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This study investigates an optimization-based heuristic for the Robotic Cell Problem. This problem arises in automated cells and is a complex ‡ow shop problem with a single transportation robot and a blocking constraint. We propose an approximate decomposition algorithm. The proposed approach breaks the problem into two scheduling problems that are solved sequentially: a ‡ow shop problem with additional constraints (blocking and transportation times) and a single machine problem with precedence constraints, time lags, and setup times. For each of these problems, we propose an exact branch-and-bound algorithm. Also, we describe a genetic algorithm that includes, as a mutation operator, a local search procedure. We report the results of a computational study that provides evidence that the proposed optimization-based approach delivers high-quality solutions and consistently outperforms the genetic algorithm. However, the genetic algorithm delivers reasonably good solutions while requiring signi…cantly shorter CPU times.

Introduction

The Robotic Cell Problem (RCP ) is a generalization of the classical permutation ‡ow shop problem. It may be formulated as follows. Given a job set J = f1; 2; :::; ng where each job has to be processed nonpreemptively on m machines M 1 ; M 2 ;..., M m in that order. The processing time of job j (j = 1; :::; n) on machine M i (i = 1; :::; m) is p ij . At time t = 0; all jobs are available at an input device denoted by M 0 : After completion, each job must be taken from M m to an output device that is denoted by M m+1 (for convenience, we set p m+1;j = 0; 8j 2 J): The transfer of a job j 2 J from M i to M i+1 (i = 0; :::; m) is performed by means of a single robot. An empty or a loaded move of the robot from M i to M h (i; h = 0; :::; m + 1) takes ih units of time. The machines have neither input nor output bu¤ering facilities. Consequently, after processing a job j on machine M i (i = 1; :::; m), this latter remains blocked until the robot picks up j and transfers it to the following machine M i+1 : Such a move could only be performed if machine M i+1 is free (that is, no job is being processed by or waiting at M i+1 ). At any time, each machine can process at most one job and each job can be processed on at most one machine. Moreover, the robot can transfer at most one job at any time. The problem is to …nd a processing order of the n jobs, the same for each machine (because of the blocking constraint, passing is not possible), such that the time C max at which all the jobs are completed (makespan) is minimized.

The particular case of the robotic cell problem where the transportation times are negligible reduces to the much studied ‡ow shop scheduling problem with blocking [START_REF] Pinedo | Scheduling theory, algorithms, and systems[END_REF]. [START_REF] Hall | A survey of machine scheduling problems with blocking and no-wait in process[END_REF] prove that this latter problem is strongly N P-hard for m 3. Consequently, the RCP is strongly N P-hard for m 3 as well.

Our motivation for the investigation of the robotic cell problem stems from its practical relevance to Flexible Manufacturing Systems (FMSs), which are highly automated production systems capable of producing a wide variety of job types. As pointed out in [START_REF] Blazewicz | Scheduling tasks and vehicles in a ‡exible manufacturing system[END_REF], one of the most di¢ cult operational problems in FMSs is the development of e¤ective schedules considering jobs, machines and transportation devices in order to provide a proper coordination of the production sequencing and time allocation of all required resources. Blocking constraints arise for example in the manufacturing process or the chemical industry where some characteristics (such as temperature) of the material requires that each job must wait on the machine before being processed on the next machine. The RCP is a speci…c problem in FMSs. Only very special cases can be solved in polynomial-time and various cases with a single robot are already N P-hard (see [START_REF] Knust | Shop-scheduling problems with transportation[END_REF]).

The main contribution of this paper, is to propose an approximate decomposition algorithm for the RCP that requires sequentially solving two scheduling problems. Each of these problems is solved exactly. More precisely, we propose the following two-phase solution strategy:

Phase 1: We solve a relaxation of RCP that is derived by partially relaxing the robot capacity constraints. More precisely, we assume that after transferring a job j from M i to M i+1 (i = 1; :::; m), the robot is always immediately available to perform an empty move from M i+1 to M i 1 and pick up the next scheduled job k when it becomes ready. Moreover, we assume that after …nishing a job j on the last machine M m ; the robot can immediately transfer this job to the output device. Finally, we assume that the …rst scheduled job will be processed without waiting at any machine. With these assumptions, we obtain a ‡ow shop problem with blocking and transportation times. We shall provide a formal description of this problem in Section 3. The solution of this relaxed problem (hereafter, denoted by F jBlock; t k jC max ) yields a solution which consists of a permutation of the jobs with a corresponding completion time C 1 max ( ).

Phase 2: Given the permutation that is derived in Phase 1, we determine the sequence of robot moves (including both empty as well as loaded moves) that minimizes the maximum completion time (makespan). In Section 4, we show that this amounts to solving a single machine problem with side-constraints. In doing so, we obtain a completion time C 2 max ( ):

Clearly, since the ‡ow shop problem that is de…ned in Phase 1 is a relaxation of the RCP then the optimal makespan C 1 max ( ) is a valid lower bound on the optimal makespan of the RCP . Moreover, the optimal makespan of the solution of the single machine problem that is de…ned in Phase 2 is an upper bound on the optimal makespan of the RCP .

The remainder of this paper is organized as follows. In Section 2, we review the literature pertaining to job scheduling and transportation planning in ‡exible manufacturing systems. In Section 3, we present several lower bounds for F jBlock; t k jC max and we describe an exact branch-and-bound algorithm for solving this latter problem. In Section 4, we describe an optimization algorithm for sequencing the robot moves. In Section 5, we describe a genetic algorithm. The empirical performance of the proposed approach is assessed in Section 6 where we present the results of a comprehensive computational study. Finally, we provide in Section 7 some concluding remarks and we outline topics for future investigations.

