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Enumeration and random generation of possibly incomplete deterministic automata

This paper presents an efficient random generator, based on a Boltzmann sampler, for accessible, deterministic and possibly not complete automata. An interesting intermediate result is that for any finite alphabet, the proportion of complete automata with n states amongst deterministic and accessible ones is greater than a positive constant.

Introduction

The enumeration of finite automata according to various criteria (non-isomorphic [START_REF] Harrison | A census of finite automata[END_REF], up to permutation of the labels of the edges [START_REF] Harrison | A census of finite automata[END_REF], with a strongly connected underlying graph [START_REF] Korshunov | Enumeration of finite automata[END_REF][START_REF] Korshunov | On the number of non-isomorphic strongly connected finite automata[END_REF][START_REF] Liskovets | The number of connected initial automata[END_REF][START_REF] Robinson | Counting strongly connected finite automata[END_REF], accessible [START_REF] Korshunov | Enumeration of finite automata[END_REF][START_REF] Liskovets | The number of connected initial automata[END_REF][START_REF] Robinson | Counting strongly connected finite automata[END_REF], acyclic [START_REF] Liskovets | Exact enumeration of acyclic automata[END_REF],...) is a problem that was studied since 1959 [START_REF] Vyssotsky | A counting problem for finite automata[END_REF].

In [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF] the first and third authors exhibit a bijection between the set A n of deterministic, complete and accessible automata with n states over a k-letter alphabet and some diagrams, which can themselves be represented as partitions of the set {1, • • • , kn} into n nonempty subsets. These combinatorial transformations show that the order of magnitude of the cardinality |A n | of the set A n is related to the Stirling numbers of the second kind that can be be used to reformulate an asymptotic estimate of |A n | due to Korshunov [START_REF] Korshunov | Enumeration of finite automata[END_REF]. They also provide a uniform random generator for the automata of A n , based on Boltzmann samplers [START_REF] Duchon | Boltzmann Samplers for the Random Generation of Combinatorial Structures[END_REF][START_REF] Flajolet | Boltzmann Sampling of Unlabelled Structures[END_REF], that is more efficient than former ones [START_REF] Champarnaud | Random generation of DFAs[END_REF][START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF] using a recursive algorithm [START_REF] Flajolet | A calculus of random generation of labelled combinatorial structures[END_REF][START_REF] Nijenhuis | Combinatorial Algorithms[END_REF].

This paper generalizes the study [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF] of deterministic, complete and accessible automata to possibly incomplete automata. It simplifies the algorithmic part of [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF]. More precisely the combinatorial transformations are changed, a unique bijection allows us to directly transform specific set partitions into accessible and deterministic automata. A careful analysis of the complexity is done to ensure that the generator obtained is still efficient; as in the case of complete automata, its average complexity is O(n 3/2 ), where n is the number of states of automata. An interesting intermediate result is that for any finite alphabet, the proportion of complete automata with n states amongst deterministic and accessible ones is greater than a positive constant.

The paper is organized as follows. Bijections used to change complete automata into set partitions are presented in Section 3. The ones used to transform possibly incomplete automata are given in Section 4. Section 5 is devoted to enumeration results used in the analysis of the complexity of the generator. The random generator, together with the analysis of its efficiency, is given in Section 6. The paper closes with some experimental results obtained with the C++ library REGAL1 [START_REF] Bassino | REGAL: a library to randomly and exhaustively generate automata[END_REF].

Definitions and basic properties

Our goal is to study from a combinatorial point of view the set of accessible and deterministic automata with n states. Therefore we first recall some definitions about finite automata, referring the readers to [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF][START_REF] Sakarovitch | Eléments de théorie des automates[END_REF] for basic elements of this theory. We also introduce boxed diagrams and specific set partitions that will be used to enumerate and generate automata.

Deterministic and accessible automata

A deterministic finite automaton A = (A, Q, •, q 0 , F ) over a finite alphabet A is a quintuple where Q is a finite set of states, q 0 ∈ Q is the initial state, F ⊂ Q is the set of final states and the transition function

• is an element of Q × A → Q ∪ ∅. If p • a = ∅ for a
given state p ∈ Q and a letter a ∈ A, then p • a is an undefined transition. A deterministic finite automaton without undefined transition is complete. If A = (A, Q, •, q 0 , F ) is a deterministic finite automaton, its transition function is extended by morphism to Q × A * making use of the convention ∅ • a = ∅ for every a ∈ A.

