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We consider a component of the word statistics known as clump; starting from a finite set of words, clumps are

maximal overlapping sets of these occurrences. This object has first been studied by Schbath [22] with the aim

of counting the number of occurrences of words in random texts. Later work with similar probabilistic approach

used the Chen-Stein approximation for a compound Poisson distribution, where the number of clumps follows a law

close to Poisson. Presently there is no combinatorial counterpart to this approach, and we fill the gap here. We also

provide a construction for the yet unsolved problem of clumps of an arbitrary finite set of words. In contrast with the

probabilistic approach which only provides asymptotic results, the combinatorial method provides exact results that

are useful when considering short sequences.

Keywords: Words counting, formal language decomposition, generating functions, automata

1 Introduction

Counting words and motifs in random texts has provided extended studies with theoretical and practical

reasons. Much of the present combinatorial research has built over the work of Guibas and Odlyzko [9, 10]

who defined the autocorrelation polynomial of a word. As an apparently surprising consequence of their

work, the mean waiting time for the first occurrence (or expectation of the number of characters read until

finding the first occurrence) of the word 111 in a Bernoulli string with probability 1/2 for zeroes and ones

is larger than the mean waiting time for the first occurrence of the word 100. This is due to the fact that

the words 111 occur by clumps or sets of overlapping occurrences of 111 or, equivalently, inside runs of at

least three ones, the probability of extending a clump or a run by one position being 1/2; this implies that

the average number of 111 in a clump is larger than one; in contrast, there is only one 100 in each clump

of 100. Since the probability that the word 111 and the word 100 start at a given position both are 1/8, the

expectation of the interarrival time (or of the number of characters needed to find a new occurrence once

a clump has been read) of clumps of 111 is larger than the expectation of the interarrival time of clumps

of 100.

Historically, multiple word counting used different approaches for analysis of the reduced (and easier)

case where no word can be a factor of another word of the considered set of words and the general (and

harder) case. We analyze first in this article several statistics connected to clumps of a pattern, where

the pattern is one word or a reduced set of words. Our approach is based on properties of the Régnier-

Szpankowski [18] decomposition of languages along occurrences of the considered word or set of words
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and on properties of the prefix codes generating the clumps. We provide explicit generating functions

in the Bernoulli model for statistics such as (i) the number of clumps, (ii) the number of occurrences of

words of the pattern, (iii) the number of k-clumps (clumps with exactly k occurrences of the words of the

pattern), (iv) the number of positions of the texts covered by clumps; these explicit results may be extended

to a Markov model, providing some technicalities. We get also to the same results in the Bernoulli model

by an algorithmic approach where we construct deterministic finite automata recognizing clumps in the

general case. This approach extends directly to the Markov model. We obtain as a direct consequence a

Gaussian limit law for the number of clumps and the size of texts covered by clumps in random texts in

the Bernoulli and Markov model.

Consider a rough first approximation for clumps of one word. If the probability occurrence of a word

w is small, the number of clumps of this word is likely to be also small. Then the number of clumps

in texts of size n is close to a Poisson law of parameter λ = n × P(a clump starts at position i), where

i is a random position. Approximating further, the random number of occurrences of the word w in

a clump follows a geometric law with parameter ω, where ω is the probability of self-overlap of the

word. Schbath [22] gave the first moment of the number of k-clumps (clumps where w occurs exactly k
times) and of the number of clumps of one word in Bernoulli texts. Reinert and Schbath [19] obtained in

the Markov case of any order a compound Poisson limit law for the count of number of occurrences of

reduced sets of words by the Chein-Stein method. See Reinert et al. [20] and Pape [16] for a review of

this approach and Barbour et al. [1] for an extensive introduction to the Poisson approximation. Recently,

Stefanov et al. [24] used a stopping time method to compute the distribution of clumps; their results are

not explicit and practical application of their method requires the inversion of a probability generating

function. Roquain and Schbath [21] provide also a probabilistic approach to the number of clumps. Both

approach are limited to the reduced case. In the context of analysing the insertion depth in suffix-trees,

Jacquet and Szpankowski [13] computed by combinatorial methods the generating function of clumps of

suffixes of a word.

We describe in Section 2 our notations. Section 3 describes the formal language approach based on

previous work of Régnier and Szpankowski and Section 4 provides the automaton construction for the

general case. We prove limit laws for the number of clumps and the size of the texts covered by clumps

in Section 5.