Literature review on scheduling and transportation planning in FMSs

The impressively rapid spread of robotic cells in manufacturing systems that occurred during the last two decades has prompted the emergence of many new scheduling problems. We refer to the excellent book of [START_REF] Dawande | Throughput Optimization in Robotic Cells[END_REF] for an up-to-date and comprehensive review of sequencing and scheduling problems arising in robotic cells. Actually, almost all previously investigated robotic cell scheduling problems deal with cyclic scheduling problems with machines producing a family of similar parts, in a steady-state. We refer to [START_REF] Dawande | Sequencing and scheduling in robotic cells: Recent developments[END_REF] for a classi…cation scheme of these challenging problems. However, to the best of our knowledge, the multiple-part-type robotic cell problem that is addressed in this paper has never been investigated before in the foregoing very general form. Indeed, multiple-part type problems that have been addressed so far are often de…ned as follows. We are given a minimal part set (MPS) that includes p di¤erent part-types to be produced. Each type k (k = 1; :::; p) includes d k similar parts. The MPS requires to be scheduled repetitively using p repetitions of a one-unit robot move cycle with the objective of maximizing the throughput rate, or equivalently, minimizing the cycle time (for example see [START_REF] Sriskandarajah | Scheduling large robotic cells without bu¤ers[END_REF]). Furthermore, although there is a vast literature pertaining to integrated job and vehicle scheduling (see [START_REF] Ganesharajah | Design and operational issues in AGV-served manufacturing systems[END_REF]), there are few papers which consider ‡ow shop problem with blocking to minimize makespan (see [START_REF] Hall | A survey of machine scheduling problems with blocking and no-wait in process[END_REF]). [START_REF] Mascis | Job-shop scheduling with blocking and no-wait constraints[END_REF] study the job shop problem with blocking. They formulate it by means of a generalization of the disjunctive graph of [START_REF] Roy | Les problèmes d'ordonnancement avec contraintes disjonctives[END_REF] and they show that several properties used to design heuristic procedures do not hold in the blocking case. [START_REF] Reddi | On the ‡owshop sequencing problems with no-wait in process[END_REF] show that the problem F 2jBlockjC max could be reduced to a special case of the traveling salesman problem that can be solved in polynomial time by the Gilmore and Gomory (1964) algorithm. [START_REF] Dutta | Sequencing two-machine ‡owshops with …nite intermediate storage[END_REF] propose dynamic programming procedures to solve this problem with limited bu¤er. [START_REF] Levner | Optimal planning of parts machining on a number of machines[END_REF] [START_REF] Abadi | Minimizing cycle time in a blocking ‡owshop[END_REF] propose a heuristic for minimizing the cycle time in order to establish a connection between the no-wait ‡ow Shop problem and ‡ow shop with blocking. This approach has been used by [START_REF] Cara¤a | Minimizing makespan in a blocking ‡owshop using genetic algorithms[END_REF] for calculating the value of makespan for a given sequence of the jobs. [START_REF] Ronconi | A branch-and-bound algorithm to minimize the makespan in a ‡owshop with blocking[END_REF] proposes a branch-and-bound algorithm using a lower bound that exploits the blocking feature. The author shows that the obtained bounding scheme outperforms the lower bounds proposed in [START_REF] Ronconi | Lower bounding schemes for ‡owshops with blocking in-process[END_REF]. Recently, [START_REF] Grabowski | The permutation ‡ow shop problem with blocking, A tabu search approach[END_REF] propose two new heuristic algorithms to minimize the makespan in a ‡ow shop problem with blocking based on a tabu search approach. Lee and Chen (2001) and [START_REF] Hurink | Makespan minimization for ‡ow-shop problems with transportation times and a single robot[END_REF] studied ‡ow shop scheduling with explicit transportation capacity and transportation times. Moreover, they assumed an unlimited bu¤er space between the machines and negligeable empty moving times. The literature pertaining to other scheduling models with transportation aspects is summarized in [START_REF] Crama | Cyclic scheduling in robotic ‡owshops[END_REF]. In addition, [START_REF] Agnetis | Scheduling no-wait robotic cells with two and three machines[END_REF] and [START_REF] Agnetis | Part sequencing in three-machine no-wait robotic cells[END_REF] investigate the complexity of a no-wait ‡ow shop problem in which one robot is used to move the parts from a machine to the next, as well as between the machines and the input/output devices. In this model, jobs are not allowed to wait neither on a machine nor on the robot.

Not surprisingly, most robotic cell scheduling problems are intractable. In particular, [START_REF] Hall | A survey of machine scheduling problems with blocking and no-wait in process[END_REF] prove that the robotic cell problem is strongly N P-hard for m 3. However, an O(n 4 ) algorithm that solves this problem in two-machine cells is provided in [START_REF] Hall | Scheduling in robotic cells: classi…cation, two and three machine cells[END_REF]. [START_REF] Aneja | Scheduling of parts and robot activities in a two machine[END_REF] improve this complexity to O(n log n).