A deterministic finite automaton A is accessible when for each state q of A, there exists a word u ∈ A * such that q 0 • u = q.

Two deterministic finite automata A = (A, Q, •, q 0 , F ) and A ′ = (A, Q ′ , •, q ′ 0 , F ′ ) over the same alphabet are isomorphic when there exists a bijection

τ from Q ∪ ∅ to Q ′ ∪ ∅ such that, τ (q 0 ) = q ′ 0 , τ (∅) = ∅, τ (F ) = F ′ and for each (q, α) ∈ Q× A, τ (q •α) = τ (q)•α.
Two isomorphic automata only differ by the labels of their states.

Transition structures

Now we introduce a representation of accessible and deterministic automata that uses the minimal labels of simple paths and allows us to enumerate and generate them easily.

More precisely a simple path in a deterministic automaton A is a path labelled by a word u, such that all prefixes v and v ′ of u, with v = v ′ , satisfy q 0 • v = q 0 • v ′ . In other words, in the graphical representation of A the path labelled by u does not go twice through the same state. Let A be an accessible and deterministic automaton over the alphabet A and let w be the map from Q to A * defined for every state q ∈ Q by

w(q) = min lex {u ∈ A * | q 0 • u = q and u is a simple path in A},
where the mininum is taken according to the lexicographic order. Note that w(q) always exists since A is accessible. An automaton A = (A, Q, •, q 0 , F ) is called a base automaton when Q ⊂ A * (the states are labelled by words) and for all u ∈ Q, w(u) = u. Note that by construction, if u ∈ Q and v is a prefix of u, then v ∈ Q. As two distinct base automata cannot be isomorphic, we can directly work on isomorphism classes using base automata.

The transition structure of an automaton A = (A, Q, •, q 0 , F ) is D = (A, Q, •, q 0 ): in D there is no more distinguished final states. We can define similarly accessible and deterministic transition structures.

Denote by D n the set of accessible and deterministic transition structures of base automata with n states, and by C n the set of complete transition structures belonging to D n .

Given an element D of D n , there are exactly 2 n automata whose transition structure is D, since the accessibility prevents distinct choices of final sets to form the same automaton. Therefore the number of deterministic and accessible automata, up to isomorphism, is 2 n |D n |.

Note that forbidding or not the set of final states to be empty does not basically change the results, since the probability of this event is 1/2 n .

Our purpose is to enumerate the elements in D n and to generate them randomly for the uniform distribution on D n .

In the following we only consider accessible and deterministic automata, and complete and accessible deterministic transition structures. Consequently, these objects will often be called respectively automata or transition structures.

Boxed diagrams

Boxed diagrams were introduced in [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF] to characterize transition structures with objects that are easier to enumerate.

A diagram of width m and height n is a sequence (x 1 , . . . , x m ) of nondecreasing nonnegative integers such that x m = n, classically represented as a diagram of boxes, see Figure 1 As it will be recalled in Section 3, there exists a bijection between k-Dyck boxed diagrams and complete transition structures.

. A k-Dyck diagram of size n is a diagram of width (k -1)n + 1 and height n such that x i ≥ ⌈i/(k -1)⌉ for each i ≤ (k -1)n. A boxed diagram

Set partitions

Denote by P n,m the set of all set partitions of the set {1, . . . , n} into m nonempty subsets. The cardinality of the set P n,m is equal to { n m }, the Stirling numbers of the second kind. Let P = {P 1 , . . . , P m } be a set partition in P n,m and ℓ ∈ {1, . . . , n}, the ℓ-subpartition of P , denoted by P (ℓ) , is the set partition of the set {1, . . . , ℓ} whose elements are the nonempty subsets P i ∩ {1, . . . , ℓ} where i ∈ {1, . . . , m}. Therefore the set partition P (ℓ) contains at most m nonempty subsets.

Let k ≥ 2 be an integer. A set partition P = {P 1 , . . . , P m } of P n,m , where the P i are sorted according to their smallest element, is said to be a k-Dyck set partition when it satisfies the k-Dyck condition: for every j ∈ {1, . . . , m}, the smallest integer in P j is smaller than or equal to k(j -1) + 1.

