
HAL Id: hal-00452749
https://hal.science/hal-00452749v1

Submitted on 2 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Average Case Analysis of Moore’s State Minimization
Algorithm.

Frédérique Bassino, Julien David, Cyril Nicaud

To cite this version:
Frédérique Bassino, Julien David, Cyril Nicaud. Average Case Analysis of Moore’s State Minimization
Algorithm.. Algorithmica, 2012, 63 (1-2), pp.509-531. �10.1007/s00453-011-9557-7�. �hal-00452749�

https://hal.science/hal-00452749v1
https://hal.archives-ouvertes.fr

Average Case Analysis of Moore’s State

Minimization Algorithm∗

Frédérique Bassino

LIPN UMR 7030, Université Paris 13 - CNRS,

99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.

Frederique.Bassino@lipn.univ-paris13.fr

Julien David

Institut Gaspard Monge, Université Paris Est,

77454 Marne-la-Vallée Cedex 2, France.

Julien.David@univ-paris-est.fr

Cyril Nicaud

Institut Gaspard Monge, Université Paris Est,

77454 Marne-la-Vallée Cedex 2, France.

Cyril.Nicaud@univ-paris-est.fr

July 29, 2009

Abstract. We prove that for the uniform distribution over accessible determin-

istic automata with n states, the average complexity of Moore’s state minimization

algorithm is in O(n log n). The bound is shown to be tight in the case of unary au-

tomata. The average complexity of this algorithm for other related distributions, such

as the uniform distribution over possibly incomplete or co-accessible automata, is also

analyzed.
Key Words. state minimization algorithms, Moore’s algorithm, average complexity,
finite automata.

1 Introduction

Deterministic automata are a convenient way to represent regular languages that can
be used to efficiently perform most of usual computations involving regular languages.
Therefore finite state automata appear in many fields of computer science, such as
linguistics, data compression, bioinformatics, etc. To a given regular language one can
associate a unique smallest deterministic automaton, called its minimal automaton.
This canonical representation of regular languages is compact and provides an easy way
to check equality between regular languages. As a consequence, state minimization

∗The authors were supported by the ANR (GAMMA - project BLAN07-2 195422)

1

algorithms that compute the minimal automaton of a regular language given by a
deterministic automaton are fundamental.

Moore proposed a solution [1] that can be seen as a sequence of partition refine-
ments. Starting from a partition of the set of states, of size n, into two parts, successive
refinements lead to a partition whose elements are the subsets of indistinguishable sets,
that can be merged to form a smaller automaton recognizing the same language. As
there are at most n−2 such refinements, each of them requiring a linear running time,
the worst-case complexity of Moore’s state minimization algorithm is quadratic.

Hopcroft’s state minimization algorithm [2] also uses partition refinements to com-
pute the minimal automaton, selecting carefully the parts that are split at each step.
Using suitable data structures, its worst-case complexity is in O(n log n). It is the best
known minimization algorithm and therefore it has been intensively studied: in [3, 4]
the authors give different proofs of its correctness, in [5, 6, 7] they prove the tightness
of the upper bound of the complexity for various family of automata, in [8, 9] they give
a precise description of the data structures that are needed to reach the O(n log n)
complexity, and in [10, 11] they present some variations of the algorithm for incomplete
automata. Note that Hopcroft and Ullman described another minimization algorithm
in [12], which is much easier to implement: it tests, for every pair of states of the input
automaton, whether the two states are equivalent or not. Its complexity is Θ(n2).

In certain cases where the set of input automata is restricted by the specification
of properties, there exist algorithms which compute the minimal automaton in linear
time: see [13] for acyclic automata, [14] for unary automata and [15] for local automata.

Finally Brzozowski algorithm [16, 17] is different from the other ones. Its inputs
may be non-deterministic automata. It is based on two successive determinization
steps, and though its worst-case complexity is proved to be exponential, it has been
noticed that it is is often sub-exponential in practice. The reader is invited to con-
sult [18], which presents a taxonomy of minimization algorithms.

In this paper we study the average time complexity of Moore’s algorithm. From
an experimental point of view, the average number of partition refinements increases
very slowly as the size of the input grows (Fig.1).

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 it

er
at

io
ns

Size of Automata

Moore
Standard Deviation

Figure 1: The experimental results were obtained with the C++ library REGAL

(available at: http://regal.univ-mlv.fr/) to randomly generate accessible deter-

ministic automata [19, 20, 21]. For each size the values are computed from 20 000

random automata over a 2-letter alphabet.

In the following we mainly prove that in average, for the uniform distribution

2

over accessible deterministic automata with n states, Moore’s algorithm performs only
O(log n) refinements, thus its average complexity is O(n log n).

After recalling the basics of minimization of automata in Section 2, we establish
some results on Moore’s algorithm applied to minimal automata in Section 3. We prove
in Section 4 that the average complexity of Moore’s algorithm is O(n log n) (Theorem
2). In Section 5, we show that this bound is tight when the alphabet is unary, and
study some generalizations of Theorem 2 to other distributions over natural classes of
automata. Finally, we propose in Section 6 a conjecture about a tight upper bound
for the average time complexity of Moore’s algorithm when the alphabet in not unary.

A preliminary version of this work has been presented in [22].

2 Preliminaries

This section is devoted to basic notions related to the minimization of automata.
We refer the reader to the literature for more details about this topic. Only a few
definitions and results that will be useful for our purpose are recalled here.

2.1 Definitions and notations

A finite deterministic automaton A = (A, Q, ·, q0, F) is a quintuple where Q is a finite
set of states, A = {a1, . . . , ak} is a finite set of letters called alphabet, the transition
function · is a mapping from Q × A to Q, q0 ∈ Q is the initial state and F ⊂ Q is the
set of final states. An automaton is complete when its transition function is total. The
transition function can be extended by morphism to all words of A∗: p · ε = p for any
p ∈ Q and for any u, v ∈ A∗, p · (uv) = (p · u) · v. A word u ∈ A∗ is recognized by an
automaton when p · u ∈ F . The set of all words recognized by A is denoted by L(A).
An automaton is accessible when for any state p ∈ Q, there exists a word u ∈ A∗ such
that q0 · u = p.