2 Preliminaries

We consider a finite alphabet A. Unless explicitly stated when considering a Markov source, the texts are

generated by a non-uniform Bernoulli source over the alphabet A. Given a set of words, clumps of these

words may be seen as a generalization of runs of one letter.

Reduced set of words. A set of words V = {v1, . . . , vr} is reduced if no vi is factor of a vj with i
different of j. For instance the set {aa, aba} is reduced whereas the sets {aa, aab}, {aa, baa}, {aa, baab}
are non-reduced.

Clumps and k-clumps. When considering a set of words V = {v1, . . . , vr} where each word vi has

size at least 2, a clump is a maximal set of occurrences of words of V such that

– any two consecutive letters of the clump belong to (is a factor of) at least one occurrence of a word

from V ,
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– either the clump is composed of a single occurrence that overlaps no other occurrence, or each

occurrence overlaps at least one other occurrence.

This definition naturally applies also to the case where V is composed of a single word.

Goulden and Jackson [8] considered clusters of words. We use as intermediate step the related notion

of clustering-word.

Definition 1 (Clustering words & Clumps) A clustering-word for the set V = {v1, . . . , vr} is a word

w = w[1..|w|] ∈ A∗ such that any two consecutive positions in w are covered by the same occurrence in

w of a word v ∈ V . The position i of the word w is covered by a word v if v = w[(j − |v| + 1) . . . j] for

some j ∈ {|v|, . . . , |w|} and j − |v| + 1 ≤ i ≤ j. More formally, w is a clustering-word for the set V if

we have

∀i ∈ {1, . . . , |w|−1} ∃ v ∈ V, ∃ p ∈ Posw(v) such that p − |v| + 1 < i + 1 ≤ p,

where Posw(v) is the set of positions of occurrences of v in w.

A clump in a text T , generically denoted here by K, is a maximal clustering-word in the sense that there

exists no occurrence of the set V in T that overlaps this clustering-word without being a factor of it.

Note that the clusters in the terminology of Goulden and Jackson are exactly subsets of Posw(v) in our

settings. As example, considering the set V = {aba, bba} and the text T = bbbabababababbbbabaababb,

we have

T = bbbabababababbbbaba ababb

where the clumps are underlined. The word bbababababa beginning at the second position of the text is

a clump, and so are the words bbaba and aba beginning at the 15th and 20th positions. On the contrary,

the word ababa beginning at the sixth position is not a clump since it is not maximal; neither is a clump

the word bbabaaba beginning at the 15th position, since its two-letters factor aa is neither a factor of an

occurrence of aba nor of an occurrence of bba.

We remark that a single word is a clustering-word and that, as mentioned previously, a clump may be

composed of a single word. A k-clump of occurrences of V (denoted by Kk) is a clump containing exactly

k occurrences of V .

Notations. We consider the residual language D = L.w− defined as D = {x, x ·w ∈ L}. Considering

two languages L1 and L2, if we have L1 ⊂ L2, we write L2 − L1 = L2 \ L1.

Autocorrelations, correlations and right extension sets of words. We recall here the definition of

Right Extension Sets introduced in Bassino et al. [2]. This notion is a generalization of the correlation of

two words to the cases where one word may be factor of the other one.

The right extension set of a pair of words (v1, v2) is

Ev1,v2
= { e | there exists e′ ∈ A+ such that v1e = e′v2 with 0 < |e| < |v2|}.

The “usual” autocorrelation set Cw,w of the word w (denoted further by C when there is no ambiguity) is

defined as usual by

C = Cw,w = { e | there exists e′ ∈ A⋆ such that v1e = e′v2 with |e| < |v2|}.
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Remark that the empty word ε belongs to the autocorrelation set C. In contrast, we define the strict

autocorrelation set C◦ by C◦ = C − {ε}.

We remark also that C◦ is empty if the word w has no autocorrelation.

If the word v1 is not factor of v2 the right extension set from v1 to v2 is the usual correlation set of

Cv1,v2
of v1 and v2, defined as,

Cv1,v2
= { e | there exists e′ ∈ A+ such that v1e = e′v2 with |e| < |v2|}.

Note also that the correlation set of two words may be empty. When we have w = v1 = v2, we get

Ew,w = C◦ = C − ε.

We have as examples

Caabaa,aab = {b, ab}, Cababa,ababa = {ε, ba, baba}, Eaaa,aaaa = {aa, aaa}.

Number of occurrences of words and clumps. We note respectively Ow
n and OK

n the random variables

counting the number of occurrences of a word w and the number of clumps of this word in random texts

of size n. The random variable OKk
n counts occurrences of k-clumps.

