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In this article, we give the multivariate generating function counting texts according to their length

and to the number of occurrences of words from a finite set. The application of the inclusion-

exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive
the result. Unlike some other techniques which suppose that the set of words is reduced (i.e.,

where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan
and Zeilberger (1999) already provided a Maple package treating the non-reduced case, without
giving an expression of the generating function or a detailed proof. We provide a complete proof
validating the use of the inclusion-exclusion principle. We also restate in modern terms the normal
limit laws theorems of Bender and Kochman (1993), emphasising on the underlying analytic mean

shifting method.

Categories and Subject Descriptors: F.2.2. [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems; G.2.1. [Discrete Mathematics]: Generating
functions, Counting problems

General Terms: Algorithms

Additional Key Words and Phrases: Word Statistics, Inclusion-Exclusion, Generating Functions,
Aho-Corasick Automaton

1. INTRODUCTION

Enumerating sequences with given combinatorial properties is rigorously formalized
since the end of the seventies and the beginning of the eighties by Goulden and
Jackson [Goulden and Jackson 1979; 1983] and by Guibas and Odlyzko [Guibas
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2 · Bassino, Clément, Fayolle and Nicodème

and Odlyzko 1981a; 1981b].

The former [Goulden and Jackson 1979; 1983] introduce a very powerful method
of inclusion-exclusion to count occurrences of words from a reduced set of words
(i.e., a set where no word is factor of another word of the set) in texts; this method
is characterized by counting texts where some occurrences are marked (other terms
are pointed or anchored) and then removing multiple counts of the same text (text
counted several times with different markings). We refer later to this by inclusion-
exclusion method. Goulden-Jackson counting is typically multivariate, a formal
parameter being associated to each word.

The latter [Guibas and Odlyzko 1981a; 1981b] introduce the notion of autocor-
relation of a word that generalizes to correlation between words, this notion being
implicit in Goulden and Jackson. Formal non-ambiguous manipulations over lan-
guages translate into generating functions; we refer to this later by formal language
method. Unlike Goulden and Jackson, Guibas and Odlyzko consider univariate
cases, like enumerating sequences avoiding a pattern, or sequences terminating with
a first occurrence of a pattern in a text (see also [Sedgewick and Flajolet 1996]).
Régnier and Szpankowski [Régnier and Szpankowski 1998] generalize the formal
language approach by a bivariate analysis for counting the number of matches of a
word in random texts (handling also a Markovian source on the symbol emission)
and prove a normal limit law. Régnier [Régnier 2000] extends this further to mul-
tivariate analysis and simultaneous counting of several words. See also the books
of Szpankowski [Szpankowski 2001] and Lothaire [Lothaire 2005]. Bourdon and
Vallée [Bourdon and Vallée 2002; 2006] apply the previous analysis to dynamical
sources. Prum et al. [Prum et al. 1995], Reinert and Schbath [Reinert and Schbath
1998], Reinert et al. [Reinert et al. 2000], and Roquain and Schbath [Roquain and
Schbath 2007] follow a more probabilistic approach.

Noonan and Zeilberger [Noonan and Zeilberger 1999] extend the inclusion-exclu-
sion method of Goulden and Jackson and solve the general non-reduced case (words
may be factor of other words), implementing corresponding Maple programs, with-
out however completely publishing the explicit result formulæ. Recently Kong [Kong
2005] applies the results of Noonan and Zeilberger for the reduced case to an asym-
metrical Bernoulli (also called memoryless) model for the generation of symbols. He
also compares the Goulden and Jackson method to the Régnier and Szpankowski
method, emphasizing the conceptual simplicity of the inclusion-exclusion approach.
It is however useful to note that the formal language approach provides access to
information that the inclusion-exclusion method does not, such as the waiting time
for a first match of a word or the time separating two matches of the same word
or of two different words (in both case eventually forbidding matches with other
words).

A third approach is possible by use of automata. Nicodème et al. [Nicodème et al.
2002] use classical algorithms to (1) build a marked deterministic automaton rec-
ognizing a regular expression and (2) translate into generating function (Chomsky-
Schützenberger algorithm [Chomsky and Schützenberger 1963]); this provides the
bivariate generating function counting the matches. A variation of the method ex-
tends the results to Markovian sources. This result applies immediately to a set
of words considered as a regular expression. Nicodème [Nicodème 2003] extends
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Counting occurrences for a finite set of words · 3

this to multivariate counting by taking the product of marked automata (with an
automaton and a mark associated to a word) and to sets of words with possible er-
rors 1. Notice that, when handling finite languages, step (1) of this approach may
be directly done by building the Aho-Corasick automaton, designed for pattern-
matching.

Each of the three above-mentioned approaches did develop quite independently
and partially unaware of each other.

