N

N

Counting occurrences for a finite set of words: an
inclusion-exclusion approach

Frédérique Bassino, Julien Clément, Julien Fayolle, Pierre Nicodeme

» To cite this version:

Frédérique Bassino, Julien Clément, Julien Fayolle, Pierre Nicodeme. Counting occurrences for a finite
set of words: an inclusion-exclusion approach. AofA’07, Jun 2007, Juan les Pins, France. pp.29-44.
hal-00452702v1

HAL Id: hal-00452702
https://hal.science/hal-00452702v1
Submitted on 2 Feb 2010 (v1), last revised 17 Aug 2015 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00452702v1
https://hal.archives-ouvertes.fr

Counting occurrences for a finite set of words:
an inclusion-exclusion approach

F. Bassiné, J. CEment, J. Fayollé, and P. Nico@émé

IGM, Université de Marne la Vallée, 77454 Marne-la-\é@lCedex 2, Francer eder i que. Bassi no@ni v-nl v. fr
2GREYC, CNRS-UMR 6072, Université de Caen, 14032 Caenc€raal i en. Cl enent @ nf 0. uni caen. fr

3LRI; Univ. Paris-Sud, CNRS ; Bat 490, 91405 Orsay, Frarig.i en. Fayol | e@ri . fr

4LIX, CNRS-UMR 7161Eco|e polytechnique, 91128, Palaiseau, Frantiecodeme@ i x. pol yt echni que. fr

In this paper, we give the multivariate generating functonnting texts according to their length and to the number
of occurrences of words from a finite set. The applicatiorhefinclusion-exclusion principle to word counting due
to Goulden and Jackson (1979, 1983) is used to derive thé.réBlike some other techniques which suppose that
the set of words iseduced(i.e., where no two words are factor of one another), the finite@ete chosen arbitrarily.
Noonan and Zeilberger (1999) already provided afVE package treating the non-reduced case, without giving an
expression of the generating function or a detailed proaf gie a complete proof validating the use of the inclusion-
exclusion principle and compare the complexity of the methimposed here with the one using automata for solving
the problem.
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1 Introduction

Enumerating sequences with given combinatorial propeigieigorously formalized since the end of the
seventies and the beginning of the eighties by Goulden arksda [8, 9] and by Guibas and Odlyzko [10,
11].

The former [8, 9] introduce a very powerful method of inchrsiexclusion to count occurrences of
words from areducedset of wordsi(e., where no word is factor of another word of the set) in textss t
method is characterized by counting texts where some cauces are marked (other terms are pointed
or anchored) and then removing multiple count of the samigtext counted several times with different
markings). We refer later to this bpclusion-exclusiomethod. Goulden-Jackson counting is typically
multivariate, a formal parameter being associated to eact.w

The latter [10, 11] introduce the notion of auto-correlataf a word that generalizes to correlation
between words. Formal non-ambiguous manipulations owgruages translates to generating functions.
We refer later to this byormal languagenethod. Unlike Goulden and Jackson, Guibas and Odlyzko
consider univariate cases, like enumerating sequencéfimya pattern, or sequences terminating with a
first occurrence of a pattern in a text (see also [20]). R&gamd Szpankowski [19] generalize the formal
language approach by a bivariate analysis for counting timeber of matches of a word in random texts
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(handling also a Markovian source on the symbol emissiod)paove a normal limit law. Régnier [18]
extends this further to multivariate analysis and simdtars counting of several words. See also the
books of Szpankowski [21] and Lothaire [13]. Bourdon andal3, 4] apply the previous analysis to
dynamical sources. Pruet al.[17] follow a more probabilistic approach.

Noonan and Zeilberger [16] extend the inclusion-exclusi@thod of Goulden and Jackson and solve
the general non-reduced case (words may be factor of otheis)yamplementing correspondingAvLE
programs, without however completely publishing the eviptiesult formulee. Recently Kong [12] ap-
plies the results of Noonan and Zeilberger for the reduced t@an asymmetrical Bernoulli (also called
memoryless) model for the generation of symbols. He alsgewas the Goulden and Jackson method to
the Régnier and Szpankowski method, emphasizing the ptunlesimplicity of the inclusion-exclusion
approach. It is however useful to note that the formal lagguapproach provides access to informa-
tion that the inclusion-exclusion method does not, sucthasaaiting time for a first match of a word
or the time separating two matches of the same word or of tfferdint words (in both case eventually
forbidding matches with other words).