Generating functions. For any language L, we define its generating function in the Bernoulli model by

L(z) =
∑

w∈L

πwz|w| =
∑

n≥0

fnzn,

where πw is the probability of the word w in the usual Bernoulli model (that is the product of the prob-

ability of the letters composing the word, with their multiplicities) and fn is the probability that a ran-

dom word of size n belongs to the language L. For instance for a binary alphabet {a, b} and a (biased)

Bernoulli model with πa = p and πb = 1 − p (p ∈ [0, 1]), the generating function of the language

Cababa,ababa = {ε, ba, baba} is 1 + p(1 − p)z2 + p2(1 − p)2z4.

We aim here at providing generating functions or explicit formulas for counting the number of clumps,

the total size of text covered by clumps or the number of clumps with exactly k occurrences. This typically

corresponds when considering the object u to multivariate generating functions such as

Fu(z, x) =
∑

T∈L

P(T )z|T |x|T |u =
∑

fn,ix
izn (1)

where P(T ) is the weight (i.e., probability) of the text T among texts of same size, |T |u is the number of

occurrences of the object u in the text T and fn,i is the probability that a text of size n has i occurrences

of this object. This extends naturally for counting more than one object by considering multivariate

generating functions with several parameters.

If the random variable Xn counts the number of objects in texts of size n, we get from Equation (1)

E(Xn) = [zn]
∂F (z, x)

∂x

∣

∣

∣

∣

x=1

, E(X2
n) = [zn]

∂

∂x
x

∂F (z, x)

∂x

∣

∣

∣

∣

x=1

.

Recovering exactly or asymptotically these moments follows then from classical methods.
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3 Formal language approach

3.1 Régnier and Szpankowski decomposition

Our work extends the formal language approach of Régnier and Szpankowski [18]. We briefly recall their

approach. Considering one word w, Régnier and Szpankowski use a natural parsing or decomposition of

texts with at least one occurrence of w, parsing unambiguously a text with at least one occurrence of w as

follows:

1. the part of text from the beginning to the first occurrence of the word w belongs to the Right

language,

2. if there are any other occurrences of the word w, each two consecutive occurrences are separated

by a word from the Minimal language,

3. the part of text from the last occurrence of w to the end belongs to the Ultimate language.

Moreover, there is a Not language of texts without any occurrence of the considered word w. Régnier [17]

further extended this decomposition approach to a reduced set of words.

We follow here the presentation of Lothaire [14] (Chapter 7). Let V = {v1, . . . , vr} be a reduced set of

words. We have, formally

Definition 2 Right, Minimal, Ultimate and Not languages.

– The “Right” language Ri associated to the word vi is the set of words

Ri = {r | r = e · vi and there is no υ ∈ V such that r = xυy with |y| > 0}.

– The “Minimal” language Mij leading from a word vi to a word vj is the set of words

Mij = {m | vi · m = e · vj and there is no υ ∈ V such that vi · m = xυy with |x| > 0, |y| > 0}.

– The “Ultimate” language of words following the last occurrence of the word vi (such that this

occurrence is the last occurrence of V in the text) is the set of words

Ui = {u | there is no υ ∈ V such that vi · u = xυy with |x| > 0}.

– The “Not” language is the set of texts where no word from V occurs

N = {n | there is no υ ∈ V such that n = xυy}.

The notations R,M, U and N refer here to the Right, Minimal, Ultimate and Not languages of a single

word.

We consider as example the word w = ababa; in the following texts, the underlined words belong to

the set M; the overlined word does not since the occurrence represented in bold faces is an intermediate

occurrence.

ababaaaaaababa ababababbbababa abababa.
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Considering the matrix M such that Mij = Mij and using Cij = Cvi,vj
as a shorthand, we have

⋃

k≥1

(

M
k
)

i,j
= A⋆ · vj + Cij − δijε, Ui · A =

⋃

j

Mij + Ui − ε, (2)

A · Rj − (Rj − vj) =
⋃

i

viMij , N · vj = Rj +
⋃

i

Ri (Cij − δijε) , (3)

where the Kronecker symbol δij is 1 if i = j and 0 elsewhere. If the size of the texts is counted by the

variable z and the occurrences of the words v1, . . . , vr are counted respectively by x1, . . . , xr, we get the

matrix equation for the generating function of occurrences

F (z, x1, . . . , xr) = N (z) + (x1R1(z), . . . , xrRr(z))
(

I − M(z, x1, . . . , xr)
)−1







U1(z)
...

