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Abstract

This paper presents an efficient random generator, based on a Boltzmann sam-
pler, for accessible, deterministic and possibly not complete automata. An interest-
ing intermediate result is that for any finite alphabet, the proportion of complete
automata with n states amongst deterministic and accessible ones is greater than a
positive constant.

1 Introduction

The enumeration of finite automata according to various criteria (non-isomorphic [11],
up to permutation of the labels of the edges [11], with a strongly connected underlying
graph [13, 14, 15, 19], accessible [13, 15, 19], acyclic [16],...) is a problem that was
studied since 1959 [21].

In [1] the first and third authors exhibit a bijection between the set An of deter-
ministic, complete and accessible automata with n states over a k-letter alphabet and
some diagrams, which can themselves be represented as partitions of the set {1, · · · , kn}
into n nonempty subsets. These combinatorial transformations show that the order of
magnitude of the cardinality |An| of the set An is related to the Stirling numbers of the
second kind that can be be used to reformulate an asymptotic estimate of |An| due to
Korshunov [13]. They also provide a uniform random generator for the automata of An,
based on Boltzmann samplers [6, 7], that is more efficient than former ones [4, 17] using
a recursive algorithm [9, 18].

This paper generalizes the study [1] of deterministic, complete and accessible au-
tomata to possibly incomplete automata. It simplifies the algorithmic part of [1]. More
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precisely the combinatorial transformations are changed, a unique bijection allows us to
directly transform specific set partitions into accessible and deterministic automata. A
careful analysis of the complexity is done to ensure that the generator obtained is still
efficient; as in the case of complete automata, its average complexity is O(n3/2), where n
is the number of states of automata. An interesting intermediate result is that for any fi-
nite alphabet, the proportion of complete automata with n states amongst deterministic
and accessible ones is greater than a positive constant.

The paper is organized as follows. Bijections used to change complete automata into
set partitions are presented in Section 3. The ones used to transform possibly incomplete
automata are given in Section 4. Section 5 is devoted to enumeration results used in the
analysis of the complexity of the generator. The random generator, together with the
analysis of its efficiency, is given in Section 6. The paper closes with some experimental
results obtained with the C++ library REGAL1 [2].

2 Definitions and basic properties

Our goal is to study from a combinatorial point of view the set of accessible and deter-
ministic automata with n states. Therefore we first recall some definitions about finite
automata, referring the readers to [12, 20] for basic elements of this theory. We also
introduce boxed diagrams and specific set partitions that will be used to enumerate and
generate automata.

2.1 Deterministic and accessible automata

A deterministic finite automaton A = (A,Q, ·, q0, F ) over a finite alphabet A is a quin-
tuple where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊂ Q is the set of final
states and the transition function · is an element of Q × A 7→ Q ∪ ∅. If p · a = ∅ for a
given state p ∈ Q and a letter a ∈ A, then p · a is an undefined transition. A determin-
istic finite automaton without undefined transition is complete. If A = (A,Q, ·, q0, F )
is a deterministic finite automaton, its transition function is extended by morphism to
Q × A∗ making use of the convention ∅ · a = ∅ for every a ∈ A.

A deterministic finite automaton A is accessible when for each state q of A, there
exists a word u ∈ A∗ such that q0 · u = q.

Two deterministic finite automata A = (A,Q, ·, q0, F ) and A′ = (A,Q′, ·, q′0, F ′) over
the same alphabet are isomorphic when there exists a bijection τ from Q ∪ ∅ to Q′ ∪ ∅
such that, τ(q0) = q′0, τ(∅) = ∅, τ(F ) = F ′ and for each (q, α) ∈ Q×A, τ(q ·α) = τ(q) ·α.
Two isomorphic automata only differ by the labels of their states.