A third approach is possible by use of automata. Nicodetrad. [15] use classical algorithms to (1)
build a marked deterministic automaton recognizing a gexpression and (2) translate into generating
function (Chomsky-Schutzenberger algorithm [5]); thieyddes the bivariate generating function count-
ing the matches. A variation of the method extends the esulMarkovian sources. This result applies
immediately to a set of words considered as a regular expreshlicodeme [14] extends this to multi-
variate counting by taking the product of marked automaith(an automaton and a mark associated to
a word) and to set of words with possible err@rsNotice that step (1) of this approach may be directly
done by building the Aho-Corasick automaton, designed &ttepn-matching.

Each of the three above-mentioned approaches did develtpindependently and partially unaware
of each other.

Let A be the alphabet on which the words are written&nd {u1,us, . .., u,} be afinite set of distinct
words on the alphabed. We noter(w) the weight of the wordv. The weight could be a formal weight
over the commutative monoid* (i.e., w(ababab) = o> [3%) or, the probability generating function in the
Bernoulli (also callednemorylesssetting,7(w) = Pr(w), or evens(w) = 1 for a uniform weighted
model over all words.

We set some more notations: givem-aow vectorx = (z1,...,x,) of formal variables and a-row
vectorj = (ji, ..., j.) of integers, we will denote by the produc{],_, =?".

In this article we describe two approaches to compute thévatibte generating functiofy, counting
texts according to their length and to their number of oanees of words from the sét

Fy(z,x) = F(z,x) := Z m(w)z x| Q)
weA*
wheret(w) = (Jwly,...,|wl|,.), and|w]|, is the total number of occurrencesf in w (with possible

overlaps). We focus on methods which solve the problem fuiijout making any assumption on the set
itself (for instance on its reduction, henidecan contain,; = abbababa andus = baba althoughus is a
factor ofuy). We aim at presenting a novel approach and a full proof afltepartially in Noonan and
Zeilberger.

@) Algorithms implemented in the packagegexpcount of al gol i b, Algorithms Project, INRIA
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In Section 2 we present an approach using the Aho-Corastckretion that solves the general (non-
reduced) problem; we also consider the complexity of thithaek. We describe and prove our results in
Section 3 using the inclusion-exclusion principle. Algloniic aspects are also considered in this section.
Appendix A is devoted, as a case study, to the comparison mptxity of the two methods when
computing the covariance of the number of occurrences ofwaals, the inclusion-exclusion approach
being more efficient both for exact and asymptotic compaoiatihan the automaton approach.

2 Automaton approach

We resort in this section to the well-known Aho-Corasickagithm [1, 6] which builds from a finite set
of wordsl/ a deterministic complete automaton (not necessarily mabirecognizing the languagé*/.
This automaton denoted b4, is the basis of many efficient algorithms on string matchirappems and
is often called thetring matching automatorThis automaton is usually described by the trie of the set of
words together with a failure function. L&}, be the ordinary trie representing the &gtseen as a finite
deterministic automatof(, ¢, ¢, T') where the set of states($ = Pref (i) (prefixes of words iidf), the
initial state ise, the set of final states I = A*U N Pref (/) and the transition functiodi is defined on
Pref(U) x A by

5(p,x) = {pa: if px € .Pref(L{),

Border(pz) otherwise

where the failure functioBorder is defined by
Border(v) = the longest proper suffix af which belongs t@ref (/) if defined, ore otherwise

In the following we identify a wordy € Pref(U/) with the node at the end of the branch of the tree
labeled byv, so thatBorder defines also a map on the nodes of the tree. There are effiRight)
algorithms [1, 6] linear both in time and space to build sudea structure and the auxiliafyorder
function.