Ur(z)






.

In this last equation, we have Mij(z, x1, . . . , xr) = xjMij(z) and the generating functions Ri(z),
Mij(z), Uj(z) and N (z) can be computed explicitly from the set of Equations (2-3).

In particular, when considering the Bernoulli weighted case where the probability of the letters sum up

to 1 and a single word w with πw = P(w), we have the set of equations

R(z) =
πwz|w|

D(z)
, M(z) = 1 +

z − 1

D(z)
, U(z) =

1

D(z)
, N (z) =

C(z)

D(z)
, (4)

where D(z) = πwz|w| + (1 − z)C(z). Finally we get

A⋆ = N + RM⋆U =⇒ F (z, x) =
1

1 − z + πwz|w|
1 − x

x + (1 − x)C(z)

=
∑

n,k

fn,kxkzn.

In this last equation, fn,k is the probability that a text of size n has exactly k occurrences of w.

3.2 Clump analysis for one word

The decomposition of Régnier and Szpankowski is based on a parsing by the occurrences of the con-

sidered words. We use a similar approach, but parse with respect to the occurrences of clumps. When

they consider the minimal language separating two occurrences, these two occurrences may overlap; in

contrast, our approach forbids the overlap of clumps.

A clump of the word w is basically defined as w C⋆
◦ , since any element of C◦ concatenated to a cluster

extends this cluster. In general C⋆
◦ is ambiguous as can be seen by considering the word w = aaa, where

we have C◦ = {a, aa}. We can however generate unambiguously C⋆
◦ as described in the next section.

3.2.1 A prefix code K to generate unambiguously C⋆

◦

We refer to Berstel and Perrin [4] for an introduction to prefix codes. See also Berstel [3] for an analysis

of counts of words of a pattern V by semaphore codes V −A⋆VA+.

We will use the following lemma to derive generating functions.
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Lemma 1 The prefix code K = C◦ \ C◦A+ generates unambiguously the language C⋆
◦ (i.e., we have

K⋆ = C⋆
◦ as languages).

Proof: See Figure 1 as illustration of this proof. It is clear that K is prefix. Let w be the word of which

C◦ is the strict autocorrelation set. Consider v ∈ C◦. If v does not belong to K, then v = κ1v
′ with

κ1 ∈ K ⊆ C◦ and v′ ∈ A+. Moreover since both v and its prefix κ1 belong to C◦, there exist non-empty

words p, p′ and s′ such that p = p′s′, wv = pw and wκ1 = p′w. Therefore wv′ = s′w and v′ ∈ C◦. As

|v′| < |v|; we may iterate the process on the word v′. Since |v| is finite, after a finite number of steps, we

get to a decomposition w = κ1 . . . κj where each κi is in K. Since K is a code, the decomposition of each

word of C◦ over K is unique and so is the decomposition of any word of C⋆
◦ . ✷

p w

w v

κ1 v
′

p
′

w

s
′

w

Fig. 1: Proof of Lemma 1.

Moreover, for c1, c2 ∈ C◦ and |c1| < |c2|, the word c1 is a proper suffix of c2. From this property

we can deduce that there exists non-empty (and non necessarily distinct) words q1, q2, . . . , qk such that

K = {κ1, . . . , κk} can be written K = {q1, q2q1, . . . , qkqk−1 . . . q1}.

Example 1 Let w = abaabaaba. We have

abaabaaba|ε
abaaba|aba

aba|abaaba
a|baabaaba

=⇒ C = {ε, aba, abaaba, baabaaba} =⇒ K = {aba, baabaaba}.

Constructing the prefix-code K. We use the following algorithm, that takes the set of periods (i.e., the

lengths of non-empty words in C) as input:

1. start with the word w;

2. shift w to the right to the first self-overlapping position; let κ1 be the trailing suffix so obtained;

insert it in a trie;

3. repeat shifting, obtaining new trailing suffixes; for each new suffix generated, try an insertion in the

trie; if you reach a leaf, drop the suffix; elsewhere insert it.

The worst case complexity for this construction is O(|w|), but the average complexity is O (|K| × log |K|),
the average path length of a trie built over |K| keys (under the simplifying hypothesis that the words in K
are independent and randomly generated; see Sedgewick and Flajolet [23]).
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3.2.2 The language decomposition

Considering the word w = aaaaa, we have C◦ = {a, aa, aaa, aaaa} and K = {a}. Moreover, we have

M = {a, b(b + ab + aab + aaab + aaaab)⋆aaaaa}. We get here K ⊂ M and M−K is a set of words

ending with w. The languages M and K are connected by a simple property that we describe now.