2.2 Transition structures

Now we introduce a representation of accessible and deterministic automata that uses
the minimal labels of simple paths and allows us to enumerate and generate them easily.
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More precisely a simple path in a deterministic automaton A is a path labelled by a word
u, such that all prefixes v and v′ of u, with v 6= v′, satisfy q0 · v 6= q0 · v′. In other words,
in the graphical representation of A the path labelled by u does not go twice through
the same state. Let A be an accessible and deterministic automaton over the alphabet
A and let w be the map from Q to A∗ defined for every state q ∈ Q by

w(q) = min
lex

{u ∈ A∗ | q0 · u = q and u is a simple path in A},

where the mininum is taken according to the lexicographic order. Note that w(q) always
exists since A is accessible. An automaton A = (A,Q, ·, q0, F ) is called a base automaton
when Q ⊂ A∗ (the states are labelled by words) and for all u ∈ Q, w(u) = u. Note that
by construction, if u ∈ Q and v is a prefix of u, then v ∈ Q. As two distinct base
automata cannot be isomorphic, we can directly work on isomorphism classes using base
automata.

The transition structure of an automaton A = (A,Q, ·, q0, F ) is D = (A,Q, ·, q0): in
D there is no more distinguished final states. We can define similarly accessible and
deterministic transition structures.

Denote by Dn the set of accessible and deterministic transition structures of base
automata with n states, and by Cn the set of complete transition structures belonging
to Dn.

Given an element D of Dn, there are exactly 2n automata whose transition struc-
ture is D, since the accessibility prevents distinct choices of final sets to form the same
automaton. Therefore the number of deterministic and accessible automata, up to iso-
morphism, is 2n|Dn|.

Note that forbidding or not the set of final states to be empty does not basically
change the results, since the probability of this event is 1/2n.

Our purpose is to enumerate the elements in Dn and to generate them randomly for
the uniform distribution on Dn.

In the following we only consider accessible and deterministic automata, and complete
and accessible deterministic transition structures. Consequently, these objects will often
be called respectively automata or transition structures.

2.3 Boxed diagrams

Boxed diagrams were introduced in [1] to characterize transition structures with objects
that are easier to enumerate.

A diagram of width m and height n is a sequence (x1, . . . , xm) of nondecreasing
nonnegative integers such that xm = n, classically represented as a diagram of boxes,
see Figure 1. A k-Dyck diagram of size n is a diagram of width (k−1)n+1 and height n
such that xi ≥ ⌈i/(k − 1)⌉ for each i ≤ (k − 1)n. A boxed diagram is a pair of sequences
((x1, . . . , xm), (y1, . . . , ym)) where (x1, . . . , xm) is a diagram and for each i ∈ [[ 1..m ]], the
yith box of the column i of the diagram is marked, see Figure 1. As a consequence, a
diagram gives rise to

∏m
i=1 xi boxed diagrams. A k-Dyck boxed diagram of size n is a

boxed diagram whose first coordinate (x1, . . . , x(k−1)n+1) is a k-Dyck diagram of size n.



(1,1,2,2,4)
(1,3,3,4,4)(1,1,2,4,4) (1,1,2,4,4)

(1,1,2,1,3)
(1,3,3,4,4)

Figure 1: A diagram of width 5 and height 4, a boxed diagram, a 2-Dyck diagram and
a 2-Dyck boxed diagram

As it will be recalled in Section 3, there exists a bijection between k-Dyck boxed
diagrams and complete transition structures.

2.4 Set partitions

Denote by Pn,m the set of all set partitions of the set {1, . . . , n} into m nonempty subsets.
The cardinality of the set Pn,m is equal to {n

m}, the Stirling numbers of the second kind.
Let P = {P1, . . . , Pm} be a set partition in Pn,m and ℓ ∈ {1, . . . , n}, the ℓ-subpartition

of P , denoted by P (ℓ), is the set partition of the set {1, . . . , ℓ} whose elements are the
nonempty subsets Pi ∩ {1, . . . , ℓ} where i ∈ {1, . . . ,m}. Therefore the set partition P (ℓ)

contains at most m nonempty subsets.
Let k ≥ 2 be an integer. A set partition P = {P1, . . . , Pm} of Pn,m, where the Pi

are sorted according to their smallest element, is said to be a k-Dyck set partition when
it satisfies the k-Dyck condition: for every j ∈ {1, . . . ,m}, the smallest integer in Pj is
smaller than or equal to k(j − 1) + 1.

For example, for the set {1, . . . , 13} and m = 4, the set partition

P = {{1, 11, 13}, {2, 3, 6, 9}, {4, 8, 10}, {5, 7, 12}}

is a 3-Dyck set partition.
We show, in the sequel, that there exists a bijection between transition structures

over a k-letter alphabet and k-Dyck set partitions (Theorem 2).

