i = |v|,

∆2 ≤ m(m − 1)

n−m+1
∑

ℓ=2

2ℓ
ℓ−1
∑

i=1

2i−12n−ℓ−i

(

n − ℓ − i + 1

m − 1

)

.

Moreover, since
∑n−m+1

ℓ=2

∑ℓ−1
i=1

(

n−ℓ−i+1
m−1

)

=
(

n−1
m

)

, ∆2 ≤ m(m−1)
2 2n

(

n−1
m

)

and thus,

by Proposition 1, ∆2 = O(n |Sn,m|).
Now we partition the sum ∆1 into two sums ∆1,1 and ∆1,2 depending on whether

the set Y contains exactly two elements or not (and therefore belongs to some set

Qu,v,w). More precisely,

∆1,1 =
∑

u∈A+

∑

v∈Bord(u)

∑

S∈Sn,m

[[Det(S, {u, v})]]

and

∆1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

w∈Suff(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y)]].

Using Lemma 2 and Lemma 4, and since
∑n−m+1

ℓ=2

(

n−ℓ
m−1

)

=
(

n−1
m

)

, we obtain

∆1,1 ≤
n−m+1
∑

ℓ=2

ℓ−1
∑

i=1

m

(

n − ℓ

m − 1

)

2n−ℓ2ℓ−i ≤ m 2n

(

n − 1

m

)

.

Consequently, by Proposition 1, ∆1,1 = O(n |Sn,m|).
Next we decompose the sum ∆1,2 into the sums B1,2+N1,2 depending on whether

w is a prefix (and therefore a border) of v or not.

When w is not a prefix of v, the number of sequences S ∈ Sn,m such that

u and w are prefixes of two distinct words of S is smaller or equal to m(m −
1)2n−ℓ−j

(

n−ℓ−j+1
m−1

)

from Lemma 3.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

18

Since, from Lemma 4, there are less than 2ℓ−i pairs (u, v) such that v is a border

of u and since |Qu,v,w| = 2|w|−1, we get:

N1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

w∈Suff(v)\Pref(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y)]]

≤ m(m − 1)
n−m+1
∑

ℓ=3

ℓ−1
∑

i=2

i−1
∑

j=1

2ℓ−i2j−12n−ℓ−j

(

n − ℓ − j + 1

m − 1

)

≤ m(m − 1)

2
2n

n−m+1
∑

ℓ=3

ℓ−1
∑

i=2

2−i
i−1
∑

j=1

(

n − ℓ − j + 1

m − 1

)

As
(

n−ℓ−j+1
m−1

)

≤
(

n−ℓ
m−1

)

, we obtain

N1,2 ≤ m(m − 1)

2
2n

n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

) ℓ−1
∑

i=2

(i − 1)2−i

Because of the convergence of the series,
∑ℓ−1

i=2 (i − 1)2−i is bounded. Therefore, as
∑n−m+1

ℓ=3

(

n−ℓ
m−1

)

=
(

n−2
m

)

and |Sn,m| =
(

n−1
m−1

)

2n, we have N1,2 = O(n|Sn,m|).
When w is prefix of v, the associated sum B1,2 is partitioned into the following

sums:

B1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

w∈Bord(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y)]] = B′
1,2 + B′′

1,2

with

B′
1,2 =

∑

u∈A+

∑

v∈Bord(u)
|v|> 2

3
|u|

∑

w∈Bord(v)

|w|> |v|
2

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y)]]

and B′′
1,2 = B1,2 \B′

1,2. Using Lemma 4, the fact that |Qu,v,w| = 2|w|−1 and relaxing

the constraints on the lengths of the words v and w, we get

B′′
1,2 ≤

n−m+1
∑

ℓ=3

ℓ−1
∑

i=2

i−1
∑

j=1

m

(

n − ℓ

m − 1

)

2n−ℓ2ℓ− i
2
−j2j−1.

Since
∑ℓ−1

i=2 (i − 1)2−
i
2 is bounded by a constant M ,

B′′
1,2 ≤ mM2n−1

n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

)

.

Finally as
∑n−m+1

ℓ=3

(

n−ℓ
m−1

)

=
(

n−2
m

)

and |Sn,m| =
(

n−1
m−1

)

2n, B′′
1,2 = O(n |Sn,m|).