Lemma 2 For any word w with strict autocorrelation set C◦, prefix code K generating C⋆
◦ and minimal

language M, there exists a non-empty language L such that

K ⊂ M and M−K = Lw.

Proof: We have K ⊂ C◦ ⊂ M. If h ∈ M−K, we can write wh = xw for some x.

Supposing that |h| < |w|, we have h ∈ C◦. Since each word of C◦ is decomposable into factors over

K (Lemma 1), if h is not an element of K, there is a previous match with w in w.h, and h is not in M;

elsewhere h is in K, which is impossible since we considered the set M−K.

If |h| = |w|, we have h = w ∈ M and h 6∈ K and therefore w ∈ M − K. The last possible case is

|x| > |w| which implies that h = y.w with |y| > 0. ✷

This leads immediately to the fundamental lemma.

Lemma 3 The basic equation for the unambiguous combinatorial decomposition of texts on the alpha-

bet A is

A⋆ = N + Rw−(wC⋆)
(

(M−K)w−(wC⋆)
)⋆U . (5)

Proof: The Equation (5) follows from the parsing of any given text.

Either there is no occurrence of w which means that the text belongs to the “Not” language N .

If there is at least one clump occurrence, we parse as follows: we read until the first occurrence of the

clump (a word of R). This occurrence may be followed by any number of overlapping occurrences of w
(corresponding to a word of C⋆ and forming a clump). Then we have to wait again the (possible) next

occurrence of w, thus reading a word of M−K. Then a new clump is parsed (corresponding to a word

of C⋆). We repeat the last two steps if there are other occurrences of w. Finally we end by reading a word

of U which add no occurrence. ✷

We can now use the preceding lemma to count several parameters related to the clumps.

3.2.3 Generating functions for the clumps of one word

Let Γ(z, x, τ) be the generating function where the variable x counts the number of occurrences of w in

a clump, and the variable τ counts the total number of letters inside clumps; the variable z is used here to

count the total length of the texts. We also use a variable γ to count the number of clumps. We have the

following theorem.

Theorem 1 In the weighted model such that A(z) = z (i.e. where weights of letters of the alphabet A
are probabilities in the Bernoulli model), the generating function counting the number of occurrences of

a word w and the number of positions covered by the clumps of w verifies

F (z,Γ(z, x, τ)) = N (z) +
R(z)

πwz|w|
Γ(z, x, τ)

1

1 − M(z) −K(z)

πwz|w|
Γ(z, x, τ)

U(z), (6)
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where the generating function of the clumps verifies

Γ(z, x, τ) = xπw(zτ)|w| 1

1 − xK(zτ)
. (7)

As a consequence, the generating function counting also the number of clumps is

G(z, x, τ, γ) = F (z, γΓ(z, x, τ)).

Proof: This theorem follows from Lemma 1 and from a direct translation of Equation (5) into generating

functions (using the fact that clumps of w correspond to terms wC⋆ in Equation (5)). ✷

3.2.4 Occurrences of clumps.

By considering F (z, γΓ(z, 1, 1)) in Equation (6) and using Equation (7) we obtain the bivariate generating

function counting the number of clumps

O(K)(z, γ) =
∑

n,i

P(OK

n = i)γizn = N (z) +
γR(z)U(z)

1 − γM(z) + (γ − 1)K(z)
. (8)

We get by differentiation and by using the set of Equations (4)

∑

n

E(OK

n )zn =
∂O(K)(z, γ)

∂γ

∣

∣

∣

∣

γ=1

=
R(z)U(z)(1 −K(z))

(1 −M(z))2
=

πwz|w|(1 −K(z))

(1 − z)2
.

We get similarly by differentiating twice the generating function of the second moment of OK
n .

We obtain mechanically by Taylor expansions in a neighborhood of z = 1 the following result.

Proposition 1 (Expectation and variance of the number of clumps – case of one word) In the Bernoulli

model, the expectation and variance of the number of clumps in texts of size n is given by

E(OK

n ) = (n − |w| + 1)πw(1 −K(1)) − πwK′(1)

Var(OK

n ) = n × (1 −K(1))2Vw − n × πw(1 −K(1))(K(1) − 2πwK′(1)) + O(1),

where Vw = πw

(

2C(1) − 1 − (2|w| − 1)πw

)

and K(z) is the generating function of the prefix code

generating C⋆
◦ (see Lemma 1).