For example, for the set {1, . . . , 13} and m = 4, the set partition

P = {{1, 11, 13}, {2, 3, 6, 9}, {4, 8, 10}, {5, 7, 12}}
is a 3-Dyck set partition. We show, in the sequel, that there exists a bijection between transition structures over a k-letter alphabet and k-Dyck set partitions (Theorem 2).

Complete automata

In this section we propose a new bijection that directly build a k-Dyck set partition from a complete transition structure. For the sake of completeness, we also detail the bijection between transition structures and k-Dyck boxed diagrams.

Complete transition structures and boxed diagrams

First recall the bijection established in [START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF] for a two-letter alphabet and generalized to any finite alphabet in [START_REF] Champarnaud | Random generation of DFAs[END_REF]:

Theorem 1 There exists a bijection between the set C n of accessible, complete and deterministic transition structures with n states over a k-letter alphabet A and the set of k-Dyck boxed diagrams of size n. This transformation and its inverse can be computed in linear time.

Proof : In the following we denote by ε the empty word. For n ≥ 1, let D = (A, Q, •, ε) ∈ C n be the transition structure of a deterministic, accessible and complete base automaton over a k-letter alphabet. Since D is complete, it contains kn transitions of the form (u, α), with u ∈ Q and α ∈ A. We partition the set of these transitions depending on whether they belong to the spanning tree induced by the depth-first traversal according to the lexicographical order of the structure or not. Using the properties of the labelling of the states of D, the set partition can be described as follows, for any u ∈ Q:

-If uα ∈ Q then u • α = uα and (u, α) is a tree transition. It belongs to the spanning tree.

-If uα / ∈ Q then u • α < lex uα, and (u, α) is called a missing transition. It does not belong to the spanning tree. There are n -1 tree transitions and (k -1)n + 1 missing transitions.

Let ν be the unique increasing bijection from the set Q (lexicographically ordered) to {1, . . . , n}, that is, ν(q) is the number of elements of Q smaller or equal to q for the lexicographical order. To any missing transition t = (q, α) we associate the pair of integers (x t , y t ) defined by

x t = |{u ∈ Q | u < lex qα}| y t = ν(q • α).
Next we order the transitions of D according to the relation: (u, α) < (v, β) if and only if uα < lex vβ. Then the bijection Ψ between C n and the set of k-Dyck boxed diagrams of size n can be defined as follows: let (t 1 , . . . , t (k-1)n+1 ) be the ordered sequence of missing transitions of D,

Ψ(D) = ((x t 1 , . . . , x t (k-1)n+1 ), (y t 1 , . . . , y t (k-1)n+1 )).
The map Ψ is a bijection (see [START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF][START_REF] Champarnaud | Random generation of DFAs[END_REF] for details). The sequence (x t 1 , . . . , x t (k-1)n+1 ) represents the depth-first spanning tree of D and defines the labelling of the states of D; the sequence (y t 1 , . . . , y t (k-1)n+1 ) carries all the informations about missing transitions:

u • α = ν -1 (y (u,α) ).
This completes the proof.

Complete transition structures and set partitions

We now introduce a bijection between complete transitions structures over a k-letter alphabet and k-Dyck set partitions. This new bijection allows us to simplify, from an algorithmic point of view, the random generator of complete automata presented in [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF]. Let D = (A, Q, •, ε) be complete transition structure with n states over a k-letter ordered alphabet A = {a 1 , . . . , a k }. We formally add the transition (∅, ε), which can be seen as the arrow indicating the initial state on the graphical representation of D. By convention ∅ • ε = ε, the initial state of D. Let T D be the set of transitions of D, including the new one. By construction |T D | = kn + 1. To each transition t = (u, a) of T D is uniquely associated an integer n(t) of {1, . . . , kn + 1} making use of the depth-first traversal with respect to the lexicographical order of D: n((∅, ε)) = 1 and for every t = (u, a) and

t ′ = (u ′ , a ′ ) in T D \ {(∅, ε)}, n(t) < n(t ′ ) if and only if ua < lex u ′ a ′ .
Let P D be the set partition of P kn+1,n such that for any i and j of {1, . . . , kn + 1}, i and j are in the same part of P D if and only if u • a = u ′ • a ′ , where n((u, a)) = i and n((u ′ , a ′ )) = j. In other words, i and j are in the same part when they are the numbers associated to two transitions going into the same state of D.