Now from Lemma 2 and since |Qu,v,w| = 2|w|−1, we get:

B′
1,2 ≤

∑

u∈A+

∑

v∈Bord(u)
|v|> 2

3
|u|

∑

w∈Bord(v)

|w|> |v|
2

2|w|−1m

(

n − |u|
m − 1

)

2n−|u|.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

19

Moreover, from Proposition 6, the words u, v and w of length respectively ℓ, i and

j are powers of a same primitive word x: u = xpx0, v = xqx0 and w = xsx0, with

p > q > s > 0 and x0 ∈ Pr(x). Let r be the length of x, then there are less than

2r such words x and since 1 ≤ r ≤ ℓ − i and i > 2
3ℓ, r < ℓ

3 . Finally the lengths

of v and w can be written i = ℓ − hr where 1 ≤ h < ℓ/3r and j = ℓ − h′r where

h < h′ < 1
2 (ℓ

r + h). Therefore

B′
1,2 ≤

n−m+1
∑

ℓ=3

ℓ
3
−1
∑

r=1

ℓ
3r
∑

h=1

1
2
(ℓ

r
+h)
∑

h′=h+1

m

(

n − ℓ

m − 1

)

2n−ℓ2r2ℓ−h′r−1

≤ m 2n−1
n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

)

ℓ
3
−1
∑

r=1

2r

ℓ
3r
∑

h=1

1
2
(ℓ

r
+h)
∑

h′=h+1

(2−r)h′

.

As
∑

ℓ
3r

h=1

∑

1
2
(ℓ

r
+h)

h′=h+1(2−r)h′ ≤ 4/22r when r ≥ 1, we obtain

B′
1,2 ≤ m2n+1

n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

)

ℓ
3
−1
∑

r=1

2−r ≤ m2n+1
n−m+1
∑

ℓ=3

(

n − ℓ

m − 1

)

Finally, since
∑n−m+1

ℓ=3

(

n−ℓ
m−1

)

=
(

n−2
m

)

and |Sn,m| =
(

n−1
m−1

)

2n, we obtain that B′
1,2 =

O(n |Sn,m|), concluding the proof.

6. Remarks on the Average Time Complexity

Note that the constructions proposed in this article to build deterministic automata

recognizing the star of a finite language or the concatenation of two finite lan-

guages mainly rely on a classical determinization of some specific nondeterminis-

tic automata. The union operation is different, but easy to perform efficiently by

just considering the union of {u1, · · · , um1
} and {v1, · · · , vm2

} as an element of

Setn1+n2,m1+m2
, and constructing the tree.

The state complexity of a language recognized by a nondeterministic automaton

with n states is, in the worst case, equal to 2n. Therefore the lower bound of the

worst-case time complexity of the determinization is Ω(2n). In such cases, it is

interesting to measure the time complexity according to the size of the output of

the algorithm and to try to design algorithms whose efficiency is a function of the

size of the result instead of the one of the input. In particular they should be fast

when the output is small, even if it is not possible to prevent the output from being

of exponential size in the worst case.

The complexity of the subset construction basically depends upon the encoding

and the storage of the set of states. At each step, for a given set of states P and a

letter a ∈ A, the algorithm computes the set P ·a of states of the initial automaton

that can be reached from a state of P by a transition labelled by a. Then it tests

whether this set has already been computed before or not.

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

20 Bibliography

Here the automata to be determinized are specific. In both constructions related

with star and concatenation, they have the useful property that for any accessible

set of states X and every letter a the size of X · a is at most twice the size of X :

• For the star, the image of a state u by a letter a in the nondeterministic

automaton is either ∅, a, ua or {a, ua}.
• For the concatenation, the image by a letter a of a state of the form (∅, X)

is (∅, X · a) and X · a is of size at most |X | since the second automaton is

deterministic. On the other hand, the image of (u, X) by a letter a is of the

form (z, X ′), where X ′ is either X · a or X · a ∪ {a}.

Hence, in both cases, computing the image of a set of states X by a letter a can be

performed in time O(P (|X |)), where P is some polynomial.

In order to store the sets of states, N + 1 balanced trees T0, · · · , TN are used,

where each tree Ti contains only subsets of size i. When a new set of states X

is computed, it is inserted in the tree T|X|. The ”size” of a state (z, X) in the

concatenation case is the size of X . It is enough to set N = n + 1 in the star case

and N = n2 + 1 in the concatenation case, in order to cover all the possible sizes.