This is to compare with the counting of occurrences of a single word w

E(Ow
n ) = (n − |w| + 1)πw, Var(Ow

n ) = n × Vw + O(1).

We obtain as expected smaller expectation and variance for the number of clumps than for the number of

word occurrences, with a characteristic reduction coefficient (1 −K(1)). We remark here that when C =
{ε} (no autocorrelation), we have K(z) = 0 and therefore E(OK

n ) = E(Ow
n ) and Var(OK

n ) = Var(Ow
n )

as expected.
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3.2.5 Occurrences of k-clumps.

By decomposing the equation of a clump of occurrences of w, we can use a formal variable v and write

wC⋆ = w + wK + wK2 + · · · + wKk−2 + vwKk−1 + wKk + . . .

to count clumps with exactly k occurrences of w.

Denoting Γk(z, v) the generating function which counts with the variable z the number of letters inside

the clumps and where the variable v selects k-clumps, we have

Γk(z, v) = πwz|w|

(

1

1 −K(z)
+ (v − 1)K(z)k−1

)

.

Substituting this in Equation (6) gives

O(Kk)(z, v) =
∑

P(OKk
n = i)vizn = F (z,Γk(z, v)),

where F (z,Γ) is given by Equation (6).

3.3 Clumps of a finite set of words

We provide in this section a matricial solution for counting clumps of a reduced finite set of words. For

sake of simplicity we consider a set of two words V = {v1, v2} but our approach is amenable to any

reduced finite set.

Similarly to the one word case, we are lead to consider prefix codes generating the correlation of two

words. Considering C⋆
ij is not relevant when we have i 6= j. However, we can write as previously

Kij = Cij − CijA+, which defines minimal correlation languages with good properties.

Following a path similar to the proof of Lemma 2, there exists a language L such that

Mij −Kij = L · vj .

We can therefore define the minimal correlation matrix K, the matrix S = K⋆, and write a clump matrix

G as follows

K =

(

K11 K12

K21 K22

)

, S = K
⋆, G =

(

v1S11 v1S12

v2S21 v2S22

)

.

In this equation, Gij represents the set of clumps starting with the word vi and finishing with the word vj .

We obtain now a fundamental matricial decomposition that can be used for further analysis,

A⋆ = N + (R1v
−
1 ,R2v

−
2 ) G

(

(M − K)−G

)⋆
(

U1

U2

)

,

where we have (M − K)−ij = (Mij −Kij)v
−
j .

4 Automaton approach

We provide in this section an algorithmic approach by automata for evaluating parameters of clumps for

the case of general arbitrary finite sets of words, a question that has never been previously considered in

the literature.
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For a set V = {v1, . . . , vr} where the right extension set from vi to vj is denoted by Ei,j we construct

a kind of “Aho-Corasick” automaton on the following set of words X

X = {vi · w | 1 ≤ i ≤ r and w ∈ {ε} ∪ Ei,j for some j}.

The considered automaton T is built on X with set of states Q = Pref(X) and start or initial state s = ε.

The transition function is defined (as in the Aho-Corasick construction) by

δ(p, x) = the longest suffix of px ∈ Pref(X).

According to what we want to count or recognize as a language we are led to consider several cases for

the set of terminal states:

– Occurrences of vi ∈ U . We define the set of terminal states Ti as

Ti = Pref(X) ∩ A⋆vi.

– Occurrences of U . To count all occurrences, we simply consider the set of terminal states

T = ∪r
i=1Ti = Pref(X) ∩ A⋆V.

– Clumps. We define the set of final states Tclumps in order to accept the language of words ending by

the first occurrence of a word in a clump by

Tclumps = V \ VA+.

Of course this construction does not give in general a minimal automaton. Remark that using different

marks for the different sets of terminal states permits to consider simultaneously the different parameters.

The automaton is complete and deterministic so that the translation to generating function is straightfor-

ward. We can easily derive from this automaton the generating function F (z, γ, τ, x1, . . . , xr) where xi

marks an occurrence of vi, γ marks the number of clumps, and τ the total number of letters inside the

clumps. Indeed, one has to mark some transitions in the adjacency matrix J according to some simple

rules.

– Any transition, labeled by a letter x ∈ A, is marked by zπ(x) where π(x) is a formal weight for x
(usually either the probability of x or 1 if we are considering enumerative generating functions).

– To count occurrences of the vi’s, we mark with the formal variable xi all transitions going to states

in Ti.