Solution of the ‡ow shop problem with blocking and transportation delays

In this section, we are concerned with the exact solution of the ‡ow shop problem with blocking and transportation times (F jBlock; t k jC max ) that requires to be solved in Phase 1 after partially relaxing the constraints on the robot capacity. Clearly, since this problem generalizes several ‡ow shop problems that are strongly N P-hard for m 3, then it is itself strongly N P-hard for m 3 [START_REF] Hall | A survey of machine scheduling problems with blocking and no-wait in process[END_REF]). In the sequel, we shall prove that the problem is solvable in

O(n 2 ) for m = 2.
Given a permutation of the n jobs = ( (1); (2); :::; (n)); we denote by t i; (j) the starting time of job (j) (j = 1; :::; n) on machine M i (i = 1; :::; m). The robot has to transfer job (j) (j = 2; :::; n), after its processing on machine M i 1 (i = 2; :::; m), from machine M i 1 to machine M i . Hence, we have t i; (j) t i 1; (j) + p i 1; (j) + i 1;i . Also, after unloading job (j 1) on machine M i+1 , the robot has to move to machine M i 1 to upload job (j) and transfer it to machine M i . Hence, we have t i; (j) t i+1; (j 1) + i+1;i 1 + i 1;i . Therefore, the starting times can be computed through the following recursive equations:

t 0; (j) = 0 j = 1; :::; n; t i; (1) = t i 1; (1) + p i 1; (1) + i 1;i i = 1; :::; m + 1; t 1; (j)
= t 2; (j 1) + 20 + 01 j = 2; :::; n; t i; (j) = max(t i 1; (j) + p i 1; (j) ; t i+1; (j 1) + i+1;i 1 ) + i 1;i j = 2; :::; n; i = 2; :::; m; t m+1; (j) = t m; (j) + p m; (j) + m;m+1 j = 2; :::; n:

(1) Moreover, the completion time C i; (j) of job (j) on machine M i is

C i; (j) = t i; (j) + p i; (j) 8i = 1; :::; m + 1; j = 1; :::; n (2) 
and the makespan is

C m+1; (n) .
The F jBlock; t k jC max requires …nding a permutation such that C m+1; (n) is minimal.

Lower bounds

In this section we describe one-machine as well as two-machine relaxations for F jBlock; t k jC max . Consequently, the derived lower bounds are also valid for the RCP as well.

One-machine based lower bounds

As a consequence of the transportation delays, the minimum elapsed time on machine M i between the completion time of a job j and the starting time of a following job k is

i = i;i+1 + i+1;i 1 + i 1;i 8i = 1; :::; m (3) 
Also, by setting for each job j 2 J and each machine M i (i = 1; :::; m) :

a head (or, release date) r ij = i 1 P k=1 p kj + i 1 P k=0 k;k+1 if i > 1 and r 1j = 01 ;
a tail (or, delivery time)

q ij = m P k=i+1 p kj + m P k=i k;k+1 if i < m and q mj = m;m+1 .
Hence, a simple O(mn) lower bound is

LB 1 = max 1 i m f min 1 j n r ij + n X j=1 p ij + (n 1) i + min 1 j n q ij g (4) 
Remark 1 A better bound can be derived by observing that if job k is scheduled immediately after job j, then the minimum elapsed time on machine M i (i = 2; :::; m) between the completion of j and the starting of a job k is given by s ijk = max(p ij + i;i+1 + i+1;i 1 ; p i 1;k + i;i 2 + i 2;i 1 ) p ij + i 1;i 8i = 2; :::; m (5)

Proof. Let t ij denote the starting time of job j on machine M i . At t ij + p ij , job j is ready to be transferred to M i+1 and could start processing on machine M i+1 at t ij + p ij + i;i+1 : Thus, the next job (say, k) could not be transferred from M i 1 to M i before time t ij + p ij + i;i+1 + i+1;i 1 : Moreover, job k cannot be transferred before time t ij + i;i 2 + i 2;i 1 + p i 1;k which is the earliest …nish time of job k on machine M i 1 . Therefore, the earliest start time of k on M i is t ij + max(p ij + i;i+1 + i+1;i 1 ; p i 1;k + i;i 2 + i 2;i 1 ) + i 1;i . Thus, the result follows.

Now, de…ne ij = min k6 =j fs ijk g; 8i = 2; :::; m; j = 1; :::; n ( minimum elapsed time after completion of j on M i ), i

[k] = k th smallest value of ij (j = 1; :::; n): Then we get the lower bound

LB 2 = max 2 i m f min 1 j n r ij + n X j=1 p ij + n 1 X k=1 i [k] + min 1 j n q ij g (6) 
LB 2 can be computed in O(mn 2 ) time. Moreover, a valid relaxation is a one-machine problem with heads, tails, and setup times 1 j r j ; q j ; s jk j C max . A relaxation of this problem is a 1 j r j ; q j j C max obtained by setting r 0 j = r ij ; p 0 j = p j + ij ; and q 0 j = q ij ij for j = 1; :::; n. Hence, a third lower bound is obtained by allowing preemptive schedules. An optimal preemptive schedule is obtained in O(n log n) time by using the list schedule associated with the longest tail priority dispatching rule. To build it, we schedule at each time t the available operation with maximal tail. For each machine M i (i = 1; :::; m); let LB3 i denote the makespan of the corresponding optimal preemptive schedule. Then a valid O(mn 2 )-time lower bound is

LB3 = max 2 i m LB3 i (7) 
A further relaxation of 1 j r j ; q j ; s jk j C max is obtained by setting all heads and tails to min j2J fr j g and min j2J fq j g, respectively. The resulting relaxation is equivalent to …nding a shortest Hamiltonian path in a directed complete graph, where the nodes represent the jobs and the distance matrix is (s ijk ). We can transform this problem into an equivalent asymmetric traveling salesman problem (ATSP) by adding to the graph a dummy node 0 and dummy zero-cost arcs (j; 0) and (0; j), for j = 1; :::; n. For a given machine M i ; let z i AT SP denote the value of the shortest cycle. Since solving this relaxed problem is N P-hard, we compute a lower bound on z i AT SP . In our implementation, we derive a tight lower bound LB i AT SP by solving the linear relaxation of a polynomial-size mixed-integer programming formulation that is de…ned as follows.