A transition structure is an automaton where the set of final states is not specified.
Given such a transition structure T = (A,Q, ·, q0) and a subset F of Q, we denote by
(T , F) the automaton (A,Q, ·, q0, F). For a given accessible deterministic transition
structure with n states there are exactly 2n distinct accessible deterministic automata
that can be built from this transition structure. Each of them corresponds to a choice
of set of final states.

In the following we only consider accessible complete deterministic automata and
accessible complete deterministic transition structures, except in the presentation of
the generalizations of the main theorem in Section 5. Consequently these objects will
often just be called respectively automata or transition structures. The set Q of states
of an n-state transition structure will be denoted by {1, . . . , n}.

The cardinality of a finite set E is denoted by |E|. For a boolean condition Cond,
the Iverson bracket [[Cond]] is equal to 1 if the condition Cond is satisfied and 0
otherwise.

2.2 Myhill-Nerode Equivalence

Let A = (A, Q, ·, q0, F) be an automaton. For any nonnegative integer i, two states
p, q ∈ Q are i-equivalent, denoted by p ∼i q, when for all words u of length less
than or equal to i, [[p · u ∈ F]] = [[q · u ∈ F]]. Two states are equivalent when for all
u ∈ A∗, [[p · u ∈ F]] = [[q · u ∈ F]]. This equivalence relation is called Myhill-Nerode
equivalence [23].

3

Recall that an equivalence relation ≡ defined on the set of states Q of a determin-
istic automaton is said to be right invariant when

for all u ∈ A∗ and for all p, q ∈ Q, p ≡ q ⇒ p · u ≡ q · u.

The following proposition summarizes the properties of Myhill-Nerode equivalence
that will be used in the next sections.

Proposition 1. Let A = (A, Q, ·, q0, F) be a deterministic automaton with n states.
The following properties hold:

1. For all i ∈ N, ∼i+1 is a partition refinement of ∼i, that is, for all p, q ∈ Q, if
p ∼i+1 q then p ∼i q.

2. For all i ∈ N and for all p, q ∈ Q, p ∼i+1 q if and only if p ∼i q and for all
a ∈ A, p · a ∼i q · a.

3. If, for some i ∈ N, (i + 1)-equivalence is equal to i-equivalence then for every
j ≥ i, j-equivalence is equal to Myhill-Nerode equivalence.

4. (n − 2)-equivalence is equal to Myhill-Nerode equivalence.

5. Myhill-Nerode equivalence is right invariant.

Let A = (A, Q, ·, q0, F) be an automaton and ≡ be a right invariant equivalence
relation on Q. The quotient automaton of A by ≡ is the automaton

(A/≡) = (A,Q/≡, ∗, [q0], {[f], f ∈ F}),

where Q/≡ is the set of equivalent classes, [q] is the class of q ∈ Q, and ∗ is defined for
any a ∈ A and any q ∈ Q by [q] ∗ a = [q · a]. The correctness of this definition relies
on the right invariance of the equivalence relation ≡.

Theorem 1. For any accessible complete deterministic automaton A, the automaton
A/∼ is the unique smallest complete deterministic automaton (in terms of the number
of states) that recognizes the same language as the automaton A. It is called the
minimal automaton of L(A).

The uniqueness of the minimal automaton is up to labelling of the states. Theo-
rem 1 shows that the minimal automaton is a fundamental notion in language theory:
It is the most space efficient representation of a regular language by a deterministic au-
tomaton, and its uniqueness defines a bijection between regular language and minimal
automata.

2.3 Moore’s State Minimization Algorithm

In this section we describe an algorithm due to Moore [1] which computes the minimal
automaton of a regular language represented by a deterministic automaton. The
analysis of the average complexity of this algorithm is the main purpose of this article.

Recall that Moore’s algorithm builds the partition of the set of states of the input
automaton corresponding to Myhill-Nerode equivalence. It mainly relies on Properties
2 and 3 of Proposition 1: The partition π is initialized according to 0-equivalence
∼0, then at each iteration the partition corresponding to (i + 1)-equivalence ∼i+1

is computed from the one corresponding to i-equivalence ∼i using Property 2. The
algorithm halts when no new partition refinement is obtained, and the result is Myhill-
Nerode equivalence according to Property 3. The minimal automaton can then be

4

Algorithm 1: Moore’s algo-

rithm
if F = ∅ then1

return (A, {1}, ∗, 1, ∅)2

if F = {1, . . . , n} then3

return (A, {1}, ∗, 1, {1})4

forall p ∈ {1, . . . , n} do5

π′[p] = [[p ∈ F]]6

π = undefined7

while π 6= π′ do8

π = π′
9

compute π′ from π10

return the quotient of A by π11

In this description of Moore’s algorithm, ∗
denotes the function such that 1∗a = 1 for
all a ∈ A. Lines 1-4 correspond to the spe-
cial cases where F = ∅ or F = Q. In the
process π′ is the new partition and π the
former one. Lines 5-6 is the initialization
of π′ to the partition of ∼0, π is initially
undefined. Lines 8-10 form the main loop
of the algorithm where the new partition is
computed, using the second algorithm be-
low. The number of iterations of Moore’s
algorithm is the number of times those lines
are executed.

The computation of the new partition
is done using the following property on
associated equivalence relations:

p ∼i+1 q ⇔

(

p ∼i q,

∀a ∈ A p · a ∼i q · a.

To each state p is associated a signa-
ture s[p] such that p ∼i+1 q if and
only if s[p] = s[q]. The states are then
sorted according to their signature, in
order to compute the new partition.
The use of a lexicographic sort provides
a complexity in Θ(kn) for this part of
the algorithm.

Algorithm 2: Computing π′ from π

forall p ∈ {1, . . . , n} do1

s[p] = (π[p], π[p · a1], . . . , π[p ·ak])2

compute the permutation σ that3

sorts the states according to s[]

i = 04

π′[σ(1)] = i5

forall p ∈ {2, . . . , n} do6

if s[p] 6= s[p − 1] then i = i + 17

π′[σ(p)] = i8

return π′
9

Figure 2: Description of Moore’s algorithm

computed from the resulting partition since it is the quotient automaton of the input
automaton by Myhill-Nerode equivalence. The algorithm is detailed in Figure 2.