3 Complete automata

In this section we propose a new bijection that directly build a k-Dyck set partition
from a complete transition structure. For the sake of completeness, we also detail the
bijection between transition structures and k-Dyck boxed diagrams.

3.1 Complete transition structures and boxed diagrams

First recall the bijection established in [17] for a two-letter alphabet and generalized to
any finite alphabet in [4]:



Theorem 1 There exists a bijection between the set Cn of accessible, complete and de-
terministic transition structures with n states over a k-letter alphabet A and the set of
k-Dyck boxed diagrams of size n. This transformation and its inverse can be computed
in linear time.

Proof : In the following we denote by ε the empty word. For n ≥ 1, let D = (A,Q, ·, ε) ∈
Cn be the transition structure of a deterministic, accessible and complete base automaton
over a k-letter alphabet. Since D is complete, it contains kn transitions of the form (u, α),
with u ∈ Q and α ∈ A. We partition the set of these transitions depending on whether
they belong to the spanning tree induced by the depth-first traversal according to the
lexicographical order of the structure or not. Using the properties of the labelling of the
states of D, the set partition can be described as follows, for any u ∈ Q:

- If uα ∈ Q then u ·α = uα and (u, α) is a tree transition. It belongs to the spanning
tree.

- If uα /∈ Q then u · α <lex uα, and (u, α) is called a missing transition. It does not
belong to the spanning tree.

There are n − 1 tree transitions and (k − 1)n + 1 missing transitions.
Let ν be the unique increasing bijection from the set Q (lexicographically ordered)

to {1, . . . , n}, that is, ν(q) is the number of elements of Q smaller or equal to q for
the lexicographical order. To any missing transition t = (q, α) we associate the pair of
integers (xt, yt) defined by

{

xt = |{u ∈ Q | u <lex qα}|
yt = ν(q · α).

Next we order the transitions of D according to the relation: (u, α) < (v, β) if and only
if uα <lex vβ. Then the bijection Ψ between Cn and the set of k-Dyck boxed diagrams of
size n can be defined as follows: let (t1, . . . , t(k−1)n+1) be the ordered sequence of missing
transitions of D,

Ψ(D) = ((xt1 , . . . , xt(k−1)n+1
), (yt1 , . . . , yt(k−1)n+1

)).

The map Ψ is a bijection (see [17, 4] for details). The sequence (xt1 , . . . , xt(k−1)n+1
)

represents the depth-first spanning tree of D and defines the labelling of the states of D;
the sequence (yt1 , . . . , yt(k−1)n+1

) carries all the informations about missing transitions:

u · α = ν−1(y(u,α)).

This completes the proof. �

3.2 Complete transition structures and set partitions

We now introduce a bijection between complete transitions structures over a k-letter
alphabet and k-Dyck set partitions. This new bijection allows us to simplify, from an



algorithmic point of view, the random generator of complete automata presented in [1].
Let D = (A,Q, ·, ε) be complete transition structure with n states over a k-letter ordered
alphabet A = {a1, . . . , ak}. We formally add the transition (∅, ε), which can be seen as
the arrow indicating the initial state on the graphical representation of D. By convention
∅ · ε = ε, the initial state of D. Let TD be the set of transitions of D, including the new
one. By construction |TD| = kn + 1. To each transition t = (u, a) of TD is uniquely
associated an integer n(t) of {1, . . . , kn + 1} making use of the depth-first traversal with
respect to the lexicographical order of D: n((∅, ε)) = 1 and for every t = (u, a) and
t′ = (u′, a′) in TD \ {(∅, ε)}, n(t) < n(t′) if and only if ua <lex u′a′.

Let PD be the set partition of Pkn+1,n such that for any i and j of {1, . . . , kn + 1},
i and j are in the same part of PD if and only if u · a = u′ · a′, where n((u, a)) = i and
n((u′, a′)) = j. In other words, i and j are in the same part when they are the numbers
associated to two transitions going into the same state of D.

We denote by χ the map from the set of complete transition structures with n states
to Pkn+1,n where χ(D) = PD is the partition defined above.
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Figure 2: On the left side: a transition structure D. On the right side: the numbered
transitions. The set partition PD = {{1, 11, 13}, {2, 3, 6, 9}, {4, 8, 10}, {5, 7, 12}} is ob-
tained by grouping together the edges according to their ending state.