De…ne, the underlying complete digraph G = ( Ṽ ; Ã) where the node set Ṽ J [ f0g and the cost of arc (j; k) 2 Ã is s ijk . The decision variables are x jk = 1 if node k is visited immediately after node j; and 0 otherwise, 8(j; k) 2 Ã, u j : position in which node j is visited, j = 1; :::; n. 

nx jk + (n 2)x kj + u j u k n 1; 8j; k 1 j 6 = k; (11) 1 + (1 x 0j ) + (n 2)x j0 u j n (n 2)x 0j (1 x j0 ); 8j 1; (12) u j 0; 8 j = 1:::n; (13) x jk 2 f0; 1g; 8j; k 1 j 6 = k: (14)
The objective function (8) minimizes the total distance (or, setup times). Constraints ( 9) and [START_REF] Dawande | Sequencing and scheduling in robotic cells: Recent developments[END_REF] require that each node has exactly one successor and predecessor, respectively. Constraints ( 11)-( 13) are the subtour elimination constraints. These constraints are often referred to as lifted Miller-Tucker-Zemlin subtour elimination constraints. Finally, Constraints ( 14) enforce binary restrictions on the x-variables. Model ( 8)-( 14) includes O(n 2 ) constraints, O(n 2 ) binary variables, and O(n) continuous variables. This polynomial-size ATSP formulation has been proposed by [START_REF] Desrochers | Improvements and extensions to the Miller-Trucker-Zemlin subtour elimination constraints[END_REF] and is an enhanced version of a simpler formulation that was …rst derived by [START_REF] Miller | Integer programming formulations and travelling salesman problems[END_REF].

Let LB i AT SP denote the value of the linear relaxation of Model ( 8)- [START_REF] Gilmore | Sequencing a one state variable machine: a solvable case of the traveling salesman problem[END_REF]. We obtain a fourth lower bound

LB4 = max 2 i m f min 1 j n r ij + LB i AT SP + min 1 j n q ij g (15) 
In order to speed-up LB4; we can reduce the LP size by relaxing the subtour elimination constraints ( 11)- [START_REF] Grabowski | The permutation ‡ow shop problem with blocking, A tabu search approach[END_REF]. Hence, the resulting relaxation is a linear assignment problem. We denote by LB4 the value of the corresponding bound. Since, the linear assignment problem can be solved using the Hungarian algorithm in O(n 3 ) time, then LB4 can be computed in O(mn 3 ) time.

A two-machine based lower bound

First, we consider the special case where m = 2: We shall prove that the problem is solvable in polynomial time. Given a permutation of the n jobs together with the associated starting times t i; (j) (i = 1; 2 and j = 1; :::; n). We denote by C max the corresponding makespan. The time interval [0; C max ] can be partitioned into 2n + 1 sub-intervals I 1 ; J 1 ; I 2 ; J 2 ;..., I n ; J n ; I n+1 where

I 1 = [0; t 2; (1)
12 ],

I j = [t 2; (j 1) ; t 2; (j) 12 ] for j = 2; :::; n,

I n+1 = [t 2; (n) ; C max ],
J j = [t 2; (j) 12 ; t 2; (j) ] for j = 1; :::; n. Insert Figure 1 here

We observe that:

During each interval J j = [t 2; (j) 12 ; t 2; (j) ] (j = 1; :::; n) both machines are idle during 12 units of time Before starting processing job (j) (j = 2; :::; n); machine M 1 remains idle during at least ( 20 + 01 ) units of time. Also, M 1 remains idle during 01 units of time before processing job [START_REF] Abadi | Minimizing cycle time in a blocking ‡owshop[END_REF] After …nishing processing job (j) (j = 1; :::; n 1); machine M 2 remains idle during at least ( 23 + 31 ) units of time. Also, M 2 remains idle during 23 units of time after processing job (n)

Based on these observations, we may include the transportation times into the processing times by letting p 0 1j = p 1j + 20 + 01 for j = 1; :::; n (16) p 0 2j = p 1j + 23 + 31 for j = 1; :::; n

and adding to the resulting makespan the constant n 12 20 [START_REF] Ronconi | Lower bounding schemes for ‡owshops with blocking in-process[END_REF] . Moreover, we observe that M 1 remains blocked until M 2 becomes available for processing. Hence, it is instructive to see the two-machine relaxation in another way: as a two-machine ‡ow shop problem (with modi…ed processing times) and blocking. Actually, this latter problem is equivalent to the no-wait two-machine ‡ow shop problem (it is easily realized that both problems have the same makespan for the same job sequence). Hence, the two-machine ‡ow shop problem with blocking could be restated as a traveling salesman problem (see for example [START_REF] Pinedo | Scheduling theory, algorithms, and systems[END_REF], p. 180) and solved in O(n log n)-time [START_REF] Vairaktarakis | Simple algorithms for Gilmore-Gomory's traveling salesman and related problems[END_REF].

Consequently, if m > 2; then we can consider a pair of consecutive machines (M i ; M i+1 ) (i = 1; :::; m 1) and we relax the capacities of all the other machines. The resulting relaxation is a two-machine permutation ‡ow shop with blocking and transportation problem subject to heads and tails, where for each job j is de…ned a head rij = Let LB i 5 denote the optimal makespan. Then a valid lower bound is

LB 5 = max 1 i m 1 f min 1 j n rij + LB i 5 + min 1 j n qi;j g (18) 
LB 5 can be computed in O(mn 2 ) time.