The worst-case time complexity of Moore’s algorithm is in Θ(n2). The following re-
sult is a more precise statement about the worst-case complexity of this algorithm that
will be used in the proof of the main theorem (Theorem 2). For sake of completeness
we also give a justification of this statement.

For any integer n ≥ 1 and any m ∈ {0, . . . , n − 2}, we denote by A(m)
n the set of

automata with n states for which m is the smallest integer such that m-equivalence
∼m is equal to Myhill-Nerode equivalence. We also denote by Moore(A) the number
of iterations of the main loop when Moore’s algorithm is applied to the automaton A.

Lemma 1. For any automaton A of A(m)
n , the following properties hold:

• The number of iterations Moore(A) of the main loop in Moore’s algorithm is
equal 0 if L(A) = ∅ or L(A) = A∗ and is equal to m + 1 otherwise.

• Moore(A) is always less than or equal to n − 1.

5

• The worst-case time complexity W(A) of Moore’s algorithm is uniformly in
Θ((m + 1)n) for m ∈ {0, . . . , n− 2}, or equivalently there exist two positive real
numbers C1 and C2 independent of n and m such that C1(m + 1)n ≤ W(A) ≤
C2(m + 1)n.

Proof. The loop is iterated exactly m+1 times when the set F of final states is neither
empty nor equal to {1, . . . , n}. Moreover from Property 4 of Proposition 1 the integer
m is less than or equal to n− 2. If F is empty or equal to {1, . . . , n}, then necessarily
m = 0, and the time complexity of the determination of the size of F is Θ(n).

The initialization and the construction of the quotient are both done in Θ(n). The
complexity of each iteration of the main loop is in Θ(n): this can be achieved using
a lexicographic sort algorithm. Moreover in this case the constants C1 and C2 do not
depend on m, proving the uniformity of both the upper and lower bounds.

Note that Lemma 1 gives a proof that the worst-case complexity of Moore’s al-
gorithm is in O(n2), as there are no more than n − 1 iterations in the process of the
algorithm. To be more precise, the worst-case complexity of the algorithm is in Θ(n2),
as it is shown by the automaton of Figure 3, for instance.

1 2 n−1 n
A A . . . A A

A

Figure 3: The minimal automaton of the language An−1A∗. The states 1 or 2
are (n − 3)-equivalent, but not (n − 2)-equivalent. Moore’s algorithm performs
n − 1 iterations before halting.

3 Moore’s Algorithm on Minimal Automata

Before analyzing the average behavior of Moore’s algorithm, which is the main purpose
of this paper, we establish two results on what happens when it is used on minimal
automata. First, we prove that the number of iterations of Moore’s algorithm only
depends on the recognized language, and therefore it is the same for all deterministic
automata recognizing the same language. Next we establish a lower bound of the
number of iterations of Moore’s algorithm when it is applied to minimal automata of
size, that will be useful in the forthcoming discussions.

Lemma 2. The number of iterations of Moore’s algorithm applied to any accessible
deterministic automaton is equal to the number of iterations of this algorithm when it
is applied to the associated minimal automaton.

Proof. Let A = (A,Q, ·, q0, F) be the automaton and Amin = (A,Q/ ∼, ∗, [q0], F
′)

be the associated minimal automaton. If the language recognized by A and Amin is
either A∗ or ∅, from Lemma 1 Moore(A) = Moore(Amin) = 0.

Otherwise let m be the smallest integer such that ∼m=∼ for the automaton A.
Then from Lemma 1 Moore(A) = m + 1. Moreover by definition of ∼m one has

Moore(A) = m + 1 = min{i ∈ N |∀(p, q) ∈ Q2 such that p ≁ q,

∃u ∈ A≤i, [[p · u]] 6= [[q · u]]} + 1.

6

As by definition p ≁ q if and only if [p] 6= [q] and since for all p ∈ Q and all u ∈ A∗,
[[p · u]] = [[[p] ∗ u]], one can write

Moore(A) = min{i ∈ N |∀(p, q) ∈ Q2 such that [p] 6= [q],

∃u ∈ A≤i, [[[p] ∗ u]] 6= [[[q] ∗ u]]} + 1.

Thus Moore(A) = Moore(Amin), concluding the proof.

According to the previous lemma, it is interesting to study the behavior of Moore’s
algorithm when applied on minimal automata. The worst-case complexity of the
algorithm is still Θ(n2), since the automaton depicted in Figure 3 is minimal. As for
a minimal automaton it is guaranteed that all states are alone in their equivalence
class, a minimum number of iterations in the algorithm is required to distinguish all
of them, as it is proved in the following proposition.

Proposition 2. Moore’s algorithm applied on a minimal automaton of size n has a
complexity in Ω(k

log k
n log log n) for an alphabet of size k ≥ 2 and in Ω(n log n) for a

one-letter alphabet.

Proof. The algorithm ends when each state of the minimal automaton A is isolated
in a subset of the partition. The number of subsets is equal to the number of states in
A. For any integer i and any state p, consider the mapping φ

(i)
p : A≤i → {0, 1} defined

by φ
(i)
p (u) = [[p · u]]. As there are kj words of length j, the number of distinct words

of length at most i, for a fixed integer i, is

i
X

j=0

kj =

(

ki+1−1
k−1

when k ≥ 2,

i + 1 when k = 1.

Therefore, there are at most 2
k

i+1−1
k−1 (resp. 2i+1) distinct φ

(i)
p , for finite alphabets of

size at least two (resp. equal to one). As p ∼i q if and only if φ
(i)
p = φ

(i)
q , there are

at most 2
k

i+1−1
k−1 (resp. 2i+1) distinct subsets in the partition at the i-th iteration of

Moore’s algorithm. Since the algorithm halts when the n parts are computed, one has
8

<

:

n ≤ 2
kMoore(A)+1−1

k−1 when k ≥ 2,

n ≤ 2Moore(A)+1 when k = 1,

concluding the proof since the cost of an iteration is Θ(kn).