Theorem 2 For any n ≥ 1 and k ≥ 2, the map χ that transforms D into PD is a
bijection from the set of transition structures of complete base automata with n states
over a k-letter alphabet onto the set of k-Dyck set partitions of Pkn+1,n.

Proof : A construction to transform a set partition P = {P1, . . . , Pn} of Pkn+1,n into
a boxed diagram of width kn + 1 and heigth n is given in [1]. If we assume that
the sets Pi’s are sorted according to their smallest element, the boxed diagram B =
((x1, . . . , xkn+1), (y1, . . . , ykn+1)) is such that, for any i ∈ {1, . . . , kn + 1}, xi is equal to
the number of subsets in the subpartition P (i), and yi is the index of the subset of P
to which belongs i. A k-Dyck boxed diagram is then obtained by removing from B the
columns corresponding to the smallest element of each part of P (we refer the reader
to [1] for more details and related algorithms). As this construction is a bijection from



the set of k-Dyck set partitions of Pkn+1,n onto the k-Dyck boxed diagrams of size n,
making use of Theorem 1 we conclude that the two sets considered in the statement of
Theorem 2 have the same cardinality.

Now we prove that χ is an injection. Suppose that D = (A,Q, ·, ε) and D′ =
(A,Q′, ∗, ε) are the transition structures of two distinct accessible, deterministic and
complete base automata with n states. Let e = (p, a) be the first transition in depth-
first order in both D and D′ such that p ·a 6= p∗a. Note that the states whose labels are
smaller than or equal to p for the lexicoraphic order are exacly the same in D and D′.
Let q = p · a and q′ = p ∗ a. Assume by symmetry that q is strictly smaller than q′ for
the lexicographic order. Therefore q is smaller than or equal to p, and hence it belongs
to Q and Q′. Consequently, in PD n(e) is in the same subset as the first edge ending in
q, and this is not true in P ′

D. Thus χ is an injection.
To conclude, we prove that the image by χ of a complete transition structure with n

states over a k-letter alphabet is a k-Dyck set partition of Pkn+1,n. Suppose that there
exist a complete transition structure D of a base automaton for which it is not true. Let
PD = {P1, . . . , Pn}, such that the Pi’s are sorted according to their smallest element.
Let ℓ be the smallest nonnegative integer in {2, . . . ,m} such that the smallest element of
Pℓ is strictly greater than k(ℓ− 1) + 1. Therefore, the k(ℓ− 1) first transitions in D end
in a state of number in {1, . . . , ℓ − 1}, forming a complete transition structure with ℓ−1
states. Hence D is not accessible which is a contradiction. Thus χ is also a surjection
onto the subset of Pkn+1,n made of k-Dyck set partitions. �

We give in Section 6.2 an algorithm that transform a k-Dyck set partition of Pkn+1,n

into a transition structure with n states over a k-letter alphabet.

4 Possibly incomplete transition structures

In this section we present two combinatorial transformations of possibly incomplete
transition structures. The first one is a non-classical way to obtain complete transition
structure. The second one links possibly incomplete transition structures with a subsclass
of k-Dyck boxed diagrams and is used to enumerate these structures in Section 5.

4.1 From transition structures to complete transitions structures

In theory of automata an incomplete automaton is classically changed into a complete
one recognizing the same language by the addition of a sink state. This transformation is
not suitable for our combinatorial construction. Indeed if two incomplete automata have
the same depth-first spanning tree, they may not have the same one after the addition
of a sink state, as shown on Fig. 3.

Therefore we introduce another transformation denoted by φ and defined as follows:
to any D ∈ Dn, with D = (A,Q, ·, ε), we associate with the complete transition structure
φ(D) = (A,Q′, ∗, ε) in Cn+1 with Q′ = {ε} ∪ akQ where ak = maxlex{α ∈ A} and whose
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Figure 3: On the left two automata with the same spanning tree. On the right, their
spanning trees once completed by adding a sink state.

transitions are defined by:























ε ∗ α = ε if α 6= ak

ε ∗ ak = ak

q′ ∗ α = ak(q · α) if ∃q ∈ A∗, q′ = akq and q · α 6= ∅
q′ ∗ α = ε if ∃q ∈ A∗, q′ = akq and q · α = ∅.