The matrixT(x) (with x a r-vector of formal variables) denotes the transition matfixhe Aho-
Corasick automaton where the variablenarks the states accepting the wagd The generating function
is expressed as

F(z,x)= > w(w)z"x™™) = (1, 0, -, 0) @T-2T(x)"" |:], 2)
weA* 1

wherer(w) can be viewed as the weight of word

Example 1 Leti = {aab, aa}. We have

b a O 0

b 0 aze O
T(x1,22) = 0 0 axzy bz
b a 0 0
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and
1—a(zy—1)z
1—z(aze + b —ab(ra — 1)z + abzay(z1 — 1)22)

F(val,@) =

Complexity. LetL =3} ,, |u|be the sum of the lengths of the words frofnWe first have to compute
the Aho-Corasick automaton and this can be done classitaliyne O(L) for a finite alphabet. The
automaton can have up fostates. Denoting byv the number of states of the Aho-Corasick automaton,
the transitions matris is of size N2, but in general this matrix is sparse: omy x Card A entries are
non-zero (since the automaton is complete and deterntinigth Card A transitions from each state).

So the complexity to obtain the counting multivariate gatieg function by this approach is basically
the one of inverting a relatively sparse matrix of the fdrm 2T(x) whose all terms are monomials
of the forma [ z;* (with « € A and thee;’s in {0,1}) corresponding to the transition matrix of the
automaton. The limit of this approach is the fact that the sizthe transition matrix.? can grow rapidly
if we consider many rather long words. In the next sectionadept another approach which leads also
to solve a system of equations, but then the size of the syistem r (wherer is the number of words in
U). We there present a detailed way to compute the generativagibn of occurrences using the Goulden
and Jackson method.

3 Inclusion-exclusion method applied to word counting

This section presents an approach exactly along the samadiim [9] but extended to the non-reduced
case. In [16] the authors provide the main ideas to treat tireraduced case and aA¥LE package,
neither giving explicit expressions nor detailed proofse ¥énsider it important to give a more formal
presentation of the Goulden and Jackson method for anampfinite set of words as it can be of interest
to a broad audience and it is the first step to the generalizafithe underlying probabilistic model. The
complexity of such an approach is also examined from a coatipuial point of view. Indeed, statistics on
words occurrences are useful in many fields (in fact eachdimsual events in sequences are looked at);
moreover, in many applications, it is necessary to comgeorresponding statistics as fast as possible.

We aim to count texts according to their length and to themhber of occurrences of words from a
setl/. A text where some occurrences of words frofrare marked is decomposed combinatorically
as a sequence of letters frarh and clusters (set of overlapping and marked occurrencés ofbted
Ly; see Definitions (2) and (3) in the next section). Each texioisnted several times depending on
which occurrences are marked (each text is counted as nragg fis the number of possible marking of
occurrences). This multiple counting is eliminated by ulse inclusion-exclusion principle (see among
others [9], [21], and [7, 111.6.4] for details).

3.1 Preliminaries
First we formally state the generating function in terms @furrence positions.

Definition 1 (Occurrence positions set)Theoccurrence positions sef a wordw in a wordw is the set
of final positions of occurrences ofin w:

Occ(u,w) = {p e{l,...,|w|} ’ w[(p—|ul+1)...p] = u}
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With this definition, we can rewrite the counting generafumgction of Equation (1)

F(27X) = Z W(w)z‘w‘ ngard(Occ(uiyw)).

weA* i=1
Definition 2 (Clustering-word) A clustering-wordor the set/ = {uy,...,u,} isawordw € A* such
that any two consecutive positionsunare coveredby the same occurrence in of a wordu € U. The
positioni of the wordw is coveredby a worduw if u = w[(j — |u| + 1) ... j] for somej € {|u],...,n}

andj — |u| + 1 < < j. The language of all clustering-words for a given &eis notedfC;,.

Definition 3 (Cluster) A clusterof a clustering-wordw in K, is a set of occurrence positions subsets
{8u C Occ(u,w) | u € U } which covers exactly, that is, every two consecutive positiorsnd: + 1
in w are covered by at least one same occurrence of somé/. More formally

Vie{l,...,|Jw|—-1} Jueld,Ipe S, suchthat p—|ul+1<i+1<p.