We denote by χ the map from the set of complete transition structures with n states to P kn+1,n where χ(D) = P D is the partition defined above. Theorem 2 For any n ≥ 1 and k ≥ 2, the map χ that transforms D into P D is a bijection from the set of transition structures of complete base automata with n states over a k-letter alphabet onto the set of k-Dyck set partitions of P kn+1,n .

Proof : A construction to transform a set partition P = {P 1 , . . . , P n } of P kn+1,n into a boxed diagram of width kn + 1 and heigth n is given in [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF]. If we assume that the sets P i 's are sorted according to their smallest element, the boxed diagram B = ((x 1 , . . . , x kn+1 ), (y 1 , . . . , y kn+1 )) is such that, for any i ∈ {1, . . . , kn + 1}, x i is equal to the number of subsets in the subpartition P (i) , and y i is the index of the subset of P to which belongs i. A k-Dyck boxed diagram is then obtained by removing from B the columns corresponding to the smallest element of each part of P (we refer the reader to [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF] for more details and related algorithms). As this construction is a bijection from the set of k-Dyck set partitions of P kn+1,n onto the k-Dyck boxed diagrams of size n, making use of Theorem 1 we conclude that the two sets considered in the statement of Theorem 2 have the same cardinality. Now we prove that χ is an injection. Suppose that D = (A, Q, •, ε) and D ′ = (A, Q ′ , * , ε) are the transition structures of two distinct accessible, deterministic and complete base automata with n states. Let e = (p, a) be the first transition in depthfirst order in both D and D ′ such that p • a = p * a. Note that the states whose labels are smaller than or equal to p for the lexicoraphic order are exacly the same in D and D ′ . Let q = p • a and q ′ = p * a. Assume by symmetry that q is strictly smaller than q ′ for the lexicographic order. Therefore q is smaller than or equal to p, and hence it belongs to Q and Q ′ . Consequently, in P D n(e) is in the same subset as the first edge ending in q, and this is not true in P ′ D . Thus χ is an injection. To conclude, we prove that the image by χ of a complete transition structure with n states over a k-letter alphabet is a k-Dyck set partition of P kn+1,n . Suppose that there exist a complete transition structure D of a base automaton for which it is not true. Let P D = {P 1 , . . . , P n }, such that the P i 's are sorted according to their smallest element. Let ℓ be the smallest nonnegative integer in {2, . . . , m} such that the smallest element of P ℓ is strictly greater than k(ℓ -+ 1. Therefore, the k(ℓ -1) first transitions in D end in a state of number in {1, . . . , ℓ -1}, forming a complete transition structure with ℓ -1 states. Hence D is not accessible which is a contradiction. Thus χ is also a surjection onto the subset of P kn+1,n made of k-Dyck set partitions.

We give in Section 6.2 an algorithm that transform a k-Dyck set partition of P kn+1,n into a transition structure with n states over a k-letter alphabet.

Possibly incomplete transition structures

In this section we present two combinatorial transformations of possibly incomplete transition structures. The first one is a non-classical way to obtain complete transition structure. The second one links possibly incomplete transition structures with a subsclass of k-Dyck boxed diagrams and is used to enumerate these structures in Section 5.

From transition structures to complete transitions structures

In theory of automata an incomplete automaton is classically changed into a complete one recognizing the same language by the addition of a sink state. This transformation is not suitable for our combinatorial construction. Indeed if two incomplete automata have the same depth-first spanning tree, they may not have the same one after the addition of a sink state, as shown on Fig. 3.

Therefore we introduce another transformation denoted by φ and defined as follows: to any D ∈ D n , with D = (A, Q, •, ε), we associate with the complete transition structure transitions are defined by:

φ(D) = (A, Q ′ , * , ε) in C n+1 with Q ′ = {ε} ∪ a k Q where a k = max lex {α ∈ A}
           ε * α = ε if α = a k ε * a k = a k q ′ * α = a k (q • α) if ∃q ∈ A * , q ′ = a k q and q • α = ∅ q ′ * α = ε if ∃q ∈ A * , q ′ = a k q and q • α = ∅.
This construction consists of -adding a new state, that becomes the initial state ε of φ(D) and a transition ε * a k = q 0 , labelled by the greatest letter and where q 0 is the initial state D,

-relabelling the transition structure to obtain the transition structure of a base automaton, -changing any undefined transition q • α = ∅ into q * α = ε. Note that φ does not preserve the language recognized.