An exact branch-and-bound algorithm

With each node N at level l 1 of the search tree we associate a subsequence (N ) represented by an ordered list of l jobs scheduled on the top of the global sequence. The root node corresponds to an empty list. With each node N is associated the following data: J(N ): Set of unscheduled jobs, C i : Completion time of on machine M i (i = 1; ::::; m); j( ) : index of the last scheduled job, C max : The current best upper bound on the optimal makespan. In our implementation, the value of C max at the root node is provided by the genetic algorithm that is described in Section 5.

LB(N ) : A lower bound on the optimal makespan of a sequence where the jobs of subset J are scheduled after the completion of subsequence (N ).

Given a node N , a child node N + is created by sequencing an unscheduled job k 2 J(N ) at the last position of (N ) (thus, (N + ) = (N )k). For computing a lower bound LB(N + ) we can use any of the previously described lower bounding procedures. However, we should take into account the partial schedule corresponding to the sequence . For the one-machine based bounds L 1 ; :::; L 4 the required modi…cations are straightforward. We describe how to modify LB 5 in order to account for the partial sequence . The basic idea for computing LB i 5 (N ) (i = 1; :::; m 1) is the following. Firstly, in order to account for the availability of machine M i+1 we append to the set of unscheduled jobs a dummy job 0 such that p i0 = 0 and p i+1;0 = p i+1;j( ) . In so doing and if job 0 is scheduled at the …rst position, then machine M i+1 would be unavailable during the time interval [C i+1 p i+1;j( ) ; C i+1 ]. Since, the robot requires ( i 1;i + i;i+1 ) units of time for transferring the dummy job from M i 1 to M i+1 ; then a lower bound on the starting time a i of the robot moves is given by (see Figure 2)

a i = C i+1 p i+1;j( ) i;i+1 i 1;i ; i = 1; :::; m 1: (19) 
Finally, we compute LB i 5 (N ) for the subset J(N ) [ f0g and we set

LB 5 (N ) = max 1 i m 1 fa i + LB i 5 (N ) + min j2J(N ) qi;j g: (20) 
Insert Figure 2 here

For selecting the node to be branched, we select the node which has the smallest lower bound among the most recently created nodes.

Exploiting the problem symmetry

Given an instance I of F jBlocking; t k jC max , we de…ne the corresponding symmetric instance I 1 , the instance that is obtained by reversing the machine ordering. That is, each job j 2 J must be picked up from M m+1 ; and …rst processed on M m ; then on M m 1 ;..., M 1 , in that order, and ultimately transferred to M 0 . Let = ( (1); :::; (n)) denote a permutation of the n jobs, we de…ne the associated reverse permutation 1 = ( (n); :::; (1)). Moreover, we denote the makespan of the solution of instance I that corresponds to by C max (I; ).

Proposition 1 Given an instance I satisfying the following properties: (P1) i;i+1 = k;k+1 8 i; k = 0; :::m and i;i+2 = k;k+2 8 i; k = 0; :::m 1 (P2) i;i+1 = i+1 ; i 8 i = 0; :::m Then, we have C max (I; ) = C max (I 1 ; 1 ) for all : Proof. First, we shall prove that the makespan under a given permutation schedule can be obtained through computing a critical path in a digraph. Consider the instance I and a permutation of the n jobs: Recall that t i; (j) denotes the starting time of job (j) on M i (i = 1; :::; m + 1). Therefore, C max (I; ) = t m+1; (n) :

We construct an associated acyclic digraph G(I; ) = (V; A) as follows. The node set is V = f(i; (j) : i = 1; :::; m + 1; j = 1; :::; ng. The arc set includes two types of arcs: Type 1: There is an arc (i + 1; (j 1)) ! (i; (j)) for i = 1; :::; m; j = 2; :::; n Type 2: There is an arc (i; (j)) ! (i + 1; (j)) for i = 1; :::; m; j = 1; :::; n:

The arcs are assigned the following weights: An arc (i + 1; (j 1)) ! (i; (j)) of Type 1 has a weight i+1;i 1 + i 1;i An arc (i; (j)) ! (i + 1; (j)) of Type 2 has a weight p i; (j) + i;i+1 . However, there is one exception: the weight of arc (1; (1)) ! (2; (1)) is p 1; (1) + 01 + 12

For the sake of clarity, Figure 3a displays the graph that is associated with a 3-job 3machine instance and = (1; 2; 3), and where ij = ji jj for i; j = 0; :::; m + 1: Moreover, Figure 3b displays the graph that is associated with the reverse instance and the permutation 1 = (3; 2; 1). We de…ne G(I; ) the graph that is obtained from G(I; ) by deleting arcs (1; (1)) ! (2; (1)) and (m; (n)) ! (m + 1; (n)) as well as nodes (1; (1)) and (m + 1; (n)). We observe, that G(I 1 ; 1 ) can be derived from G(I; ) by reversing all the arcs in G(I; ). Consequently, the value of the longest path from node (2; (1)) to node (m; (n)) in G(I; ) (and therefore in G(I; )) is equal to the value of the longest path from node (m; (n)) to node (2; (1)) in G(I 1 ; 1 ) (and therefore in G(I 1 ; 1 )):

De…ne, L( ; ) as the value of the longest path in the graph between nodes and : One could readily check the following simple facts. Corollary 2 If I satis…es (P1) and (P2) and if is an optimal permutation for instance I; then 1 is an optimal permutation for I 1 :

Consequently, if I satis…es (P1) and (P2) and if the branch-and-bound algorithm fails in …nding an optimal solution within a given time limit then we take advantage of the symmetry of F jBlocking; t k jC max by solving the symmetric problem (that is obtained by reversing the machine ordering).