The set of clusters with respect to clustering-words broitnfsome finite set of wordsis noted<;,. We
noteL;,(w) the subset of, corresponding to the clustering-wortd € K;,. For a clustere = {S,, | u €
U}, we also definev(€) the corresponding (unique) clustering-word af®],, the number of marked
occurrences of the word in the cluster, i.e.,

€], = Card S,,.
Example 2 Letid = {baba, ab} andw = abababa, SO thatw € K. We have

Lor(w) ={ {Su = {2.4,6}, Stata = {5. 71}, {Sub = {2,6}, Star = {5, 7},

{Sab = {24}, Spava = {5, 7} }, {Sab = {2}, Spava = {5, 7}}}.

In the non-reduced case, a waigl may occur within some other word frotd. In order to properly
generate the clusters we introduce the notiorigtit extensiorof a pair of wordg k1, h2). This notion is
a generalization of the correlation set of two wokdsandh, but differs in that:

(i) overlapping is not allowed to occur at the beginnind:ef
(ii) extension has to add some letters to the right af

More formally we have
Definition 4 (Right extension set) Theright extension sedf a pair of words k1, hs) is

Enin, ={e | thereexiste’ € AT suchthat hie =c'hy With0 < |e| < |hal}.

Note that, wherh; andh, have no factor relation, the right extension &gt 5, is the correlation set of
hi to he. Moreover, wherk; = hg, the set,, 5, is the strict auto-correlation set bf (the empty word
does not belong t6, 5,)-

One can also define the right extension matrix of a vector atlea = (ug, ..., u,)

Eu = (g“iv“j)lgi,jgr :
As examples, we have

u; = (aba, ad) givesé,, = (ba b) , andus = (aaaa, aaa) givesEy, = (

a+a2—|—a3 a—i—a2
o 0 '

a2+a3 a—i—a2
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Fig. 1: Graphg for 4 = {baaab, aa, ab}.

3.2 Generating function of clusters

We define the generating functigiz, t) of the set of cluster£;, onif where the length of a cluster is
marked by the formal variable and each marked occurrencewfin clusters is marked by the formal
variablet;. The set of all possible clusters is the disjoint union ovkclastering-wordsw of the set of
all the clusters built fromw, hence

ety =Y 3 ()

wEKY €€ L1y (w)

3.2.1 Basic decomposition

We use a bijection between clusters and paths in a graphit@@arexpression for the generating function
&(z,t) of clusters inCy,.
LetG = (V, E) be a directed labeled graph such that:

(a) the set of vertices ¥ = {¢} U U;
(b) the setof edgesiB = {¢ % u|ucU} U {u -5 o' |u,u’ €U andy € &(u,u')}.

See an example on Figure 1 with= {baaab, aa, ab}.

If the seti/ is reducedi(e., without factor relations) then a cluster is completelyalibed by a path in
this graph starting at. When the set is not reduced, this is no longer true. We neaslstociate along the
path the possible occurrencedofvithin the last label read.

Thus we define a bijection between a clusteand a pair(c, F.) wherec is a path inG (starting at)
andF. is ak-tuple & is the length of the path) of sets of positions of occurrences. Each sefinis
made of position occurrences of words fréfrithat end within the label of the corresponding edge of the
path.

Let¢ = {S,|u € U} be a cluster for a clustering-word (each setS,, is composed of some end
positions of occurrences efinside the clustering-wora). We partition each occurrence positions set of
¢asS, = S, US) whereS,, contains positions of the occurrencesdhat are not factor of any another
occurrence of{. We are then assured thélt= {S], | u € U} is a cluster (with no factor occurrences) for
the same clustering-word(<). Then we build frome’ a sequenc&(u;, , i, ), (Wiy, Pis)s - - - 5 (Wip, s Diy, )
wherep;; is the ending position of;, (a word fromi/). This sequence is sorted by increasing position:
Piy = |wi,| < pi, < -+ < pg,, = |w|. Eachwordw(l...p;,] for j € {1,...,r} is a clustering-word.
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We sety; = u;,; then eachy; for j € {2,...,k} is the word such thab[l...p;, _,]-y; = w[l...p;].
By definition of the right extension setg, € 8% L for eachy. We therefore get a unique path
c=y1.y2...yx in the graphg

ey By, By,
To take into account the factor occurrences in the clusterassociate to each step _, Y, u;; of the
path a setF/ = {FJ | u € U — {u;,}} whereF] is the set of occurrence positions in the wad of
words ending withiry;, more precisely

:{p—|y1...yj|+‘uij‘ ‘ peS! and |y1...yj_1|<p§|y1...yj|}.
By construction, we have an application mapping a clugter a unique paifc, (F', ..., F*)) and this
application is clearly injective.
Conversely, let us consider a path= ¢ 25 u;, 2 u;, 25 ... 25w, , ak-tuple(F1,... F¥)

with 77 = {F) [ u # w;, } and
Flc {1 ‘ I € Occ(u, u;;) and‘uij‘ 1<yl }.