Lemma 1 Denote by E n the subset of transition structures of C

n such that ε • α = ε for α ∈ A \ {max lex {α ∈ A}}. The function φ is a bijection from D n to E n+1 .
By definition of φ, E n+1 = φ(D n ). Moreover the inverse of φ is obtained by removing the initial state, making the state a k initial, and relabelling the states.

The k-Dyck boxed diagrams associated with the elements of E n

Recall that if (t 1 , . . . , t (k-1)n+1 ) is the ordered sequence of missing transitions of the base transition structure D with n states over a k-letter alphabet, Ψ(D) = ((x t 1 , . . . , x t (k-1)n+1 ), (y t 1 , . . . , y t (k-1)n+1 )), where for any missing transition t = (q, α)

x t = |{u ∈ Q | u < lex qα}| y t = ν(q • α)
ν(q) being the number of states of D smaller or equal to q for the lexicographical order.

For n ≥ 2, the image Ψ(E n ) is easy to characterize.

Lemma 2 Let F n be the set of k-Dyck boxed diagrams of size n such that for all i ∈ {1, . . . , k -1}, x i = 1 and y i = 1. For any n ≥ 2, Ψ is a bijection between E n and F n .

Proof : Let A = {a 1 < . . . < a k }. If D = (A, Q, •, ε) ∈ E n then for i ∈ {1, . . . , k -1}, ε • a i = ε.
Moreover, ε is the only word of Q that does not start with a k . Thus, the first k -1 missing transitions of D are (ε, a 1 ), . . ., (ε, a k-1 ). Therefore for any

i ∈ {1, . . . , k -1}, {u ∈ Q | u < lex a i } = {ε} and x (ε,a i ) = 1. Moreover since 1 ≤ y (ε,a i ) ≤ x (ε,a i ) , y (ε,a i ) = 1. If D = (A, Q, •, ε) / ∈ E n , let i be the smallest integer such that ε • a i = ε.
Then the word a i is the smallest word in Q \ {ε}. If a missing transition (u, α) is such that uα < lex a i , then u = ε and α < a i : there are exactly i -1 such missing transitions. Hence, the i-th missing transition t i , in the ordered sequence, is such that x t i ≥ 2 and Ψ(D) / ∈ F n , concluding the proof.

Enumeration

This section is devoted to enumeration problems. The number of accessible automata is related to the Stirling numbers of the second kind whose definition and asymptotic estimate are recalled.

The Stirling numbers of the second kind

The Stirling number of the second kind { n m }, where n and m are two nonnegative integers, is the number of set partitions of a set with n elements into m nonempty subsets.

Lemma 3 ([1])

The number of boxed diagrams of width m and height n is equal to { m+n n }.

Recall that the LambertW-function [START_REF] Corless | On the Lambert W-function[END_REF] is the inverse of the function x → xe x . Its principal branch W 0 is real-valuted for x in [-e -1 , +∞[ and is the unique branch which is analytic at zero. Its series expansion is

W 0 (z) = ∞ n=1 (-n) n-1 n! z n = z -z 2 + O z 3 (1)
The Stirling numbers of the second kind are asymptotically estimated with the saddle point method.

Theorem 3 (Good [START_REF] Good | An asymptotic formula for the differences of the powers at zero[END_REF]) When n and m both tend towards infinity with n = Θ(m), the following result holds:

{ n m } ∼ n!(e ρ -1) m m!ρ n 2πn(1 -n m e -ρ )
where ρ = W 0 (-n m e -n m ) + n m is the unique positive root of the equation mρ = n(1e -ρ ).

Enumeration of accessible deterministic automata

Recall that the number of automata in a specific class is equal to the number of transition structures of the same class multiplied by 2 n .