– For counting the number of clumps, we mark by γ the transitions going to states in Tclumps =
V \ VA+, that is states corresponding to first occurrences inside a clump.

– Finally, for the total length covered by clumps, we put a formal weight on the transitions going to

a state p ∈ T by taking into account the number of symbols between the last occurrence of a word

of V and the new one at the end of p. Let us define for a state p (corresponding to a word with an

occurrence of some word of V at the end) the function ℓ(p) as the maximal proper prefix q of p in

Pref(X) ∩ A⋆V if it exists or ε if there is no such prefix. Then we mark all transitions going to

such a state p ∈ T with τ |p|−|ℓ(p)|.
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We note zJ(γ, τ, x1, . . . , xr) = z(Ji,j)1≤i,j≤N the transition matrix of the automaton with the previously

defined formal labels on transitions, where N is the total number of states of the automaton. Assuming

that the initial state has index 1, we get to the generating function that counts the number of clumps and

the size of covered positions

F (z, γ, τ, x1, . . . , xr) = (1, 0, . . . , 0)

(

I − zJ(γ, τ, x1, . . . , xr)

)−1
( 1

...
1

)

. (9)

A formal proof of this result (omitted here) relies on the following properties. For a path s
h−→ p in the

automaton starting at the initial state s and ending on state p after reading a word h, we have: (a) p ∈ Ti if

and only if h ends with an occurrence of vi; (b) p ∈ Tclumps if and only if h ends with the first occurrence

of V inside a clump. Additionally, to properly consider the length of a clump, we have to prove that inside

a clump, the increase in length of the clump between two occurrences of V only depends on the state we

are reaching.

Note that the multivariate generating function can be obtained by a generalization of the Chomsky-

Scützenberger algorithm [5] and that it is possible to transform the automaton constructed for a Bernoulli

source to an automaton handling a Markov source of any order (see Nicodème et al. [15]).

Examples. Two automata are depicted in Figure 2. The first one (top) corresponds to the set V =
{bababa}, which gives Eu = {ba, baba} and X = {bababa, babababa, bababababa}. The second one

(bottom) corresponds to the set V = {u1 = aabaa, u2 = baab}, for which the matrix of right extension

sets E and set X are respectively

E =

(

baa + abaa b
aa aab

)

, and X = {aabaa, aabaab, aabaabaa, aabaaabaa, baab, baabaa, baabaab}.

5 Limit laws

We consider here two cases of practical importance.

(a) For clumps of a finite set of words let J(γ, τ) be the matrix associated to the automaton T described

in the preceding section where γ counts the number of clumps and τ the total size of texts covered

by clumps. Since each state s ∈ Tclumps that recognizes the beginning of a clump is recurrent (that

is, here, the final states are always attainable whatever the state we start from), the number of times

each of these states is reached in paths of length n (which is equivalent to take the nth power of J)

is Θ(n); we have a finite number of such states and therefore the number of occurrences of clumps

is Θ(n). The corresponding asymptotic normal limit law is a good approximation in the central

regime when the size of texts is large.

(b) When the size of the texts is relatively small in comparisons with the size of the words of the pattern,

we expect a Poisson law. We give in this section a precise and computable asymptotic Poisson-like

approximation for this case when considering clumps of a single word.
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A/B + + +
b a b a b a(γτ6x) b a(τ2x) b a(τ2x)

b

A +
+

+

+a

a b a a(γτ5x1)

a
b

a a(τ4x1)

b(τx2)

a
a(τ2x1)

B + +

+
b

a a b(γτ4x2) a a(τ2x1)
b(τx2)

a

b(τx2) b(τx2)

a

a
a

Fig. 2: Two examples of automata, for (top) V = {bababa} and (bottom) V = {v1 = aabaa, v2 = baab}.

The automata are complete and deterministic; however, for sake of clarity, all transitions labeled by a and b ending

respectively on state A and B are omitted (which corresponds to the initial state on the first figure). The sign ‘+’

indicates that the corresponding prefix (or, equivalently, state) ends with some occurrence of V . The double oval

attribute indicates the states where we know that we have entered a new clump. The formal weights on transitions (γ

for the number of clumps, τ for the total length of clumps, and xi’s for occurrences of vi’s) are displayed between

parenthesis.

The matrix J(γ, τ) is definite and positive, which entails the existence of a unique positive dominant

eigenvalue λ(γ, τ) for the matrix (see Gantmacher [7]). We write here λγ(r) = λ(r, 1) and λτ (s) =
λ(1, s) (according to the variable we fix to one).