Each balanced tree T ∈ Ti contains at most
(

N
i

)

≤ N i elements in the star case,

and at most 2
(

N
i

)

≤ 2N i in the concatenation case, as the first coordinate can be

either a word or ∅, the word being unique for a given second coordinate. Hence

the insertion and search in T can be performed in O(i log N) comparisons. As the

comparisons can be performed in polynomial time in i, the overall complexity of

building the image of X by a letter a, looking if X · a is in T|X·a| and insert it if it

is not, can be performed in time O(Q(i) log N), for some polynomial Q.

Using this, one can show the following results:

• For |A| ≥ 3, the average time complexity of the construction of DX recog-

nizing the star of a finite language X in Setn,m is in O(n log n).

• For |A| ≥ 2, the average time complexity of the construction of DX1X2

recognizing the concatenation of two finite languages X1 ∈ Setn1,m1
and

X2 ∈ Setn2,m2
is in O((n1 + n2) log n2).

The proof consists in reproducing the proofs of Theorem 16 and Theorem 14, adding

a multiplicative factor of Q(i + 1) log N .

Conclusion The main conclusion of this article is that, if one needs to manipulate

finite languages given by lists of words, using deterministic automata is very efficient

when our distribution models correctly the input data: the possible blow-up in space

almost never appears, and the deterministic automaton can be quickly computed

using standard constructions.

References

[1] F. Bassino, L. Giambruno, C. Nicaud, The average state complexity of the star of a
finite set of words is linear, International Conference on Developments in Language

June 2, 2009 12:10 WSPC/INSTRUCTION FILE IJFCS09˙soumis

Bibliography 21

Theory 2008 (DLT’08) volume 5257 in Lect. Notes Comput. Sci., 134–145. Springer,
2008.

[2] J. Berstel, D. Perrin. Theory of Codes. Academic Press, 1985.
[3] C. Campeanu, K. Culik, K. Salomaa, S. Yu. State complexity of basic operations

on finite languages. In Automata Implementation: 4th International Workshop on
Implementing automata (WIA’99), Vol. 2214 in Lect. Notes Comput. Sci., 60–70,
2001.

[4] C. Campeanu, K. Salomaa, S. Yu. State complexity of regular languages: finite versus
infinite. In C. S. Calude and G. Paun, eds., Finite Versus Infinite: Contributions to
an Eternal Dilemma, 53–73, Springer, 2000.

[5] J. Clément, J.-P. Duval, G. Guaiana, D. Perrin, G. Rindone. Parsing with a finite
dictionary. Theoretical Computer Science, 340:432–442, 2005.

[6] K. Ellul, B. Krawetz, J. Shallit, M.-W. Wang. Regular expressions: new results and
open problems. J. Autom. Lang. Combin., 10:407–437, 2005.

[7] P. Flajolet, R. Sedgewick. Analytic combinatorics, Cambridge University Press, 2009.
[8] H. Gruber, M. Holzer. On the average state and transition complexity of finite lan-

guages. Theoretical Computer Science, 387:155–166, 2007.
[9] J.E. Hopcroft, J.D. Ullman Introduction to Automata Theory, Languages and Com-

putation. Addison-Weisley Publishing Company, 1979.
[10] J. L. Ramiréz-Alfonśın. Complexity of the Frobenius problem. Combinatorica, 16:143–

147, 1996.
[11] J. L. Ramiréz-Alfonśın. The Diophantine Frobenius Problem. Oxford University Press,

2005.
[12] Jui-Yi Kao, J. Shallit, Zhi Xu. The Frobenius problem in a free monoid. Symposium

on Theoretical Aspects of Computer Science 2008 (Bordeaux), 421–432, www.stacs-

cong.org.
[13] M. Lothaire. Combinatorics on words, Vol 17 of Encyclopedia of mathematics and its

applications. Addison-Wesley, 1983.
[14] M. Lothaire. Algebraic combinatorics on words, Vol 90 of Encyclopedia of mathemat-

ics and its applications. Cambridge University Press, 2002.
[15] M. Lothaire. Applied combinatorics on words, Vol 104 of Encyclopedia of mathematics

and its applications. Cambridge University Press, 2005.
[16] A. N. Maslov. Estimates of the number of states of finite automata. Dokl. Akad. Nauk.

SSRR, 194:1266–1268, 1970. (in Russian). English translation in. Soviet. Math. Dokl.,
11:1373–1375, 1970.

[17] S. Yu, Q. Zhuang and K. Salomaa. The state complexities of some basic operations
on regular languages. Theoretical Computer Science, 125:315–328, 1994.