This construction consists of
- adding a new state, that becomes the initial state ε of φ(D) and a transition

ε ∗ ak = q0, labelled by the greatest letter and where q0 is the initial state D,

- relabelling the transition structure to obtain the transition structure of a base
automaton,

- changing any undefined transition q · α = ∅ into q ∗ α = ε.
Note that φ does not preserve the language recognized.

Lemma 1 Denote by En the subset of transition structures of Cn such that ε · α = ε for
α ∈ A \ {maxlex{α ∈ A}}. The function φ is a bijection from Dn to En+1.

By definition of φ, En+1 = φ(Dn). Moreover the inverse of φ is obtained by removing
the initial state, making the state ak initial, and relabelling the states.

4.2 The k-Dyck boxed diagrams associated with the elements of En

Recall that if (t1, . . . , t(k−1)n+1) is the ordered sequence of missing transitions of the base
transition structure D with n states over a k-letter alphabet,

Ψ(D) = ((xt1 , . . . , xt(k−1)n+1
), (yt1 , . . . , yt(k−1)n+1

)),



where for any missing transition t = (q, α)
{

xt = |{u ∈ Q | u <lex qα}|
yt = ν(q · α)

ν(q) being the number of states of D smaller or equal to q for the lexicographical order.
For n ≥ 2, the image Ψ(En) is easy to characterize.

Lemma 2 Let Fn be the set of k-Dyck boxed diagrams of size n such that for all i ∈
{1, . . . , k − 1}, xi = 1 and yi = 1. For any n ≥ 2, Ψ is a bijection between En and Fn.

Proof : Let A = {a1 < . . . < ak}. If D = (A,Q, ·, ε) ∈ En then for i ∈ {1, . . . , k − 1},
ε · ai = ε. Moreover, ε is the only word of Q that does not start with ak. Thus,
the first k − 1 missing transitions of D are (ε, a1), . . ., (ε, ak−1). Therefore for any
i ∈ {1, . . . , k−1}, {u ∈ Q | u <lex ai} = {ε} and x(ε,ai) = 1. Moreover since 1 ≤ y(ε,ai) ≤
x(ε,ai), y(ε,ai) = 1.

If D = (A,Q, ·, ε) /∈ En, let i be the smallest integer such that ε · ai 6= ε. Then
the word ai is the smallest word in Q \ {ε}. If a missing transition (u, α) is such that
uα <lex ai, then u = ε and α < ai: there are exactly i − 1 such missing transitions.
Hence, the i-th missing transition ti, in the ordered sequence, is such that xti ≥ 2 and
Ψ(D) /∈ Fn, concluding the proof. �

5 Enumeration

This section is devoted to enumeration problems. The number of accessible automata
is related to the Stirling numbers of the second kind whose definition and asymptotic
estimate are recalled.

5.1 The Stirling numbers of the second kind

The Stirling number of the second kind {n
m}, where n and m are two nonnegative integers,

is the number of set partitions of a set with n elements into m nonempty subsets.

Lemma 3 ([1]) The number of boxed diagrams of width m and height n is equal to
{m+n

n }.

Recall that the LambertW-function [3] is the inverse of the function x 7→ xex. Its
principal branch W0 is real-valuted for x in [−e−1,+∞[ and is the unique branch which
is analytic at zero. Its series expansion is

W0(z) =

∞
∑

n=1

(−n)n−1

n!
zn = z − z2 + O

(

z3
)

(1)

The Stirling numbers of the second kind are asymptotically estimated with the saddle
point method.



Theorem 3 (Good [10]) When n and m both tend towards infinity with n = Θ(m),
the following result holds:

{n
m} ∼ n!(eρ − 1)m

m!ρn
√

2πn(1 − n
me−ρ)

where ρ = W0(− n
me−

n
m )+ n

m is the unique positive root of the equation mρ = n(1−e−ρ).

5.2 Enumeration of accessible deterministic automata

Recall that the number of automata in a specific class is equal to the number of transition
structures of the same class multiplied by 2n.