Scheduling of the robot moves

In this section, we are concerned with scheduling the robot moves provided that the processing order of the jobs on the m machines is given. For the sake of alleviating the notation we shall assume that the jobs are indexed according to their processing order.

It is interesting to view the robot sequencing problem as a single machine scheduling problem with side constraints, where the machine represents the robot and the operations correspond to the robot loaded moves, respectively. More precisely, we assume that we have a set of operations = fO ij : i = 0; :::; m, j = 1; :::; ng to be processed nonpreemptively on a single machine. An operation O ij 2 corresponds to a transfer of job j from M i to M i+1 : The processing time of O ij is i;i+1 : In addition, there are two types of precedence constraints: Type 1: Because of the ‡ow shop constraints, we have O i 1;j O i;j for i = 1; :::; m and j = 1; :::; n (where the notation "u v"means that operation u precedes operation v). This constraint expresses that a job j cannot be transferred to machine M i+1 before being transferred to machine M i : Type 2: Because of the blocking constraints, we have O ij O i 1;j+1 for i = 1; :::; m and j = 1; :::; n 1. This constraint enforces that job j + 1 cannot be transferred to machine M i before transferring job j from M i to M i+1 : Moreover, there is a minimal time lag l i 1;j p ij between the completion time of operation O i 1;j and the start time of operation O ij (i = 1; :::; m and j = 1; :::; n): This time lag corresponds to the processing time of job j on machine M i+1 (i = 0; :::; m). Finally, if two operations O i 1;j and O hk are processed consecutively (with j 6 = k) then there is a nonnegative setup time ih ih between these two operations. This setup time corresponds to an empty positioning move from M i to M h . Thus, optimizing the robot moves requires minimizing the makespan on a single machine with precedence constraints, time-lags, and setup times. [START_REF] Hurink | A tabu search algorithm for scheduling a single robot in a job-shop environment[END_REF] investigated this problem in the case where the precedence constraints stem from a job shop environment. They proved that the problem is N P-hard and proposed a tabu search algorithm. However, the complexity of the problem when the precedence constraints stem from a ‡ow shop environment remains an open question. In the sequel, we describe an exact branch-and-bound algorithm for solving this latter problem. Given an optimal permutation = (1; :::; n) of the n jobs, we construct an associated weighted digraph Ĝ = ( V ; Â) where each node u 2 V corresponds to an operation O ij 2 ; respectively. An arc (u; v) that connects node u

( 1 ; 1 ) 2 V to node w ( 2 ; 2 ) 2 V is de…ned if and only if there is a precedence constraint O 1 1 O 2 2 : That is, (i) 1 = 2 1 and 1 = 2 ; the weight of this arc is c(u; v) = 2 1; 2 + p 2 2 which
corresponds to the sum of the transfer time of job 2 from M 2 1 to M 2 and its processing time on M 2

Or,

(ii) 1 = 2 + 1 and 1 = 2 1; the weight of this arc is c(u; v) = 1 ; 1 +1 + 1 +1 ; 1 1
which corresponds to the total duration of a loaded move from M 1 to M 1 +1 and an empty move from M 1 +1 to M 1 1 .

Fact 1 Let P = (u 1 ; :::; u p ) be a path in Ĝ starting at node u 1 ( 1 ; 1 ) and ending at node u p ( p ; p ) and having a total weight c(P). Then, c(P) is a lower bound on the minimal time elapsed between the …nishing time of O 1 1 and the starting time of O p p .

Proof. This result follows from the fact that the weight of an arc (u; v) 2 Â (where u

( 1 ; 1 ) and w ( 2 ; 2 )) corresponds to the minimal time that elapses between the …nishing time of operation O 1 1 and the starting time of operation O 2 2 .

An immediate consequence is the following.

Fact 2 A valid lower bound on the total time that is required for completing all the jobs upon processing operation O 1 ; 1 is equal to the sum of the value of the longest path in Ĝ between nodes u 1 ( 1 ; 1 ) and u (m; n) and the transfer time of the last scheduled job to the output device (i.e. m;m+1 ).

The main features of the branch-and-bound algorithm that we have implemented for …nding an optimal sequence of the robot moves are the following.

-Root node: The root node N 0 corresponds to a partial schedule s(N 0 ) = (O 01 ; O 11 ) (obviously these two operations are necessarily scheduled …rst).

-Branching strategy: Given a node N having a corresponding partial schedule s(N ), a child node N + is created by selecting an unscheduled operation O ij whose immediate predecessors O i 1;j and O i+1;j 1 have been already included in the partial schedule s(N ):

The partial schedule associated with

N + is s(N + ) = s(N )O ij .
-Lower bound: For each newly created node N , we compute the completion time of the last scheduled operation and then we use Fact 2 for deriving a lower bound C(N ) on the minimum completion time.

-Upper bound: An upper bound U B is computed at the root node by approximately solving the one-machine problem using a simple list scheduling algorithm: at each iteration schedule a candidate operation O ij whose immediate predecessors have been already scheduled and whose starting time is minimal. Obviously, if for a node N we have C(N ) U B then this node is pruned.

-Search strategy: We have implemented the following search strategy. We select amongst the candidate nodes the one corresponding to appending an unscheduled operation O ij having the smallest origin machine index.