This defines a unique clustér= {S,, | u € U} as follows: we start witts,, = () for all u € U; we then
build the clustering-wordy = vy - 2 . .. - yi by reading the labels along the path and, at gtege put
position|y; ... y;| into Suij; finally, for all w # u;,;, we add taS, the factor occurrencese., the set of
positions
{p+|y1---yj| - ‘uzj‘ ‘ pG]‘—Z}-

We hence have built a bijection.

We introduce some notations to translate this constru¢tiayenerating functions. LéY, ;(k) count
the number of occurrences of in u; ending in the lask positions

For a suffixs of u;, we introduce a formal weighs), where each possible occurrence®f in u; ending
within s can be marked (or not) by, (hence marked by + ¢,,)

m;éz
The notation(-), extends readily to a set of wordswhich are suffixes of;;, which gives

s€S
Finally we define
e e e
() = ((wn)y, - (w),) and (&)= | e (5)
Ea)r (Enddy e (Enn),

We get to the following proposition.
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Proposition 1 The generating functiofi(z, t) of clusters built from the sét = {u,,...,u,} is given by
1
-1
&0 = WA - (1- E)aw) | . (6)
1
whereu = (uq,...,u,), t = (t1,...,t,.), and the matrixA(t) is ther x r diagonal matrix with entries
t, .oty

Proof: The matrix({&,) is the transition matrix of the graph where the vertex and its corresponding
edges have been removed. Some occurrences of theuydfar eachi € {1,...,n}) are marked with
the formal variables,; in the labels ofG. More precisely, a word occurrenag obtained when visiting
a vertexu; is marked by the formal variable (and appears in the calculus through the diagonal matrix
A(t) in (6)); in contrary, a factor occurrence can be marked or(thié does not change the path in the
graph), hence providing a term of the foiffy,, ,, (., + 1)Ve (VD (see Eq. (4)). The first transition from
e to anyu € U is handled similarly. So the paths witht 1 transitions ing starting frome have generating
function

1

k
WA®) - ((E)A®) - | :
1
Finally we use the quasi-inverse notati~ (Eu)At) = (T <5u>A(t))_1 to gettheresult. O

3.2.2 Applications

Reduced set. When the sel/ is reduced, that is, no word éf is factor of another, the clusters are
uniquely defined by a path in the previous gr&ptSo(u) and(&, ) do not depend on any of the variables
t;'s. Hence in Eq. (6), variables’s are gathered insidA(t). This is another formulation of the result of
Goulden and Jackson [9].

One word. Fori = {u}, we get

tu) tr(u) 2l B trr(u) 2z

£(zt) = L—t(&) 1—té(z) 1—t(c(z)—1)

(@)
whereé(z) is the generating function of the strict autocorrelationaevord « (empty worde omitted),
andc(z) is the auto-correlation polynomial af

Two words. For a set of two wordguy, us}, one can compute explicitly(z, t1,t2) by the Cramer’s
rule

ti(ui), + to(uz)y — t1t2(<U1>1 [<52,2>2 - <51,2>2} + (u2), [<51,1>1 - <52,1>1D
1—t2(E22)y — t1(E11); + tata((E1,1),(E2,2)5 — (E2,1)1(E1,2)5) ’

5(27151,152) = (8)

and this expression is computable from the right extensiatmiriof {uy, us}.
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Example 3 Letu = (a7, a®). The right extension matrix is:

£ — a+a2—|—a3+a4+a5—|—a6 a—i—a2
u a® + a a+a?)"