4 Average Case Analysis for Accessible Deterministic Complete Automata

4.1 Probabilistic Model and Main Result

The choice of the distribution is crucial for average case analysis of algorithms. Here
we are considering an algorithm that builds the minimal automaton of the language
recognized by a given accessible complete deterministic one. We focus our study on
the average complexity of this algorithm for the uniform distribution over accessible
complete deterministic automata with n states and as n tends toward infinity. Some
extensions of the main result to other distributions are given in Section 5.

Note that for the uniform distribution over automata with n states, the probability
for a given set to be the set of final states is equal to 2n. Therefore, even if it is possible,
the probability that all states are final (or non-final) is exponentially unlikely.

7

The average case analysis of algorithms handling automata is often difficult. The
general framework of this domain [24] is based on a good understanding of the enu-
meration properties of studied objects, most often given by generating functions. For
accessible deterministic automata, this first step is already complex. Although the
asymptotic number of such automata is known, it can not be easily handled: a result
due to Korshunov [25], rewritten in terms of Stirling numbers of the second kind in [19]
and generalized to possibly incomplete automata in [21], is that the number of acces-
sible deterministic automata with n states is asymptotically equal to αβnn(|A|−1)n

where α and β are constants depending on the cardinality |A| of the alphabet, and
α depends on whether we are considering complete automata or possibly incomplete
automata.

As we shall see in the analysis presented in the following, some good properties
of Myhill-Nerode equivalence allow us to work independently and uniformly on each
transition structure. In this way the enumeration problem mentioned above can be
avoided. Nevertheless it should be necessary to enumerate some subsets of this set
of automata in order to obtain a more precise result. One refers the readers to the
discussion of Section 6 for more details.

The main result of this article is the following theorem. The remainder of this
section is devoted to its proof.

Theorem 2. For any fixed integer k ≥ 1 and for the uniform distribution over the ac-
cessible complete deterministic automata of size n over a k-letters alphabet, the average
complexity of Moore’s state minimization algorithm is O(n log n).

Note that this bound is valid for any size k ≥ 1 of the alphabet considered. More-
over, as we shall see in Section 5, it is tight for a unary alphabet.

4.2 Dependency Graph

Before proving Theorem 2. we introduce some definitions and preliminary results. Let
T be a fixed transition structure with n states and ℓ be an integer such that 1 ≤ ℓ < n.
Let p, q, p′, q′ be four states of T such that p 6= q and p′ 6= q′.

Define Fℓ(p, q, p′, q′) as the set of sets of final states F for which in the automaton
(T , F) the states p and q are (ℓ − 1)-equivalent, but not ℓ-equivalent, because of a
word of length ℓ mapping p to p′ and q to q′ where p′ and q′ are not 0-equivalent. In
other words Fℓ(p, q, p′, q′) is the following set:

Fℓ(p, q, p′, q′) = {F ⊂ {1, . . . , n} | for (T , F), p ∼ℓ−1 q, [[p′ ∈ F]] 6= [[q′ ∈ F]],

∃u ∈ Aℓ, p · u = p′ and q · u = q′}

Note that when ℓ grows, the definition of Fℓ is more constrained and consequently
there are fewer non-empty sets Fℓ.

With the set Fℓ(p, q, p′, q′) one can define the undirected graph Gℓ(p, q, p′, q′), called
the dependency graph, as follows:

• its set of vertices is {1, . . . , n}, the set of states of T ;

• there is an edge (s, t) between two vertices s and t if and only if for all F ∈
Fℓ(p, q, p′, q′), [[s ∈ F]] = [[t ∈ F]].

The dependency graph contains some information that is a basic ingredient of the
proof: it is a convenient representation of necessary conditions for a set of final states

8

to be in Fℓ(p, q, p′, q′), that is, for Moore’s algorithm to require more than ℓ iterations
because of p, q, p′ and q′. These necessary conditions will be used to give an upper
bound of the cardinality of Fℓ(p, q, p′, q′) in Lemma 6.

A first bound on the cardinality of Fℓ(p, q, p′, q′) is given by the following simple
result:

Lemma 3. If Gℓ(p, q, p′, q′) has m connected components, then |Fℓ(p, q, p′, q′)| ≤ 2m.

Proof. It directly follows from the definition of Gℓ(p, q, p′, q′): two states in the same
connected components must be both final or both not final for the set of final states
to be in Fℓ(p, q, p′, q′).

4.3 Bounding Above the Number of Connected Components

For this part, we assume that Fℓ(p, q, p′, q′) is not empty.
In the following, we extract a big enough acyclic subgraph (i.e., a forest) from

Gℓ(p, q, p′, q′), that gives an upper bound of the number of connected components.
For any integer ℓ ∈ {1, . . . , n−1} and any states p, q, p′, q′ ∈ {1, . . . , n} with p 6= q,

p′ 6= q′, let u = u1 . . . uℓ with ui ∈ A be the smallest (for the lexicographic order) word
of length ℓ such that p · u = p′ and q · u = q′. Note that every word u of length ℓ such
that p · u = p′ and q · u = q′ can be used. But a non-ambiguous choice of this word u
guarantees a complete description of the following construction.

For every i ∈ {0, . . . , ℓ − 1}, let Gℓ,i be the subgraph of Gℓ(p, q, p′, q′) whose edges
are defined as follows. An edge (s, t) is in Gℓ,i if and only if there exists a prefix v of
u of length less than or equal to i such that s = p · v and t = q · v. In other words the
edges of Gℓ,i are exactly the edges (p · v, q · v) between the states p · v and q · v where
v ranges over the prefixes of u of length less than or equal to i. Such edges belong
to Gℓ(p, q, p′, q′) since p ∼ℓ−1 q. An illustration of the arguments used in the proof is
presented in Figure 4.

Lemma 4. The following properties hold for the subgraphs Gℓ,i:

1. For each i ∈ {0, . . . , ℓ − 2}, Gℓ,i is a strict subgraph of Gℓ,i+1.

2. For each i ∈ {0, . . . , ℓ − 1}, Gℓ,i contains i + 1 edges.

3. For each i ∈ {0, . . . , ℓ − 1}, Gℓ,i contains no loop.

4. For each i ∈ {0, . . . , ℓ − 1}, if there exists a path in Gℓ,i from s to t, then
s ∼ℓ−1−i t in every automaton (T , F) with F ∈ Fℓ(p, q, p′, q′).