Let A be the alphabet on which the words are written and U = {u1, u2, . . . , ur}
be a finite set (or pattern) of distinct words on the alphabet A. We note π(w) the
weight of the word w. The weight could be a formal weight over the commutative
monoid A∗ (i.e., π(ababab) = α3β3) or, the probability generating function in the
Bernoulli (also called memoryless) setting, π(w) = Pr(w) (the probability of w in
this model), or even π(w) = 1 for a uniformly weighted model over all words.

We set some more notations: given a r-row vector x = (x1, . . . , xr) of formal
variables and a r-row vector j = (j1, . . . , jr) of integers, we will denote by xj the
product

∏r
i=1 x

ji

i .
In this article we describe two approaches to compute the multivariate generat-

ing function FU counting texts according to their length and to their number of
occurrences of words from the set U :

FU (z,x) = F (z,x) :=
∑

w∈A∗

π(w)z|w|xτ (w), (1)

where τ (w) = (|w|1, . . . , |w|r), and |w|i is the total number of occurrences of ui in
w (with possible overlaps). Historically, research on counting occurrences for finite
cases considered separately the so-called “reduced” case, which is easier and where
no word of the pattern is factor of another word of the pattern; in the opposite or
“non-reduced” case, there is no conditions on the pattern. We focus on methods
which solve the problem in this latter case (as example the pattern U can contain
u1 = abbababa and u2 = baba although u2 is a factor of u1). Note that in the non-
reduced case, the count of matches that we consider here may exceed the count
of positions of the texts at which an occurrence terminates; in contrary, in the
reduced case, these two counts are identical. We aim at presenting for the general
counting problem a novel approach and a full proof of results partially in Noonan
and Zeilberger [Noonan and Zeilberger 1999].

In Section 2 we present an approach using the Aho-Corasick automaton that
solves the general (non-reduced) problem; we also consider the complexity of this
method. We present in Section 3 of the formal language approach of Régnier and
Szpankowski. We describe and prove our results in Section 4 using the inclusion-
exclusion principle. Algorithmic aspects are also considered in this section. We
handle the asymptotic multivariate limit law for counts in Section 5 providing also
an original application to multivariate normal limit laws in the Markovian contexts.

2. AUTOMATON APPROACH

We resort in this section to the well-known Aho-Corasick algorithm [Aho and Cora-
sick 1975; Crochemore and Rytter 2002] which builds from a finite set of words U

1Algorithms implemented in the package regexpcount of algolib, Algorithms Project, INRIA
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4 · Bassino, Clément, Fayolle and Nicodème

a (not necessarily minimal) deterministic complete automaton recognizing the lan-
guage A∗U . This automaton denoted by AU is the basis of many efficient algorithms
on string matching problems and is often called the string matching automaton.
This automaton is usually described by the trie of the set of words together with
a failure function. Let TU be the ordinary trie representing the set U , seen as a
finite deterministic automaton (Q, δ, ε, T ), where the set of states is Q = Pref(U)
(prefixes of words in U), the initial state is ε (denoting ε the empty word), the set
of final states is T = A∗U ∩ Pref(U) and the transition function δ is defined on
Pref(U) ×A by

δ(p, x) =

{
px if px ∈ Pref(U),

Border(px) otherwise,

where the failure function Border() is defined by

Border(v) =

{
the longest proper suffix of v which belongs to Pref(U) if defined,

or ε otherwise.

In the following we identify a word v ∈ Pref(U) with the node reached by reading
the letters of v and following the corresponding transitions on the tree seen as an
automaton, so that Border() defines also a map from the set Pref(U) on the set of
nodes of the tree. There are efficient O(|U|) algorithms [Aho and Corasick 1975;
Crochemore and Rytter 2002] linear both in time and space to build such a tree
structure and the auxiliary Border() function.

The matrix T(x) (with x a r-vector of formal variables) denotes the weighted
transition matrix of the Aho-Corasick automaton where the variable xi marks the
states accepting the word ui. The generating function is expressed as

F (z,x) =
∑

w∈A∗

π(w)z|w|xτ (w) =
(
1, 0, · · · , 0

)
(I − zT(x))−1




1
...
1



 , (2)

where π(w) can be viewed as the weight of the word w.

Example 1. Let U = {aab, aa}. Ordering the states of the automaton following
the lexicographical order, we have, with α = π(a) and β = π(b),

T(x1, x2) =





β α 0 0
β 0 αx1 0
0 0 αx1 βx2

β α 0 0



 ,

ǫ

a

aa

aaba

a
b

b

a
b

a

b

and

F (z, x1, x2) =
1 − α(x1 − 1)z

1 − z(αx1 + β − αβ(x1 − 1)z + α2βx1(x2 − 1)z2)
.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



Counting occurrences for a finite set of words · 5

For instance, the coefficient of [znxn1
1 xn2

2 ]F (z, x1, x2) is the probability in the
Bernoulli model (if α + β = 1) of having a text of size n with n1 occurrences
of aa and n2 occurrences of aab.