A genetic algorithm

During the last two decades, metaheuristics have become powerful tools for the approximate solution of intractable combinatorial optimization problems. In particular, genetic algorithms have been implemented for providing high-quality solutions to a wide variety of challenging ‡ow shop problems (see for example [START_REF] Ruiz | Two new robust genetic algorithms for the ‡owshop scheduling problem[END_REF] and [START_REF] Rajkumar | An improved genetic algorithm for the ‡owshop scheduling problem[END_REF], to quote just a few). In this section, we investigate the ability of a genetic algorithm (hereafter, referred to by GA1) to e¤ectively solve the robotic cell problem. Next, the performance of GA1 will be compared against the performance of the proposed approximate decomposition algorithm. The main features of GA1 are the following :

-Solution encoding : An ordered list (i.e. permutation) = ( (1); :::; (n)) of the n jobs is used to represent a chromosome.

-Fitness computation : Given a chromosome = ( (1); :::; (n)), the …tness of the corresponding solution is computed as follows. First, the m machines are sequenced according the ordering that is speci…ed by the chromosome. Second, the sequence of the robot moves is obtained using the afore-mentioned list scheduling algorithm: at each iteration, we schedule the robot operation whose predecessors have been already scheduled and whose starting time is minimal. In so doing, a feasible schedule is obtained. Clearly, we might use a more sophisticated approach for scheduling the robot moves, but this would require longer CPU times.

-The crossover operator : We implemented a powerful crossover operator that was recently introduced by [START_REF] Ruiz | Two new robust genetic algorithms for the ‡owshop scheduling problem[END_REF] for solving the (standard) permutation ‡ow shop problem. This operator is called Similar Job Order Crossover (or, SJOX for short) and is described as follows. Given two parent chromosomes, a crossing point is randomly selected along the length of the …rst parent, and an o¤spring is produced by copying the identical jobs that are located at the same positions in both parents into the corresponding positions of it. Then missing jobs before the crossing point are inherited from the …rst parent. Lastly, the missing jobs are copied in the relative order of the second parent. Clearly, if no identical jobs are at the same position in the parents, the crossover operator will behave like the one-point crossover.

-The mutation operator: The performance of a GA might be signi…cantly improved when it is hybridized with a local search procedure. In our GA, instead of using a classical mutation operator, we implemented the following interchange procedure. First, a chromosome is chosen randomly and is mutated with a speci…ed probability. Then, we perform a pairwise interchange of jobs (the interchanged jobs are not necessarily adjacent). Obviously, if this interchange leads to a reduction of the makespan then the chromosome is replaced with the improved one. The process is continued until no improvement could be achieved.

-Parameter setting: We performed preliminary experiments and found that a good e¢ cacy is achieved by setting the parameters as follows:

Population size = 300 (The set of initial chromosomes are randomly generated) Crossover probability = 0:9 Mutation probability = 0:4

Maximum number of generations = 1000

Maximum number of consecutive non improving generations before stopping = 100: Remark 2 In order to accelerate the convergence of the branch-and-bound algorithm that is described in Section 3.2, we implemented an additional genetic algorithm GA2 that delivers an upper bound for F jBlock; t k jC max . GA2 is very similar to GA1. The only di¤erence lies in the …tness computation. In GA2, the …tness of a chromosome = ( (1); :::; (n)) is set equal to the makespan of the corresponding permutation.

Computational results

In order to assess the empirical performance of the proposed two-phase approach, we have coded all the proposed procedures and carried out computational experiments on a set of randomly generated RCP instances. The test-bed was generated in the following way. The processing times are drawn from the discrete uniform distribution on [1; 100] and the transportation time between a pair of machines M i and M k is i;k = 2 ji kj. The proposed algorithms were coded and compiled with Microsoft Visual Studio C ++ (version 6.0). The linear programming relaxation that is used for computing LB4 has been solved using CPLEX 9.1. All the computational experiments were carried out on a Pentium IV 3.2 GHz, 1 Gbytes RAM PC.

Performance of the lower bounds

In this section, we present an empirical analysis of the performance of the proposed lower bounds for the ‡ow shop problem with blocking and transportation times that is solved in Phase 1.

The number of jobs n is taken equal to n = 15, 20, 25, 30, 40, and 50. The number of machines m is taken equal to 3, 4, and 5. For each (m; n) combination, 10 instances were randomly generated. In Table 1, we report for each lower bound LBi (i = 1; :::; 5) and M AX-LB max i fLBig the average percentage deviation from the value U B GA2 of the solution of GA2 (i.e. 100 (U B GA2 LBi)=LBi).

Insert Table 1 here

We see from this table that LB4; LB4 ; and LB5 exhibit the smallest percentage deviation. However, we observe that the performance of all the lower bounding strategies deteriorates as the number of machines increases. Interestingly, we see that for m = 5; the one-machine based lower bounds outperform the two-machine based lower bound LB5:

In addition, we found that LB1; LB2, LB3; LB4 ; and LB5 are extremely fast since they require negligible CPU times (< 0:001 sec). On the contrary, LB4 which requires invoking an LP solver takes relatively longer CPU times.

In our experiments, we found that the equality LB4 = LB4 holds for almost all instances (178 out of 180 instances). In Table 2, we report for each of these two bounds the mean CPU time in seconds.

Insert Table 2 here

We see from this table, that although LB4 and LB4 exhibit a very similar performance, the latter requires signi…cantly shorter CPU times.