Proof. We prove each of the properties of Lemma 4.

1. The graph Gℓ,i+1 is obtained from Gℓ,i by adding an edge from p · w to q · w,
where w is the prefix of u of length i + 1. This edge does not belong to Gℓ,i,
otherwise there would exist a strict prefix z of w such that either p · z = p · w
and q · z = q ·w or p · z = q ·w and q · z = p ·w. In this case, let w′ be the word
such that u = ww′, then either p · zw′ = p′ and q · zw′ = q′, or p · zw′ = q′ and
q · zw′ = p′. Therefore there would exist a word of length less than ℓ, zw′, such
that, for F ∈ Fℓ(p, q, p′, q′), [[p · zw′ ∈ F]] 6= [[q′ · zw′ ∈ F]] which is not possible
since p ∼ℓ−1 q and Fℓ(p, q, p′, q′) is not empty.

2. It is a consequence of Property 1 that can be established by induction on i since
Gℓ,0 has only one edge between p and q.

3. For any automaton (T , F) with F ∈ Fℓ(p, q, p′, q′), which is not empty, p ≁ q.
Hence for any prefix v of u, p · v 6= q · v.

9

a

b

a

b

a

b

a

b

b

a

b

a

a,b

b

b

a

a
1

2 3 4 5

6 7 8 9

abb

a ab

abba

ε

b

1

2 3 4 5

6 7 8 9

(a) (b)

Figure 4: Illustration of the construction for n = 9, ℓ = 5, p = 3, q = 7, p′ = 3
and q′ = 8 on a given transition structure. (a) u = abbaa is the smallest word
of length 5, for the lexicographic order, such that 3 · u = 3 and 7 · u = 8. The
set F5(3, 7, 3, 8) is not empty, as it contains {4, 8}. The bold transitions are
the ones followed when reading u from p and from q. (b) The construction
of an acyclic subgraph of G5(3, 7, 3, 8) with 5 edges. To each strict prefix v of
u = abbaa is associated an edge between 3 ·v and 7 ·v. It encodes some necessary
conditions for a set of final states F to be in F5(3, 7, 3, 8), as two states in the
same connected component must be either both final or both not final.

4. The property is proved by induction on i ∈ {0, . . . , ℓ−1}. For i = 0, Gℓ,0 contains
only one edge, between p and q, and p ∼ℓ−1 q. Assume that the property holds
for i ∈ {0, . . . , ℓ−2}. Let x and y be two vertices such that there exists a simple
path from x to y in Gℓ,i+1. If this path is in Gℓ,i, i.e. it does not use the added
edge, then x ∼ℓ−1−i y by induction hypothesis, hence x ∼ℓ−2−i y. Otherwise
the path use the added edge between p · v and q · v, where v is the prefix of
length i + 1 of u. Assume by symmetry that the path reach p · v first. Then the
part of the path between x and p · v belongs to Gℓ,i and therefore x ∼ℓ−1−i p · v
by hypothesis. Similarly, y ∼ℓ−1−i q · v. But p · v ∼ℓ−2−i q · v since p ∼ℓ−1 q.
Hence x ∼ℓ−2−i y, concluding the proof by induction.

So the four properties are established.

Lemma 5. The subgraph Gℓ,ℓ−1 is an acyclic subgraph of Gℓ(p, q, p′, q′) with ℓ edges.

Proof. We first prove that Gℓ,ℓ−1 is acyclic. Assume that it is not true, and let j ≥ 1
be the smallest integer such that Gℓ,j contains a cycle. By Property 1 of Lemma 4,
Gℓ,j is obtained from Gℓ,j−1 by adding a new edge between p · w and q ·w where w is
the prefix of length j of u. As Gℓ,j−1 is acyclic, this edge forms a cycle in Gℓ,j . Hence
in Gℓ,j−1 there already exists a path between p ·w and q ·w. Therefore by Property 4,
p · w ∼ℓ−j q · w in any automaton (T , F) with F ∈ Fℓ(p, q, p′, q′). Let w′ be the word
such that u = ww′. The length of w′ is ℓ − j, hence p · u and q · u are both in F or
both not in F , which is not possible since F ∈ Fℓ(p, q, p′, q′).

Thus Gℓ,ℓ−1 is an acyclic subgraph of Gℓ(p, q, p′, q′). It contains exactly ℓ edges
according to Property 2, which concludes the proof.

10

Lemma 6. Given a transition structure T of size n ≥ 1 and an integer ℓ with 1 ≤
ℓ < n, for all states p, q, p′, q′ of T with p 6= q and p′ 6= q′ the following result holds:

|Fℓ(p, q, p′, q′)| ≤ 2n−ℓ.

Proof. If Fℓ(p, q, p′, q′) is empty, the result holds. Otherwise, from Lemma 5, there
exists an acyclic subgraph G of Gℓ(p, q, p′, q′) with ℓ edges. Hence, G contains a forest
with ℓ edge, and therefore has at most n − ℓ connected components. We conclude
using Lemma 3.

4.4 Proof of Theorem 2

Proposition 3. Let k ≥ 1. There exists a positive real constant C such that for any
positive integer n and any deterministic complete transition structure T of size n over
a k-letters alphabet, for the uniform distribution over the sets F of final states, the
average number of iterations of the main loop of Moore’s algorithm applied to (T , F)
is bounded above by C log n.

Proof. Let T be a complete deterministic transition structure of size n over a k-letters
alphabet. Denote by F≥ℓ the set of sets F of final states such that the execution of
Moore’s algorithm on (T , F) requires more than ℓ iterations or equivalently such that

(T , F) ∈ A(m)
n with m ≥ ℓ (see Section 2.3 for notation).

A necessary condition for F to be in F≥ℓ is that there exist two states p and q
with p 6= q and such that p ∼ℓ−1 q and p 6∼ℓ q. Therefore there is a word u of length
ℓ such that [[p · u]] 6= [[q · u]]. Hence F ∈ Fℓ(p, q, p · u, q · u) and

F≥ℓ =
[

p,q,p′,q′∈{1,...,n}

p 6=q, p′ 6=q′

Fℓ(p, q, p′, q′).