Complete automata

Korshunov [14] gave an asymptotic equivalent of the cardinality |Cn| of the set of com-
plete, deterministic and accessible transition structures with n states over a k-letter
alphabet. This equivalent can be reformulated [1] in terms of the Stirling numbers of
the second kind:

Theorem 4 (Korshunov [13, 14]) The number |Cn| of accessible complete and deter-
ministic transition structures with n states over a k-letter alphabet satisfies

|Cn| ∼ Ek n
{

kn
n

}

where Ek =
1 +

∑∞
r=1

1
r

( kr
r−1

)(

ek−1βk

)−r

1 +
∑∞

r=1

(

kr
r

)(

ek−1βk

)−r , βk =
(kζk)

k

ek−1(eζk − 1)

and ζk is the positive root of ρ = k(1 − e−ρ).

Possibly incomplete automata

To enumerate possibly incomplete transition structures we basically use the following
lemma:

Lemma 4 For any fixed k ≥ 2, as n tends toward infinity, one has

{

kn+1
n+1

}

∼ eζk
{

kn
n

}

with ζk = W0(−ke−k) + k.

Proof : The following proof is based on the comparison of the estimations of
{

kn
n

}

and
{

kn+1
n+1

}

obtained with Theorem 3.
In the case of

{

kn
n

}

, ζk = W0(−ke−k) + k is the positive root of ρ = k(1 − e−ρ).
Theorem 3 and Stirling’s formula give (see [1] for details):

{

kn
n

}

∼ (kn)!

n!

(eζk − 1)n

ζkn
k

√

2πkn(1 − ke−ζk)
∼ αkβ

n
k n(k−1)n−1/2

with αk = (2π(ζk − (k − 1)))−
1
2 and βk = (kζk)k

ek−1(eζk−1)
.



Denote by f the function f(x) = W0(−xe−x) + x. To use Theorem 3 for
{

kn+1
n+1

}

we

have to compute ρn,k = f
(

kn+1
n+1

)

= f(k − k−1
n+1). Because of the analycity of f , we can

use Taylor expansion:

ρn,k = f

(

k − k − 1

n + 1

)

= f(k)− k − 1

n + 1
f ′(k) +O

(

1

n2

)

= ζk − (k − 1)f ′(k)
1

n
+O

(

1

n2

)

.

From Theorem 3 we get:

{

kn+1
n+1

}

∼ (kn + 1)!(eρn,k − 1)n+1

(n + 1)!ρkn+1
n,k

√

2π(kn + 1)(1 − kn+1
n+1 e−ρn,k)

.

Usual estimations and Stirling’s formula lead to:

(kn + 1)!

(n + 1)!
∼ e−(k−1)nk3/2kknn(k−1)n

√

2π(kn + 1)(1 − kn + 1

n + 1
e−ρn,k) ∼

√

2πkn(1 − ke−ζk)

(eρn,k − 1)n+1 ∼ (eζk − 1)n+1e
−

(k−1)f ′(k)eζk

e
ζk−1

ρkn+1
n,k ∼ ζkn+1

k e
−

k(k−1)f ′(k)
ζk

Moreover as ζk satisfies ζk = k(1 − e−ζk), eζk/(eζk − 1) = k/ζk. Finally we obtain

{

kn+1
n+1

}

∼ α′
kβ

n
k n(k−1)n−1/2

with α′
k = eζk√

2π(ζk−(k−1))
. Thus

{

kn+1
n+1

}

∼ eζk
{

kn
n

}

, concluding the proof. �

Theorem 5 shows that there are Θ(n 2n
{

kn
n

}

) accessible and deterministic base au-
tomata with n states over a k-letter alphabet.

Theorem 5 The number |Dn| of accessible and deterministic transition structures of
base automata with n states is Θ(n

{

kn
n

}

).

Proof : First, as Cn ⊂ Dn, |Cn| ≤ |Dn|. And Theorem 4 leads to the lower bound.
In Section 3 we exhibited a bijection in two steps between the set Dn and the set Fn+1

of k-Dyck boxed diagrams ((x1, . . . , x(k−1)(n+1)+1), (y1, . . . , y(k−1)(n+1)+1)) such that for
all i ∈ {1, . . . , k − 1}, xi = 1 and yi = 1.