Performance of the two-phase approach

We have carried out extensive computational experiments in order to determine which lower bound provides the best performance after being embedded within the branch-and-bound algorithm of Phase 1. We found that a good trade-o¤ is achieved by using the following hybrid strategy: if the level of the node is smaller than 2 n 3 then LB4 is invoked, otherwise LB5 is used. Here again, for each combination (m; n) we randomly generated 10 instances.

Table 3 displays a summary of the computational results of the proposed two-phase method. For each combination (m; n), we provide: in most cases reasonably good solutions while requiring signi…cantly shorter CPU times. Indeed, the largest instances often require about 1 minute CPU time only. Consequently, while the two-phase approach constitutes an appealing method for e¢ ciently solving small and medium-size RCP instances, the genetic algorithm proves much more appropriate for addressing large-size instances.

Conclusion

In this paper, we have investigated the robotic cell problem. We have proposed an approximate decomposition algorithm. To the best of our knowledge, this is the …rst attempt to solve this complex scheduling problem. The proposed approach breaks the problem into two scheduling problems: a ‡ow shop problem with blocking and transportation times and a single machine problem with precedence constraints, time lags, and setup times. We have proposed for each of these two problems an exact branch-and-bound algorithm. In order to assess the performance of the proposed approach, we have proposed a genetic algorithm that includes a powerful crossover operator as well as a local search-based mutation operator. We reported the results of a computational study that provide evidence that the proposed two-phase approach is robust, consistently delivers high-quality solutions, and outperforms the genetic algorithm. However, we found that the genetic algorithm requires signi…cantly shorter CPU times and proves useful for e¢ ciently solving large-scale instances.

Scheduling robotic cells constitute a challenging class of scheduling problems, and despite its pertinence to the fast growing topic of FMSs, its in-depth investigation is still in its infancy. We believe that the development of exact as well as tailored sophisticated metaheuristics for this important problem class is a promising avenue for future research.

Figure 1

 1 Figure 1 depicts the partition of [0; C max ] for a 4-job schedule.

  if i > 1 and r1j = 0; if i < m 1 and qm 1;j = 0:

F1

  The value of the makespan is equal to the value of the longest path in G(I; ) between nodes (1; (1)) and (m + 1; (n)). This fact stems from Equations (1) and the graph structure. Hence, C max (I; ) = L((1; (1)); (m + 1; (n))): F2 We see that L((1; (1)); (m + 1; (n))) = p 1; (1) + 01 + 12 + L((2; (1)); (m; (n))) + p m; (n) + m;m+1 . This stems from the fact that nodes (2; (1)) and (m; (n)) have exactly one predecessor and one successor, respectively. Consequently, since I satis…es (P1) and (P2), then C max (I; ) = C max (I 1 ; 1 )

  presents branch-and-bound algorithms for solving the ‡ow shop problem with blocking. Mc Cormick et al. (1989) study a ‡ow shop scheduling problem in an assembly line where the problem with limited bu¤ers can be studied as a blocking one (all machines have no intermediate bu¤ers).

Acknowledgments -The authors would like to express their gratitude for a number of careful remarks and comments by two anonymous referees that led to improvements to the paper. Jacques Carlier and Aziz Moukrim would like to thank the ANR for its …nancial support (LMCO project). Dr. Mohamed Haouari would like to thank Fatimah Alnijris Research Chair for Advanced Manufacturing Technology for the …nancial support provided for this research.

T N O : Total number of operations which is equal to 2nm + n (it includes nm machine operations and n(m + 1) robot operations U S1 : number of instances for which optimality was not proved in Phase 1 after reaching a 2-hour time limit T ime 1 : mean CPU time of Phase 1 U S2 : number of instances for which optimality was not proved in Phase 2 after reaching a 5-min time limit T ime 2 : mean CPU time of Phase 2 T ime GA2 : mean CPU of GA2 T T : mean total CPU time (viz. T T = T ime 1 + T ime 2 + T ime GA2) Gap GA2: mean percentage deviation of the solution provided by GA2 with respect to the optimal makespan that is computed in Phase 1 Gap GA1: mean percentage deviation of the solution provided by GA1 with respect to the optimal makespan that is computed in Phase 1 Gap 2P : mean percentage deviation of the solution provided by the two-phase method with respect to the optimal makespan that is computed in Phase 1.

Insert Table 3 here Looking at Table 3, we see that the proposed approach exhibits a good overall performance since it consistently delivers high-quality solutions. Indeed, the average gap over the 210 instances is 0.85%. Moreover, we observe that for 96.7% of the instances, Phase 1 provided proven optimal solutions. However, the branch-and-bound algorithm in Phase 1 failed to deliver proven optimal solutions for one 4-machine and six 5-machine instances (out of 210 instances). Nevertheless, this is a remarkable result since it is well-documented that similar ‡ow shop problems with blocking are notoriously hard to solve to optimality. For instance, [START_REF] Ronconi | A branch-and-bound algorithm to minimize the makespan in a ‡owshop with blocking[END_REF] reported that her branch-and-bound algorithm failed to solve 9 out of 10 F jBlockjC max instances with 20 jobs and 4 machines. On the other hand, we found that the branch-and-bound algorithm of Phase 2 failed to deliver proven optimal solutions for 47 instances (out of 210) after reaching the 5-minute time limit. This provides a clear evidence of the hardness of the one-machine problem that is solved in Phase 2. Interestingly, we observe from Table 3 that the two-phase method consistently outperforms the genetic algorithm for 17 problem size combinations (out of 21). More precisely, we found that the two-phase method outperformed the genetic algorithm for 50% of the instances, and that it produced inferior solutions for 28% of the instances. However, the genetic algorithm provides