In this union the sets Fℓ(p, q, p′, q′) are not disjoint, but this characterization of F≥ℓ

is precise enough to obtain a useful upper bound of the cardinality of F≥ℓ. From the
description of F≥ℓ we get

|F≥ℓ| ≤
X

p,q,p′,q′∈{1,...,n}

p 6=q, p′ 6=q′

|Fℓ(p, q, p′, q′)|.

Using Lemma 6 and estimating the number of choices of the four points p, q, p′, q′, we
have

|F≥ℓ| ≤ n(n − 1) n(n − 1)2n−ℓ ≤ n42n−ℓ. (1)

Moreover for a fixed integer ℓ and for the uniform distribution over the sets F of final
states, the average number of iterations of the main loop of Moore’s algorithm is by
definition

1

2n

X

F⊂{1,...,n}

Moore(T , F) =
1

2n

X

F∈F<ℓ

Moore(T , F) +
1

2n

X

F∈F≥ℓ

Moore(T , F),

where F<ℓ is the complement of F≥ℓ in the set of all subsets of states. From Lemma 1,
for any F ∈ F<ℓ, Moore(T , F) ≤ ℓ. Therefore, since |F<ℓ| ≤ 2n

1

2n

X

F∈F≤ℓ

Moore(T , F) ≤ ℓ.

11

Bounding above Moore(T , F) when F ∈ F≥ℓ with the help of Lemma 1 and estimat-
ing |F≥ℓ| with Equation (1) we have

1

2n

X

F⊂F≥ℓ

Moore(T , F) ≤ n52−ℓ.

Finally, choosing ℓ = ⌈5 log2 n⌉, we obtain that there exists positive real C such
that

1

2n

X

F⊂{1,...,n}

Moore(T , F) ≤ ⌈5 log2 n⌉ + n52−⌈5 log2 n⌉ ≤ C log n,

concluding the proof.

Now we prove Theorem 2: Let Tn denote the set of accessible complete determin-
istic transition structures with n states. For a transition structure T ∈ Tn, there are
exactly 2n distinct automata (T , F).

Recall that the set An of accessible complete deterministic automata with n states
is in bijection with the pairs (T , F) consisting of an accessible complete determinis-
tic transition structure T ∈ Tn with n states and a subset F ⊂ {1, . . . , n} of final
states. Therefore, for the uniform distribution over the set An, the average number of
iterations of the main loop when Moore’s algorithm is applied to an element of An is

1

|An|

X

A∈An

Moore(A) =
1

2n|Tn|

X

T ∈Tn

X

F⊂{1,...,n}

Moore(T , F)

Using Proposition 3 we get

1

|An|

X

A∈An

Moore(A) ≤
1

|Tn|

X

T ∈Tn

C log n ≤ C log n.

Hence the average number of iterations is bounded above by C log n, and from Lemma 1
the average complexity of Moore’s algorithm is bounded above by C1Cn log n, con-
cluding the proof.

5 Related Results

5.1 Tightness for Unary Automata

In this section we prove that the bound O(n log n) is optimal for the uniform distri-
bution on unary automata with n states, that is, automata on a one-letter alphabet.

Proposition 4. For the uniform distribution on unary automata with n states, the
average time complexity of Moore’s state minimization algorithm is Θ(n log n).

To prove Proposition 4 we use the following result from [14]:

Proposition 5 ([14]). For the uniform distribution on unary automata with n states,
the probability for an automaton to be minimal is asymptotically equivalent to 1

2
.

Proof. (of Proposition 4) From Theorem 2 this time complexity is O(n log n). It
remains to study the lower bound of the average time complexity of Moore’s algorithm.

From Proposition 2, there exists a positive constant C > 0 such that, for any
n ≥ 1, the complexity of Moore’s algorithm applied to a unary automaton with n
states is at least Cn log n. Let mn denote the number of minimal unary automata

12

with n states and an the number of accessible complete deterministic unary automata
with n states. Taking into account only the contribution of minimal automata, the
average complexity of Moore’s algorithm is bounded below by

mn

an

Cn log n ∼
1

2
Cn log n,

using Proposition 5 to compute the equivalent. Hence the average complexity is in
Ω(n log n), concluding the proof.

5.2 Binomial Distribution for the Sets of Final States

A natural extension of Theorem 2 consists in using a Bernoulli distribution for the
probability of each state to be final. Then the number of final states has a binomial
distribution.

Theorem 3. Let T be an accessible complete deterministic transition structure with
n state over a k-letters alphabet. For the distribution over the sets of final states where
each state as a probability x ∈]0, 1[to be final, the average complexity of Moore’s state
minimization algorithm is in O(n log n).

Proof. Let x be a fixed real number with 0 < x < 1. Let T be a transition structure
with n states. Consider the distribution over the sets of final states for T defined such
that each state as a probability x to be final. The probability associated to a given
subset F of {1, . . . , n} is then PF = x|F |(1 − x)n−|F |. For fixed values p, q, p′, q′ and
ℓ, let Pℓ(p, q, p′, q′) be the probability for a set of final states to be in Fℓ(p, q, p′, q′).
Since Gℓ(p, q, p′, q′) only models a subset of constraints on the sets of final states of
Fℓ(p, q, p′, q′), Pℓ(p, q, p′, q′) is less than the probability for a set of final states to verify
the constraints implied by the graph.

Let m be the number of connected components in Gℓ,ℓ−1 containing at least two
vertices and let c1, . . . , cm be the sizes of these components. Since Gℓ,ℓ−1 is acyclic
and contains exactly ℓ edges, the following equality holds:

m
X

i=1

ci = m + ℓ

The probability for a random set to satisfy the conditions implied by the i-th connected
component is equal to xci + (1 − x)ci (either all states of the subset are final, either
none). Let r be the real number defined by r = max{x, 1−x} ∈ [1/2, 1[. For all n ≥ 1,
xn + (1 − x)n ≤ rn−1(x + 1 − x) = rn−1. Hence

Pℓ(p, p′, q, q′) ≤ Πm
i=1r

ci−1 = r
Pm

i=1(ci−1) = rℓ

For a fixed transition structure T , the probability for a set of final states F to be
such that Moore(T , F) ≥ ℓ is at most

X

p,q,p′,q′∈{1,...,n}

p 6=q, p′ 6=q′

Pℓ(p, p′, q, q′) ≤ n4rℓ

Taking ℓ = 5 logr n concludes the proof.