Complete automata

Korshunov [START_REF] Korshunov | On the number of non-isomorphic strongly connected finite automata[END_REF] gave an asymptotic equivalent of the cardinality |C n | of the set of complete, deterministic and accessible transition structures with n states over a k-letter alphabet. This equivalent can be reformulated [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF] in terms of the Stirling numbers of the second kind:

Theorem 4 (Korshunov [START_REF] Korshunov | Enumeration of finite automata[END_REF][START_REF] Korshunov | On the number of non-isomorphic strongly connected finite automata[END_REF]) The number |C n | of accessible complete and deterministic transition structures with n states over a k-letter alphabet satisfies

|C n | ∼ E k n kn n where E k = 1 + ∞ r=1 1 r kr r-1 e k-1 β k -r 1 + ∞ r=1 kr r e k-1 β k -r , β k = (kζ k ) k e k-1 (e ζ k -1)
and ζ k is the positive root of ρ = k(1e -ρ ).

Possibly incomplete automata

To enumerate possibly incomplete transition structures we basically use the following lemma: obtained with Theorem 3. In the case of kn n ,

ζ k = W 0 (-ke -k ) + k is the positive root of ρ = k(1 -e -ρ
). Theorem 3 and Stirling's formula give (see [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF] for details):

kn n ∼ (kn)! n! (e ζ k -1) n ζ kn k 2πkn(1 -ke -ζ k ) ∼ α k β n k n (k-1)n-1/2 with α k = (2π(ζ k -(k -1))) -1 2 and β k = (kζ k ) k e k-1 (e ζ k -1) .
Denote by f the function f (x) = W 0 (-xe -x ) + x. To use Theorem 3 for kn+1 n+1 we have to compute

ρ n,k = f kn+1 n+1 = f (k -k-1 n+1
). Because of the analycity of f , we can use Taylor expansion:

ρ n,k = f k - k -1 n + 1 = f (k) - k -1 n + 1 f ′ (k) + O 1 n 2 = ζ k -(k -1)f ′ (k) 1 n + O 1 n 2 .
From Theorem 3 we get:

kn+1 n+1 ∼ (kn + 1)!(e ρ n,k -1) n+1 (n + 1)!ρ kn+1 n,k 2π(kn + 1)(1 -kn+1 n+1 e -ρ n,k )
.

Usual estimations and Stirling's formula lead to:

(kn + 1)! (n + 1)! ∼ e -(k-1)n k 3/2 k kn n (k-1)n 2π(kn + 1)(1 - kn + 1 n + 1 e -ρ n,k ) ∼ 2πkn(1 -ke -ζ k ) (e ρ n,k -1) n+1 ∼ (e ζ k -1) n+1 e -(k-1)f ′ (k)e ζ k e ζ k -1 ρ kn+1 n,k ∼ ζ kn+1 k e - k(k-1)f ′ (k) ζ k Moreover as ζ k satisfies ζ k = k(1 -e -ζ k ), e ζ k /(e ζ k -1) = k/ζ k . Finally we obtain kn+1 n+1 ∼ α ′ k β n k n (k-1)n-1/2 with α ′ k = e ζ k √ 2π(ζ k -(k-1))
. Thus kn+1 n+1 ∼ e ζ k kn n , concluding the proof.

Theorem 5 shows that there are Θ(n 2 n kn n ) accessible and deterministic base automata with n states over a k-letter alphabet.

Theorem 5

The number |D n | of accessible and deterministic transition structures of base automata with n states is Θ(n kn n ).

Proof : First, as

C n ⊂ D n , |C n | ≤ |D n |.
And Theorem 4 leads to the lower bound.

In Section 3 we exhibited a bijection in two steps between the set D n and the set F n+1 of k-Dyck boxed diagrams ((x 1 , . . . , x (k-1)(n+1)+1 ), (y 1 , . . . , y (k-1)(n+1)+1 )) such that for all i ∈ {1, . . . , k -1}, x i = 1 and y i = 1. Now the number of elements in F n+1 is smaller than the number of boxed diagrams of width (k -1)(n + 1) + 1 = (k -1)n + k and height n + 1, whose k -1 first columns have height 1, and the last column has height n + 1. Note that it is an overestimation of |F n+1 | since diagrams that do not satisfy the diagonal condition are taken into account. Therefore the elements of F n+1 are approximated by boxed diagrams made of k -1 columns of height 1, a boxed diagram of width (k -1)n and height n + 1 and a column of height n + 1. There are n + 1 possibilities for the last column. Thus, by Lemma 3, we obtain that |D n | ≤ (n + 1) kn+1 n+1 . We conclude using Lemma 4.

Corollary 1

As n tends towards infinity,

|C n | = Θ(|D n |).