Now the number of elements in Fn+1 is smaller than the number of boxed diagrams
of width (k − 1)(n + 1) + 1 = (k − 1)n + k and height n + 1, whose k − 1 first columns
have height 1, and the last column has height n+1. Note that it is an overestimation of
|Fn+1| since diagrams that do not satisfy the diagonal condition are taken into account.
Therefore the elements of Fn+1 are approximated by boxed diagrams made of k − 1



columns of height 1, a boxed diagram of width (k − 1)n and height n + 1 and a column
of height n + 1. There are n + 1 possibilities for the last column. Thus, by Lemma 3,
we obtain that |Dn| ≤ (n + 1)

{

kn+1
n+1

}

. We conclude using Lemma 4. �

Corollary 1 As n tends towards infinity, |Cn| = Θ(|Dn|).

6 Random generation

In this section, in order to uniformly generate deterministic and accessible automata, we
adapt an algorithm described in [1] and used to generate complete automata.

The first step of the algorithm is based on a Boltzmann sampler that generates spe-
cific set partitions. The second one consists of the transformation of these set partitions
into accessible and deterministic automata.

6.1 A Boltzmann sampler to generate random set partitions

The Boltzmann sampler used here is a direct application of the work of Duchon, Flajolet,
Louchard and Schaeffer [6]. Boltzmann samplers do not generate fixed size objects. They
depend on a real parameter x > 0 and, for any given integer n, the value of x can be
chosen so that the average size of the generated elements is n. The size is not fixed,
but Boltzmann samplers guarantee that two elements of the same size have the same
probability to be generated.

In order to uniformly generate set partitions of a set with kn + 1 elements into n + 1
nonempty subsets, we first consider the set of partitions of a set into n+1 nonempty sets.

Its exponential generating function is Pn+1(z) = (ez−1)n+1

(n+1)! . Using Boltzmann sampler
construction, each of the n+1 sets are generated assuming that its size follows a Poisson
law Pois≥1 of parameter x (a truncated Poisson variable K, where K is conditionned to
be ≥ 1). The average size of the partition is then:

Ex(size of the partition) = x
P ′

n+1(x)

Pn+1(x)
= (n + 1)x

ex

ex − 1
.

Since we want a partition of a set having kn + 1 elements, the value of the parameter
xn is chosen so that

(n + 1)xn
exn

exn − 1
= kn + 1,

that is, xn = ρn,k (see the proof of Lemma 4). When the Boltzmann parameter xn is
equal to ρn,k, the probability for a random set partition to be of size kn + 1 is [6]:

Pρn,k
(N = nk + 1) =

ρkn+1
n,k [zkn+1]Pn+1(z)

Pn+1(ρn,k)
=

{

kn+1
n+1

}

ρkn+1
n,k

(kn + 1)!

(n + 1)!

(eρn,k − 1)n+1
.

This quantity can be asymptotically estimated using the same method as in the proof
of Lemma 4:

Pρn,k
(N = nk + 1) ∼ αk√

kn
. (2)



6.2 Random generator of possibly incomplete automata

The algorithm below is an improvement of two algorithms presented in [1]: starting from
a partition, instead of computing its associated boxed diagram and then its transition
structure, we directly compute the associated transition structure. In the algorithm,
we assume that the parts P = {P1, . . . , Pn} of the input are sorted according to their
smallest element. The algorithm is based on the fact that the numbers in the elements of
P correspond to the transitions of the result in depth-first order, and that, when i ∈ Pj ,
the i-th transition ends in the state j.

Algorithm 1: PartitionToTransitionStructure(P )

input: A k-Dyck partition P = {P1, . . . , Pn} of Pkn+1,n

S = empty stack1

Create the initial state q0 = 12

newState = 2 // this is the number of the next created state3

forall a ∈ A in reverse lexicographical order do4

Push (q0, a) into S5

end6

for i ∈ {2, .., kn + 1} do7

(p, a) = Pop from S8

q = j, where i ∈ Pj9

if q = newSate then10

Create the state q11

newState = newState + 112

forall b ∈ A in reverse lexicographical order do13

Push (q, b) into S14

end15

end16

Add a transition from p to q labelled by a17

end18

The following algorithm use PartitionToTransitionStructure(P) to generate uni-
formly an accessible and deterministic automaton with n states over a k-letter alphabet.
We use the fact that a k-Dyck partition P = {P1, . . . , Pn+1} of Pk(n+1)+1,n+1 corresponds
to an element of Fn+1 if and only if

for all i ∈ {1, . . . , k}, i ∈ P1. (3)