13

5.3 Possibly Incomplete Automata

We assume that in order to apply Moore’s algorithm on an incomplete automaton,
the first step consists in adding a sink state. From an average point of view, the
distribution has been altered a bit, but not enough to change the result.

Proposition 6. For the uniform distribution over the accessible possibly incomplete
deterministic automata with n states on a k-letters alphabet, the average complexity of
Moore’s state minimization algorithm is in O(n log n).

Proof. Let T be a possibly incomplete transition structure, and T ′ be the complete
transition structure associated with T (which can be equal to T if it was already
complete). From Lemma 6 and since there are n or n + 1 states in T ′, there are at
most 2n+1−ℓ elements in Fℓ(p, p′, q, q′), for any ℓ ≥ 1 and any states p, p′, q, q′ such
that p 6= p′ and q 6= q′. Note that this upper bound is a bit less tight than in the case
of complete automata, since the sink state cannot be final. Nonetheless the bound is
enough precise to prove the negligible contribution of the set of final states for which
Moore’s algorithm performs at least ℓ iterations, when ℓ = ⌈5 log n⌉, as in the proof of
Theorem 2.

5.4 Co-accessible Automata

When considering the uniform distribution on co-accessible automata with n states,
the upper bound of the number of iterations of Moore’s algorithm still holds. The
main reason is that the proportion of co-accessible automata amongst accessible ones
is big enough as it can be proved using the following result by Korshunov [26]:

Theorem 4 ([26]). There exists a real constant 0 < c < 1, depending on the size
of the alphabet, such that for the uniform distribution over the accessible complete
deterministic automata with n states, the probability for an automaton to be strongly
connected tends toward c as n tends toward infinity.

Proposition 7. For the uniform distribution over the accessible and co-accessible
complete deterministic automata with n on a k-letters alphabet, the average complexity
of Moore’s state minimization algorithm is in O(n log n).

Proof. Let Cn denote the set of accessible and co-accessible automata with n states.
Let C<ℓ

n and C≥ℓ
n denote the subsets of Cn consisting of the automata A such that

respectively Moore(A) < ℓ and Moore(A) ≥ ℓ.
The number of n-state automata A such that Moore(A) ≥ ℓ is in O(1

n
|An|)

when ℓ = ⌈5 log n⌉, using the same arguments as in the proof of Proposition 3. Hence
|C≥ℓ

n | ≤ C 1
n
|An| for some constant C > 0.

Therefore the average number of iterations is, when ℓ = ⌈5 log n⌉,

1

|Cn|

X

A∈Cn

Moore(A) =
1

|Cn|

X

A∈C<ℓ
n

Moore(A) +
1

|Cn|

X

A∈C
≥ℓ
n

Moore(A)

≤
|C<ℓ

n |

|Cn|
ℓ + n

|C≥ℓ
n |

|Cn|
≤ ℓ +

n

|Cn|
O

„

1

n
|An|

«

Moreover as a consequence of Theorem 4, |An|/|Cn| = O(1), and thus

1

|Cn|

X

A∈Cn

Moore(A) ≤ ℓ + O(1) = O(log n),

14

concluding the proof.

6 Discussion

6.1 Fixed Number of Final States

All the distributions studied in this article produce automata having a large number of
final states with high probability. It is quite natural, for some applications, to consider
distributions of automata with only a few final states. In that case the method we
used is unlikely to work, as illustrated by the following result.

Proposition 8. For the uniform distribution over unary automata with exactly one
final state, the average time complexity of Moore’s state minimization algorithm is in
Θ(n2).

Proof. As it is described in [14] the transition structure of a unary automaton U over
the alphabet {a} is characterized by the number of states n and the arrival state l
of the transition n · a. If l = 1, meaning that the transition leaving the last state of
the automaton ends in the first state, the automaton is a loop. Otherwise a unary
automaton contains both a loop and a queue, where the loop is the set of states
L = {l, .., n} and the queue is the set Q \ L.

Let U be a unary automaton with n states and one final state f . For any state p,
let ip be the greatest integer such that for all j ∈ N with j < ip, p · aj is not final, if
it exists, and 0 otherwise. Let q be the state such that iq is maximal. If iq ≥ 1 then,
from the shape of the automaton, iq·a = iq − 1. In particular Moore(U) = iq + 1, as
q and q ·a are iq − 1 equivalent, but not iq equivalent. This is also true if iq = 0, when
the initial state is also the final state and U is not a loop: Moore(U) = 1.

The states that maximize iq can be either the initial state 1 or the state f · a (or
both). If f /∈ L, i.e. f < l, then the initial state maximizes iq and Moore(U) =
i1 + 1 = (f − 1) + 1 = f . If f is in the loop, one has i1 = f − 1 and if ·a = n− l, since
the length of the loop is n− l + 1. Hence when f ∈ L Moore(U) = max{f, n− l + 1}.

The number of unary automata with a unique final state is n2 since all choices of
l ∈ {1, .., n} and f ∈ {1, .., n} correspond to distinct automata. The average number
of iterations is therefore equal to

1

n2

n
X

l=1

0

@

l−1
X

f=1

f +

n−l
X

f=l

(n − l + 1) +

n
X

f=n−l+1

f

1

A =
1

6n2
(n3 + 3n2 − n) = Θ(n),

concluding the proof.

Nonetheless Moore’s algorithm over automata with a unique final state seems
to perform less than Θ(n2) operations when the alphabet is of size at least two, as
illustrated in Figure 5. A proof of such a result cannot be based on an independent
treatment of transition structures and sets of final states, as we did in this article,
since the restrictions to some transition structures provide a quadratic complexity
(Proposition 8).