Random generation

In this section, in order to uniformly generate deterministic and accessible automata, we adapt an algorithm described in [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF] and used to generate complete automata. The first step of the algorithm is based on a Boltzmann sampler that generates specific set partitions. The second one consists of the transformation of these set partitions into accessible and deterministic automata.

A Boltzmann sampler to generate random set partitions

The Boltzmann sampler used here is a direct application of the work of Duchon, Flajolet, Louchard and Schaeffer [START_REF] Duchon | Boltzmann Samplers for the Random Generation of Combinatorial Structures[END_REF]. Boltzmann samplers do not generate fixed size objects. They depend on a real parameter x > 0 and, for any given integer n, the value of x can be chosen so that the average size of the generated elements is n. The size is not fixed, but Boltzmann samplers guarantee that two elements of the same size have the same probability to be generated.

In order to uniformly generate set partitions of a set with kn + 1 elements into n + 1 nonempty subsets, we first consider the set of partitions of a set into n+1 nonempty sets. Its exponential generating function is P n+1 (z) = (e z -1) n+1 (n+1)! . Using Boltzmann sampler construction, each of the n + 1 sets are generated assuming that its size follows a Poisson law Pois ≥1 of parameter x (a truncated Poisson variable K, where K is conditionned to be ≥ 1). The average size of the partition is then: E x (size of the partition) = x P ′ n+1 (x) P n+1 (x) = (n + 1)x e x e x -1 .

Since we want a partition of a set having kn + 1 elements, the value of the parameter x n is chosen so that (n + 1)x n e xn e xn -1 = kn + 1, that is, x n = ρ n,k (see the proof of Lemma 4). When the Boltzmann parameter x n is equal to ρ n,k , the probability for a random set partition to be of size kn + 1 is [START_REF] Duchon | Boltzmann Samplers for the Random Generation of Combinatorial Structures[END_REF]:

P ρ n,k (N = nk + 1) = ρ kn+1 n,k [z kn+1 ]P n+1 (z) P n+1 (ρ n,k ) = kn+1 n+1 ρ kn+1 n,k (kn + 1)! (n + 1)! (e ρ n,k -1) n+1 .
This quantity can be asymptotically estimated using the same method as in the proof of Lemma 4:

P ρ n,k (N = nk + 1) ∼ α k √ kn .
(2)

Random generator of possibly incomplete automata

The algorithm below is an improvement of two algorithms presented in [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF]: starting from a partition, instead of computing its associated boxed diagram and then its transition structure, we directly compute the associated transition structure. In the algorithm, we assume that the parts P = {P 1 , . . . , P n } of the input are sorted according to their smallest element. The algorithm is based on the fact that the numbers in the elements of P correspond to the transitions of the result in depth-first order, and that, when i ∈ P j , the i-th transition ends in the state j. The following algorithm use PartitionToTransitionStructure(P ) to generate uniformly an accessible and deterministic automaton with n states over a k-letter alphabet. We use the fact that a k-Dyck partition P = {P 1 , . . . , P n+1 } of P k(n+1)+1,n+1 corresponds to an element of F n+1 if and only if for all i ∈ {1, . . . , k}, i ∈ P 1 .

(

) 3 
This property follows directly from the fact that the k first transitions in depth-first order of an element of F n+1 , taking into account the edge coming into the inital state as in Section 3.2, end in the initial state. Similarly to the construction of [START_REF] Bassino | Enumeration and random generation of accessible automata[END_REF] but with the additional constraint of Equation (3), RandomTransitionStructure(n):

• generates uniformly a partition of {1, k + 1, k + 2, . . . , k(n + 1)}, a set with kn + 1 elements, into n + 1 nonempty subsets,

• adds the integers from {2, . . . , k} in the first part,

• adds k(n + 1) + 1 uniformly at random in one of the n + 1 subsets.

Algorithm 2: RandomTransitionStructure(n) input: The size n of the automaton Compute ρ n,k using Equation (1) p.9. Compute A obtain from A ′ by removing the initial state, the transitions coming 13 in or out the initial set, and making the second state initial. for q state of A do Choose uniformly whether q is final or not 14

1 repeat 2 repeat 3 for i ∈ {1, . . . , n + 1} do λ i = Pois ≥1 (ρ n,k ) 4 until λ 1 + • • • + λ n+1 = kn + 1 5 P = {{1, . . . ,
Note that for fixed n and k, Step 1 can be performed only once.