This property follows directly from the fact that the k first transitions in depth-first
order of an element of Fn+1, taking into account the edge coming into the inital state
as in Section 3.2, end in the initial state. Similarly to the construction of [1] but with
the additional constraint of Equation (3), RandomTransitionStructure(n):

• generates uniformly a partition of {1, k + 1, k + 2, . . . , k(n + 1)}, a set with kn + 1
elements, into n + 1 nonempty subsets,



• adds the integers from {2, . . . , k} in the first part,

• adds k(n + 1) + 1 uniformly at random in one of the n + 1 subsets.

Algorithm 2: RandomTransitionStructure(n)

input: The size n of the automaton
Compute ρn,k using Equation (1) p.9.1

repeat2

repeat3

for i ∈ {1, . . . , n + 1} do λi = Pois≥1(ρn,k)4

until λ1 + · · · + λn+1 = kn + 15

P = {{1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2 + 1}, . . . , {λ1 + . . . λn+1, . . . , kn + 1}6

σ =RandomBijection({1, . . . , kn + 1} 7→ {1, k + 1, . . . , k(n + 1)})7

Change each i ∈ {1, . . . , kn + 1} in P into σ(i)8

for i ∈ {2 . . . k} do Add i in P19

Choose uniformly j ∈ {1, . . . , n + 1} and add k(n + 1) + 1 in Pj10

until P is a k-Dyck partition11

A′ =PartitionToTransitionStructure(P )12

Compute A obtain from A′ by removing the initial state, the transitions coming13

in or out the initial set, and making the second state initial.
for q state of A do Choose uniformly whether q is final or not14

Note that for fixed n and k, Step 1 can be performed only once.

Theorem 6 The average complexity of this random generator is O(n3/2).

Proof : All steps can be performed in linear time, if we do not take into account the
rejects. In a rejection algorithm, if a test is positive with probability p, the average
number of rejects is 1/p. Therefore, as a consequence of Theorem 5 and Lemma 4, the
average number of rejects at Step 5 is bounded by a constant. Moreover Equation (2)
p. 12 shows that, in average, there are O(

√
n) rejects at Step 11. �

6.3 Experimental results

The random generator has been implemented in REGAL2 [2], a C++ library to generate
random automata. We made some tests using this library mostly to compare determin-
istic and accessible automata with complete ones. For each test 10, 000 automata with
10, 000 states have been generated:

• For k = 2, 80.1% of automata are not complete. For k = 3, this proportion raises to
94.1%. Note that Lemma 4 shows that proportions are similar before the rejection
step.

• For k = 2, 95.4% of automata are minimal for k = 2.

2available at: http://regal.univ-mlv.fr/



• For k = 2, 79.0% are strongly connected, it is about the same as for complete
automata.

• For k = 2, in average an automaton has about 1.6 undefined transitions.
We implemented PartitionToTransitionStructure(P) in a new version of REGAL and
did some benchmarks to compare with older versions, based on two transformations,
using boxed diagrams. For automata with more than 500 states, the new algorithm is
significantly faster.

n 100 500 1000 5000 10000

k = 2 0.0014 0.011 0.035 0.38 1.25
k = 3 0.0018 0.015 0.045 0.52 1.3
k = 4 0.0022 0.018 0.055 0.60 1.6

Figure 4: Average time in second for the generation of a possibly incomplete determin-
istic accessible automaton with n states over a k-letter alphabet.

Fig. 4 gives the average times required for the generation of an automaton. Benchmarks
were made with an Intel(R) Core(TM)2 CPU 6600 2.40GHz, with 2Go of RAM. We
used 10 000 automata of each size.

Open problem

Our algorithm is in O(n3/2) because of the rejects in the construction of a random
partition of {1, . . . , kn + 1} into n + 1 parts. The natural open problem to improve this
algorithm is therefore to find a linear algorithm, if it exists, to randomly and uniformly
generate such partitions.
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