Complexity. Let L =
∑

u∈U |u| be the sum of the lengths of the words of U . We
first have to compute the Aho-Corasick automaton and this can be done classically
in time O(L) for a finite alphabet. The automaton can have up to L states. De-
noting by N the number of states of the Aho-Corasick automaton, the transitions
matrix T is of size N2, but in general this matrix is sparse: only N × CardA en-
tries are non-zero (since the automaton is complete and deterministic with CardA
transitions from each state).

So the complexity to obtain the counting multivariate generating function by
this approach is basically the one of inverting a relatively sparse matrix of the form
I − zT(x) all terms of which are linear polynomials in z with coefficients that are
monomials of the form α

∏
xεi

i (with α = π(ℓ) and ℓ ∈ A and the εi’s in {0, 1});
these coefficients correspond to the transition matrix of the automaton. The limit
of this approach is the fact that the size of the transition matrix can grow rapidly
if we consider many rather long words. In the two next sections, we adopt other
approaches which lead also to solve a system of equations, but then the size of the
system is r × r (where r is the number of words in U).

3. FORMAL LANGUAGES APPROACH

We briefly recall here the Régnier and Szpankowski [Régnier and Szpankowski 1998]
approach that is a basis for the analysis by formal languages of reduced sets of
words. Considering one word w, Régnier and Szpankowski use a natural parsing or
decomposition of texts with at least one occurrence of w, separating unambiguously
the texts as follows:

(1) the part of text from the beginning of the text to the first occurrence of the
word belongs to the Right language,

(2) if there are any other occurrences of the word, each two consecutive occurrences
are separated by a text from the Minimal language,

(3) the part of text from the last occurrence to the end of the text belongs to the
Ultimate language.

Moreover, there is a language of texts without any occurrence of the considered
word w. Régnier [Régnier 2000] further extended this decomposition approach to
a reduced set of words.

We follow here the presentation of Lothaire [Lothaire 2005, Chapter 7].

Definition 3.1. Right, Minimal, Ultimate and Not languages. Let V = {v1, . . . , vr}
be a reduced set of words.

– The “Right” language Ri associated to the word vi is the set of texts

Ri = {r | r = e · vi and there is no υ ∈ V such that r = xυy with |y| > 0}.
– The “Minimal” language Mij leading from a word vi to a word vj is the set of

texts

Mij = {m | vi·m = e·vj and there is no υ ∈ V such that vi·m = xυy with |x| > 0, |y| > 0}.
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



6 · Bassino, Clément, Fayolle and Nicodème

– The “Ultimate” language completing a text after an occurrence of the word vi is
the set of texts

Ui = {u | there is no υ ∈ V such that vi · u = xυy with |x| > 0}.
– The “Not” language is the set of texts where no word from V occurs

N = {n | there is no υ ∈ V such that n = xυy}.

The notations R,M, U and N refer here to the Right, Minimal, Ultimate and Not
languages of a single word.

We consider as example the word w = ababa; in the following texts, the under-
lined words belong to the set M; the overlined text does not since the occurrence
represented in bold faces is an intermediate occurrence.

ababaaaaaababa ababababbbababa abababa.

Considering the matrix M such that Mij = Mij , we have, with δij = 1 if and only
if i = j,

⋃
k≥1

(
Mk
)
i,j

= A⋆ · wj + Cij − δijε, Ui · A =
⋃

j

Mij + Ui − ε, (3)

A · Rj − (Rj − wj) =
⋃

i wiMij , N · wj = Rj +
⋃

i

Ri (Cij − δijε) . (4)

If the size of the texts is counted by the variable z and the occurrences of the words
v1, . . . , vr are counted respectively by x1, . . . , xr, we get the matrix equation for the
generating function of occurrences

F (z, x1, . . . , xr) = N (z) + (x1R1(z), . . . , xrRr(z))
`

I−M(z, x1, . . . , xr)
´−1

 U1(z)

...
Ur(z)

!

. (5)

In this last equation, we have Mij(z, x1, . . . , xr) = xjMij(z) and the generating
functions Ri(z), Mij(z), Uj(z) and N (z) can be computed explicitly from the set
of Equations (3) and (4).