As a consequence, we have the following theorem.

Theorem 2 Let OK
n and TK

n be the variables counting respectively the number of clumps and the total

number of positions covered by the clumps in random texts of size n. We have as n → ∞.

– For clumps of any finite set of words, if OK
n = Θ(n), in the Bernoulli and Markov models, we have

P

(

OK
n − µn

σ
√

n
≤ y

)

→ 1√
2π

∫ y

−∞

e−t2/2dt,

where

µ = E(OK

n ) = nλ′
γ(1) + O(1) and σ2 = Var(OK

n ) = n(λ′′
γ(1) + λ′

γ(1) − λ′
γ(1)2) + O(1).

A similar law occurs for the number of covered positions TK
n by replacing λγ by λτ .

– For clumps of one word (which are not powers of a letter), if OK
n = O(1), in the Bernoulli model,

there exists ρ > 1 and two polynomials P (z) and Q(z), where ρ, P (z) and Q(z) are computable,
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such that,

P(OK

n = k) =
πwρ|w|

Q(ρ)
× 1

k!

(

ρP (ρ) × n

(1 −K(ρ))Q(ρ)

)k

× ρ−n

(

1 + O

(

1

n

))

. (10)

Proof: (sketch)

Normal limit law. We consider the random variable OK
n . We have from Equation (9)

O(K)(z, r) = F (z, r, 1, . . . , 1) =
∑

n,i

P(OK

n = i)rizn.

Since the matrix J is definite positive, there is a positive real dominant eigenvalue λγ(r). This eigenvalue

corresponds to a dominant real positive singularity of order one 1/λγ(r) of modulus strictly smaller than

the moduli of the other singularities. Applying a Cauchy integral along a circle of radius R > 1/λγ(r)
and with an R smaller than the moduli of the other singularities provides an expression

φn(r) = [zn]O(K)(z, r) = c(r)
(

λγ(r)
)n

.

Using next as n tends to infinity the large powers Theorem of Hwang [11, 12] on φn(r) provides the

asymptotic normal law. See Nicodème et al. [15] for details.

Poisson law for rare words. We consider a long enough word w (typically of size Θ(log n)) so that

the number of occurrences is O(1). Let p be the maximal probability of letters of the alphabet. Taking

a Taylor expansion of O(K)(z, γ) in Equation (8) at γ = 0, and considering the kth Taylor coefficient

provide a rational generating function Hk(z) = [γk]O(K)(z, γ) given by the equation

Hk(z) =
R(z)U(z)(M(z) −K(z))k−1

(1 −K(z))k
=

πwz|w|
(

z − 1 + (1 −K(z))D(z)
)k−1

(1 −K(z))k(D(z))k+1
. (11)

Following Fayolle [6] and using Rouché theorem, there is a single root ρ of D(z) = πwz|w|+(1−z)C(z)
inside the disk |z| < 1/p. We claim that (1 − K(z)) has no roots inside this disk. If w 6= αi for α ∈ A,

we have D(1/p) < 0 for all values of p. We also have D(0) = πw > 0; therefore ρ is real positive.

Writing D(z) = Q(z)(1 − z/ρ) and P (z) = z − 1 + (1 −K(z))D(z) provides Equation (10). ✷

This Poisson-like limit has been observed for occurrences of one word by Régnier and Szpankowski [18]

in the Bernoulli and Markov models; we conjecture the same result for the count of clumps of one word

for rare words in the Markov model.

6 Conclusion

We provided in this article explicit formulas for the generating function counting simultaneously param-

eters of clumps of reduced set of words; these parameters are the number of occurrences of the clumps,

the total size or number of positions of the texts covered by the clumps and the number of occurrences

of words of the considered set. We also provide an algorithmic construction by automata that allows the

computation of this generating function in the general case of non-reduced sets of words.

An extension of our analysis could lead to a combinatorial analysis of tandem repeats or multiple repeats

that occur in genomes; large variations of such repeats are characteristic of some genetic diseases.
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As mentioned previously, providing explicit expressions in the Markov case for reduced sets requires

only some technicalities. On the contrary, finding explicit expressions for parameters of clumps in the

non-reduced case remains unsolved.

How does our approach extends to clumps of regular expressions? In this challenging case the star-

height theorem implies that we cannot in general find a finite set of words vi and a finite set of prefix

codes Ki with 1 ≤ i ≤ ℓ such that the language
⋃

1≤i≤ℓ vi(Ki)
⋆ describes the clumps.
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