We havelu) = ((1 4 t2)°z"7(a"), zm(a?)), if we notep = 7(a) and use the property” = m(a*), then
(E1,1); = (L+t2)zp + (1 +12)*(2p)* + (1 +2)°(2p)” + (1 + 2)*(2p)* + (1 + t2)° ((20)° + (2p)°),
(E12)y =20+ (2p)% (E21); = (L +12)°((20)° + (2)°),  (E2.2), = 20 + (2p)*.

By substituting these values in Eq. (8) we get

E(z,t1,t2) = —(p2) 1 (ta41)* +(p2) Otats (b2 +1)°+(p2) ot (t2+1)°+(p2) "tats (ta+1)— (p2)t2
1 v1 02 — 141 (p2) (b2 + 1) 11 (92)° (b2 +1)°+(p2) 11 (b2 + 1)+ (p2) 1 (L2 + 1)+ (p2) (b1 + L2+ 1 t2) +pz(ti+Hatiitz)

3.3 Generating function of texts

A text is decomposed combinatorically as a sequence ofddtiem. A (of generating functioni(z)) and
clusters (or more rigorously clustering words) frdin (of generating functiog(z, t)). The multivariate
generating functiorf” of Equation (1) is derived by substituting — x; — 1 fori € {1,...,r} in each
(A(2) + £(2, 1))k, wherek is the number of combinatorial objects in the decomposition

To summarize, we have the following proposition:

Proposition 2 Letu = (uq,...,u,) be a finite vector of words inl* and &, the associated right exten-
sion matrix. The multivariate generating functiéhcounting texts where length is marked by the variable
z and occurrences af; are marked by the vector of formal variables= (z1,...,z,) is

1

Fzx) = 1—A(z) —€&(z,x— 1)’

9)

whereA(z) =3 . 4 m(o)z is the generating function of the alphabet &§(d, t) is defined in Eq. (6).

Proof: The proof relies on two main points. On one hand, the gemerdtinction{(z, t) counts all the
clusters (see Proposition 1 in Section 3.2.1). On the othArdhthe inclusion-exclusion principle yields
the final result by the substitutions— z; — 1. O

The application of the standard techniques of analytic doatbrics (see [7]) to the multivariate gen-
erating functionF’ gives access to many statistiesd. mean, variance, covariance,...).

3.4 Algorithmic point of view

We present here an general method in order to compute theagenggfunctioné(z, t). This is a two-step
approach:

(i) we compute the: x r matrix (£,) (wherer is the number of words itx); coefficients are polyno-
mials whose degree (in any variable) is boundediay,, <, |u| — 1; we provide next an algorithm
computing the extension sets with the help of the Aho-Cokasiitomatond;,;

(i) we have to invert this matrix.
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With the inclusion-exclusion approach, ther matrix is smaller and more compact than the linear system
obtained by applying Chomsky-Schiitzenberger on the Abms§ick automaton of Section 2 which has
sizeO((X",,cy u])?)) since there ar® (3, ., |ul) states in the automaton.

We exhibit an algorithm computing from the Aho-Corasickamaton (represented by a failure func-
tion) the multivariate matrix&) and the vectotu) intime O(r?xs+ ", ,, [u|) wherer is the cardinality
of U ands is the size of the longest suffix ch&#nof a wordu € /.

First we compute an auxiliary function which associateswpefixw of the set/ a vector(f;(w))i_,
defined by

fi(w) = (v),, forve A" andw - v = u;

We remark thatu) = (f1(¢), ..., f~(€)). The “time complexity” (measured as the number of updates of
the f;(w)’s) of the following algorithm isO(r x 3 o, [ul).

INIT(Aw)
1 fori« 1tordo
2 filus) <1
3 for w € Pref(U) by a postorder traversal of the trde
4 for i — 1tor do
5 for « € A such thatw - o € Pref(u;) do
6 fiw) = m(@)zfi(w - @) T, 4, (1 + ty) o et el
7 return (fi)lgigr

The matrix(£,) is computed by the following algorithm. The time complexitiithe main loop is
O(s x r?) wherer is the number of words andis the length of the longest suffix chain.