6.2 Hopcroft’s Algorithm

Hopcroft’s algorithm performs the minimization in time O(n log n) in the worst case.
As stated in [9] Hopcroft’s algorithm is closely related to Moore’s algorithm, refining
the partition part by part, avoiding useless computations. It is likely that Hopcroft’s

15

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 it

er
at

io
ns

Size of Automata

Moore
Standard Deviation

Figure 5: Experimental study of the average number of iterations in Moore’s
algorithm for the uniform distribution over automata with only one final states.
For each size the values are computed from 20 000 random automata over a
2-letter alphabet.

algorithm halts quickly when Moore’s algorithm does, at least for some choices of
implementations (there is a set of tasks to perform in Hopcroft’s algorithm, that can
be implemented in different ways: queue, stack, and so on).

The drawback of Hopcroft’s algorithm is that it uses complicated data structures,
that require lots of elementary instructions to be updated at each step.

So, if one of the distributions analyzed in this paper models correctly a given
practical case, we believe that Moore’s algorithm is worth considering, as it can be
faster than Hopcroft’s algorithm.

6.3 A Conjecture

To conclude this paper we conjecture that when the alphabet is not unary the lower
bound given in Proposition 2 for minimal automata is tight for the general case or,
in other words, that the average complexity of Moore’s algorithm for the uniform
distribution over automata with n states is in Θ(n log log n). A first reason is that the
proportion of minimal automata amongst accessible deterministic ones is conjectured
positive (see [19]). It it is true, the lower bound in Ω(n log log n) would hold for the
distribution over all automata. Secondly, the tests of Figure 1 show a very slow growth
of the average number of iterations as n tends toward infinity.

References

[1] Moore, E.F.: Gedanken experiments on sequential machines. In: Automata
Studies. Princeton U. (1956) 129–153.

[2] Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
Technical report, Stanford, CA, USA (1971)

[3] Gries, D.: Describing an algorithm by Hopcroft. Acta Inf. 2 (1973) 97–109.

[4] Knuutila, T.: Re-describing an algorithm by Hopcroft. Theor. Comput. Sci.
250(1-2) (2001) 333–363.

16

[5] Berstel, J., Carton, O.: On the complexity of Hopcroft’s state minimization
algorithm. In Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S., eds.: CIAA.
Volume 3317 of Lecture Notes in Computer Science., Springer (2004) 35–44.

[6] Castiglione, G., Restivo, A., Sciortino, M.: Hopcroft’s algorithm and cyclic au-
tomata. In Mart́ın-Vide, C., Otto, F., Fernau, H., eds.: LATA. Volume 5196 of
Lecture Notes in Computer Science., Springer (2008) 172–183.

[7] Castiglione, G., Restivo, A., Sciortino, M.: On extremal cases of Hopcroft’s
algorithm. In Maneth, S., ed.: CIAA. Volume 5642 of Lecture Notes in Computer
Science., Springer (2009) 14–23.

[8] Blum, N.: An O(n log n) implementation of the standard method for minimizing
n-state finite automata. Inf. Process. Lett. 57(2) (1996) 65–59.

[9] Lothaire, M.: Applied Combinatorics on Words. Volume 105 of Encyclopedia of
mathematics and its application. Cambridge University Press. (2005)

[10] Valmari, A., Lehtinen, P.: Efficient minimization of DFAs with partial transition.
In Albers, S., Weil, P., eds.: STACS. Volume 08001 of Dagstuhl Seminar Pro-
ceedings., Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany (2008) 645–656.

[11] Beal, M.P., Crochemore, M.: Minimizing incomplete automata. In: Finite-State
Methods and Natural Language Processing (FSMNLP’08). (2008) 9–16.

[12] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

[13] Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theor.
Comput. Sci. 92(1) (1992) 181–189.

[14] Nicaud, C.: Average state complexity of operations on unary automata. In Kuty-
lowski, M., Pacholski, L., Wierzbicki, T., eds.: MFCS. Volume 1672 of Lecture
Notes in Computer Science., Springer (1999) 231–240.

[15] Beal, M.P., Crochemore, M.: Minimizing local automata. In G. Caire, M.F.,
ed.: IEEE International Symposium on Information Theory (ISIT’07). (2007)
1376–1380.

[16] Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for
definite events. In: Symposium on the Mathematical Theory of Automata. Vol-
ume 12., Polytechnic Institute of Brooklyn, New York, Polytechnic Press (1962)
529–561.

[17] Champarnaud, J.M., Khorsi, A., Paranthoen, T.: Split and join for minimizing:
Brzozowski’s algorithm. In: PSC’02 Proceedings. (2002) 96–104.

[18] Watson, B.W.: A taxonomy of finite automata minimization algorithms. Tech-
nical Report of Faculty of Mathematics and Computer Science, Eindhoven Uni-
versity of Technology, The Netherlands (1994)

[19] Bassino, F., Nicaud, C.: Enumeration and random generation of accessible au-
tomata. Theor. Comput. Sci. 381 (2007) 86–104.

[20] Bassino, F., David, J., Nicaud, C.: REGAL: a library to randomly and exhaus-
tively generate automata. In: Implementation and Application of Automata,
12th International Conference, CIAA 2007. Volume Lecture Notes in Computer
Science 4783. (2007) 303–305.

17

[21] Bassino, F., David, J., Nicaud, C.: Enumeration and random generation of
possibly incomplete deterministic automata. Pure Mathematics and Applications
(to appear)

[22] Bassino, F., David, J., Nicaud, C.: On the average complexity of Moore’s state
minimization algorithm. In Albers, S., Marion, J.Y., eds.: STACS 2009. Volume
09001 of Dagstuhl Seminar Proceedings., Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany Internationales Begegnungs- und Forschungszentrum
fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2009) 123–134

[23] Nerode, A.: Linear automaton transformation. In: Proc. American Mathematical
Society. (1958) 541–544.

[24] Flajolet, P., Sedgewick, R.: Analytic combinatorics. Cambridge University Press
(2009)

[25] Korshunov, D.: Enumeration of finite automata. Problemy Kibernetiki 34 (1978)
5–82.

[26] Korshunov, A.D.: On the number of non-isomorphic strongly connected finite
automata. Elektronische Informationsverarbeitung und Kybernetik 22(9) (1986)
459–462.

18