Theorem 6

The average complexity of this random generator is O(n 3/2 ).

Proof : All steps can be performed in linear time, if we do not take into account the rejects. In a rejection algorithm, if a test is positive with probability p, the average number of rejects is 1/p. Therefore, as a consequence of Theorem 5 and Lemma 4, the average number of rejects at Step 5 is bounded by a constant. Moreover Equation (2) p. 12 shows that, in average, there are O( √ n) rejects at Step 11.

Experimental results

The random generator has been implemented in REGAL 2 [START_REF] Bassino | REGAL: a library to randomly and exhaustively generate automata[END_REF], a C++ library to generate random automata. We made some tests using this library mostly to compare deterministic and accessible automata with complete ones. For each test 10, 000 automata with 10, 000 states have been generated:

• For k = 2, 80.1% of automata are not complete. For k = 3, this proportion raises to 94.1%. Note that Lemma 4 shows that proportions are similar before the rejection step.

• For k = 2, 95.4% of automata are minimal for k = 2.

• For k = 2, 79.0% are strongly connected, it is about the same as for complete automata.

• For k = 2, in average an automaton has about 1.6 undefined transitions. We implemented PartitionToTransitionStructure(P ) in a new version of REGAL and did some benchmarks to compare with older versions, based on two transformations, using boxed diagrams. For automata with more than 500 states, the new algorithm is significantly faster. Fig. 4 gives the average times required for the generation of an automaton. Benchmarks were made with an Intel(R) Core(TM)2 CPU 6600 2.40GHz, with 2Go of RAM. We used 10 000 automata of each size.

Open problem

Our algorithm is in O(n 3/2 ) because of the rejects in the construction of a random partition of {1, . . . , kn + 1} into n + 1 parts. The natural open problem to improve this algorithm is therefore to find a linear algorithm, if it exists, to randomly and uniformly generate such partitions.

Figure 1 :

 1 Figure 1: A diagram of width 5 and height 4, a boxed diagram, a 2-Dyck diagram and a 2-Dyck boxed diagram

Figure 2 :

 2 Figure 2: On the left side: a transition structure D. On the right side: the numbered transitions. The set partition P D = {{1, 11, 13}, {2, 3, 6, 9}, {4, 8, 10}, {5, 7, 12}} is obtained by grouping together the edges according to their ending state.

Figure 3 :

 3 Figure 3: On the left two automata with the same spanning tree. On the right, their spanning trees once completed by adding a sink state.

Lemma 4

 4 For any fixed k ≥ 2, as n tends toward infinity, one has kn+1 n+1 ∼ e ζ k kn n with ζ k = W 0 (-ke -k ) + k. Proof : The following proof is based on the comparison of the estimations of kn n and kn+1 n+1

Algorithm 1 := empty stack 1 Create the initial state q 0 = 1 2 5 end 6 for 8 q = j, where i ∈ P j 9 if q = newSate then 10 Create the state q 11 newState = newState + 1 12forall b ∈ A in reverse lexicographical order do 13 Push (q, b) into S 14 end 15 end 16 Add a transition from p to q labelled by a 17 end 18

 111568910111131415161718 PartitionToTransitionStructure(P ) input: A k-Dyck partition P = {P 1 , . . . , P n } of P kn+1,n S newState = 2 // this is the number of the next created state 3 forall a ∈ A in reverse lexicographical order do 4 Push (q 0 , a) into S i ∈ {2, .., kn + 1} do 7 (p, a) = Pop from S

Figure 4 :

 4 Figure 4: Average time in second for the generation of a possibly incomplete deterministic accessible automaton with n states over a k-letter alphabet.

  λ 1 }, {λ 1 + 1, . . . , λ 1 + λ 2 + 1}, . . . , {λ 1 + . . . λ n+1 , . . . , kn + 1}
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	7	σ =RandomBijection({1, . . . , kn + 1} → {1, k + 1, . . . , k(n + 1)}) Change each i ∈ {1, . . . , kn + 1} in P into σ(i)
	12	

8 for i ∈ {2 . . . k} do Add i in P 1 9 Choose uniformly j ∈ {1, . . . , n + 1} and add k(n + 1) + 1 in P j 10 until P is a k-Dyck partition 11 A ′ =PartitionToTransitionStructure(P )
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