BUILD-EXTENSION-MATRIX (Ay)
1 o Initialize the matrix(&;,;)1<i,j<r
2 fori« 1tordo
for j «— 1tordo
gi,j — 0
> Compute the map§f; (w)) fori = 1..r andw € Pref (i)
(fi)i<i<r < INIT(Ay)
> Main loop
for i — 1tor do
VUV <— U;
10 do forj+« 1tordo
11 Eij—Eij+ [i(v)
12 v < Border(v)
13 whilev # ¢
14 return E

© oo~NOO UL W

From an algorithmic perspective we point the reader to AdpeA for a comparison of the automaton
construction and the inclusion-exclusion method on a $igemtample: the covariance of the number of
occurrences of two words.

(@ The suffix chain ofu € U is the sequencéu; = u, us = Border(u1), us = Border(uz), ..., us = Border(us_1) = €).
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Conclusion and perspectives

We obtained a detailed proof and an explicit expression @hthiltivariate generating function counting
texts according to their length and to their number of oaures of words from a finite set. This result
facilitates access to various moments and and may faeiltatess to limiting distributions. From Bender
and Kochman [2], we expect to find mostly a multivariate ndriaa for word counts. Our approach can
possibly provide simpler criteria to decide if such a limgilaw holds or not. Another nice aspect to the
inclusion-exclusion approach is that it provides expfieimulae like Eq. (8), whereas the Aho-Corasick
construction does not preserve the structure: even forgdespattern the autocorrelation polynomial does
not come out easily and visibly.
We plan to extend the analysis to more complex sources, suktaekovian or dynamical sources (see
Vallée [22]). We can probably improve on the complexity ofrgputing the auxiliary functiong;.
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A Complexity of computing the covariance of number of occur-
rences of two words

We provide in this appendix a case study, focusing on the coatipn of the covariance of the number of
occurrences of two words. We place ourselves in the Berimwoltlel so that the weight(w) given to a
word is the product of probabilities of individual lettefBhis entails for instance for the alphab&that
Az) = > capiz = 2.

We consider here two words andusy with |u1| = |us| = ¢, and two random variablexl(”) andXQ")
counting the number of occurrencesgfandu, in random texts of size. Since this covariance is equal
to

Cov (X1">, X§”>) - E (X1">X2">) ~E (X{“) E (X2">) ,
and that we have easy accesEtéXl(”)) andE (XQ(”)), it remains to evaluate the joint momeimff;) =

E (Xl(”)Xz(")) of the number of occurrences of two words. We compare botth#inclusion-exclusion

n)

method and for the automaton method the complexity of co'rngd\tiffv2 . The complexity is expressed
in terms of number of operations on real or rational numbers.
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Some possible following steps of computation are summaiizéables 1 and 2 (with the option to
compute the joint moment either asymptotically or exactW refer to von zur Gathen and Gerhard [23]
for algorithms used in this section.

We have basically the same complexity for Step 1 for both mathwhich require®(¢) operations.

We give in the following two paragraphs some elements tafjugte complexities stated in Tables 1
and 2.

Inclusion-Exclusion approach. By Equation (8), we writd /(1 —z —&(z,21—1, 22— 1)) as a rational
function P(z, x1,x2)/Q(z, x1, x2) WwhereP(z,x1, z2) andQ(z, x1, z2) are polynomials. This leads to
consider

n 0% P(z,11,x
MLQ(Z) :Z M1(72)Zn _ ( 1 2)

= 10
= 021012 Q(2, 21, 22) (10)

I1:$2:1
Introducing some polynomials to alleviate notations, P¢z) = P(z,1,1), Q(z) = Q(z,1,1) and for
any polynomiallU (z, z1, z2), we define

Uj;(z) = %U(z,xl,xg) forj=1,2, andU;z(z) = %U(z,xl,m)

r1=x2=1 r1=x2=1 '
Then one has the exact expression
~ Pias Pi(2)Q2(2) + P(2)Q12(2) + P2(2)Q1(2) P(2)Q1(2)Q2(2)
M2l =50 QG NRTE

We claim thatP(z,x1,z2) and Q(z,z1, 22) have at mose/ + 1 terms (see Example 3 to be con-
vinced). Therefore the formal differentiations of Step Buiee O(¢) operations on monomials. By
Perron-Frobenius, we have a dominant poleifpandzs real in a neighborhood of 1. Moreover we have
P(z2,1,1)/Q(z,1,1) = 1/(1 — z). This implies that Equation (10) can be expanded locally leaaent
series

as az ay

Mip(z) = L + =SE + 15 tao+ 01 -2),

giving access to an asymptotic expressionm@ = [2"] M1 2(z). Therefore computing the joint mo-

mentE(Xl(")Xén)) asymptotically requires only to perform a finite number afguct of polynomials in
the variable: the degrees of which 8(¢); this corresponds to a complexity of orde¢/ log(¢) log log(¥))
by using Fast Fourier Transforms for the polynomials miiétggions.

Automaton approach. As noticed in Nicodemet al.[15], when considering asymptotic computation
of Ml(z), it is possible to avoid the inversion of a linear system akdgi with polynomial entries by
expanding the system in a neighborhood of the dominant kirigu~ = 1 after differentiating with
respect tar; andzs and substituting;; = x5 = 1. Doing this avoids the computation of the multivariate
generating functiot'(z, z1, z2). This leads to handle a finite set of sparse linear systenizef,avhere
the number of non-zero terms @(¢). Using the Wiedemann algorithm [24] it is therefore possital
compute the momeer(Z) in O(¢?) operations.

When exact computation is needed, it is necessary to cortiputational generating functieglgjzﬂ

\T1,22) "

Note that to get to the result, the Aho-Corasick automatoy beaminimized in (here negligible) time
O(Llog(?)).
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Starting from Equation (2), we remark thB{ z, x1, x2) = (I — 2T(z1,22)) 11, wherel is the vector
(1,...,1)t, is a vector of rational functions in, z; andz,. We write the2/ + 1 first terms of the Taylor
expansion off'(z, x1, x2) in the neighborhood of = 0, which gives

F(z,21,25) =11 + 2T1 4 22TT1 + - - - + 21T 4 -« 4 22017200 4

The principle is to benefit from the fact thdtis a sparse matrix witi)(¢) non null entries. Eacfi1

is a vector, entries of which are polynomialsain andz, of at most;2 terms. The cost of computing
the 2¢ + 1 first terms of the expansion is therefapg/*). Multiplying to the left this expansion by the
vector(1,0,...,0) provide the2/ + 1 first terms of the expansion of the rational functibiz, 21, z2)
which can be computed by using a Padé approximant with a@&t) x O(¢? log(¢)loglog(¢)) =
O(¢* log(¢) loglog(£)) where the first term corresponds to the number of operatibonsraputation of
the Padé approximant and the second term to the multifdicaf polynomials of the variable; andzo
of degree at most/ + 1 in the two variables (univariate polynomials are multigley FFT).

Binary Powering. For both approaches, the exact computatioMég) follows by computing the recur-
rence associated to the rational fractitfi »(z) (computed exactly), rewriting it as a matricial equation
and using binary powering to compute the relevant powersefriatrix inO(log(n)) operations.

[ Automaton approach (asympt.) | Complexity | [ Inclusion-exclusion (asympt.) | Complexity |
1) Build the Aho Corasick automator| O(¢) 1) Compute the right extension sefs O(¢)
2) Inverse a linear system with corj- O(¢?) 2) Differentiate and get first term$ O(£log(£) loglog(¥))
stant coefficients of Laurent series

[ Overall Cost | o?) | [ Overall Cost | O(tlog(¢)loglog(¥)) |

Tab. 1: Asymptotic computation oMff;) with the automaton approach (left) and inclusion-exclusiwethod (right)
for two words of lengtt? and a text of lengthu.

Automaton approach Complexity

(exac.t) Inclusion-exclusion | Complexity
1) Build the Aho Cora-| O(¥) (exact)

sick automaton -
2a) Inverse a lineaj O(¢*log(¢)loglog(¢)) gt(e:r?g?g:tseegs]e right O(¢)

system with polyno- 2) Differentiate OTog(?) log log (7))
mial coefficients - -
3) Binary powering | O(log(n)

2b) Differentiate O(Llog(¢) loglog(¥))
3) Binary powering O(log(n) | Overall Cost [ O(log(n) + £log(¢) loglog(f)) |
| Overall Cost | O(log(n) + ¢*log(¢) loglog(?)) |

Tab. 2: Exact computation oMff;) with the automaton approach (left) and inclusion-exclositethod (right) for
two words of length? and a text of lengthu.