In particular, when considering the Bernoulli weighted case where the prob-
abilities of the letters sum up to 1 and a single word w = w1w2 . . . w|w| with

π(w) = Pr(w) =
∏|w|

i=1 pwi
, we have the set of equations

R(z) =
π(w)z|w|

D(z)
, M(z) = 1 +

z − 1

D(z)
, U(z) =

1

D(z)
, N (z) =

C(z)

D(z)
, (6)

where D(z) = π(w)z|w| + (1 − z)C(z). Finally, accordingly to general principles
(see [Flajolet and Sedgewick 2009]), we use the combinatorial mapping from A⋆ =
N + RM⋆U to

F (z, x) =
1

1 − z + π(w)z|w|
1 − x

x+ (1 − x)C(z)

=
∑

n,k

fn,kx
kzn. (7)

In this last equation, fn,k is the probability that a text of size n has exactly k
occurrences of w.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



Counting occurrences for a finite set of words · 7

In the case of a single word, Régnier and Szpankowski prove a gaussian limit law
when the number of occurrences is Θ(n), a Poisson-like law when the number of
occurrences is O(1) and they provide a large deviation result.

4. INCLUSION-EXCLUSION METHOD APPLIED TO WORD COUNTING

This section presents an approach that follows the same lines as [Goulden and Jack-
son 1983] but extended to the non-reduced case. See also [Noonan and Zeilberger
1999] that provides Maple scripts for this non-reduced case.

We aim to count texts according to their length and to their number of occur-
rences of words from a set U . A text where some occurrences of words from U are
marked is decomposed combinatorically as a sequence of letters from A and clusters
(set of overlapping and marked occurrences of U , noted LU ; see Definitions (4.2)
and (4.3) in the next section). Each text is counted several times depending on
which occurrences are marked (each text is counted as many times as the number
of possible configurations of marking of occurrences). This multiple counting is
eliminated by use of the inclusion-exclusion principle (see among others [Goulden
and Jackson 1983], [Szpankowski 2001], and [Flajolet and Sedgewick 2009, III.6.4]
for details). This gives an elegant solution to the problem.

4.1 Intuitive approach to counting by inclusion-exclusion

The core of the probabilistic or set theoretic point of view on the inclusion-exclusion
principle relies on the equality (for instance for sets A and B)

Card(A ∪B) = Card(A) + Card(B) − Card(A ∩B),

which can be further generalized into an alternative sum for a family (Ai)1≤i≤r of
subsets. However this formulation is sometimes difficult (although of course correct)
when considering complex examples.

In this paper we use a symbolic alternative based on multivariate generating
functions which is technically easier.

Camelus Genus. We consider an elementary example illustrating the symbolic
exclusion-inclusion method: let P be the set of Camelus Genus (that is camel and
dromedary). Each one is of size one (we count individuals), and we want to count
the number of humps (using a formal variable u in the generating function). In a
very standard manner (see [Flajolet and Sedgewick 2009]), we get

P =

{
,

}
, P (z, u) = z(u+ u2).

Now consider the distinguished set Q defined as the set of objects of P in which each
elementary configuration (hump) is either distinguished or not (we mark humps
with variable v in the generating function)

Q =

{
, , , , ,

}

Q(z, v) = z(v + 1 + v2 + v + v + 1) = z(2 + 3v + v2) = P (z, 1 + v).

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



8 · Bassino, Clément, Fayolle and Nicodème

aaaaa aaaaa

Fig. 1. Two clusters of a text aaaaa with respect to the word aaa, corresponding respectively to
decompositions aaa · a · a (left) and aaa · aa (right). Distinguished occurrences are represented
with black rules.

So if Q(z, v) is easy to obtain, then we have P (z, u) = Q(z, u − 1) by a simple
substitution v 7→ u − 1. Hence the symbolic inclusion-exclusion principle can be
summarized in the following way: counting objects that contain an exact number
of pattern occurrences is reduced to counting objects that contains the pattern at
distinguished places (the latter being usually a simpler problem).

Clusters: one word example. To make things more precise, let us consider the
case of counting occurrences of one word w. One can look at all possibilities of
distinguishing occurrences of a given text. Note that occurrences occur in “clusters”
(a term which be made more precise later), that is occurrences of w which overlap.
To build a cluster, we first distinguish an occurrence (the first one), and from this
occurrence, add any non empty word from the autocorrelation set to get the next
occurrence (overlapping the first one), then we can repeat this process again and
again. Note that the same underlying word can give rise to several such clusters.
For instance if w = aaa, the word aaaaa can be decomposed as aaa ·a ·a, or aaa ·aa
which are both valid.

More formally, a text with distinguished occurrences can be described according
to the combinatorial description (where Seq denotes a sequence of object of finite
length greater or equal to zero)

Q = Seq(A) · Seq
(
w · Seq (C \ ε) · Seq(A)

)
.

The expression w · Seq (C \ ε) describes the structure of a cluster of overlapping
occurrences. This specification is translated thanks to general principles (Seq(L) 7→
(1 − L(z, v))−1 for instance) and yields the bivariate generating function

Q(z, v) =
∑

Texts t

∑

all configurations of
distinguished occurrences of w in t

π(t)z|t|v# distinguished occurrences

=
1

1 − zπ(A)

1

1 − π(w)vz|w|
1

1 − v(C(z) − 1)

1

1 − zπ(A)

=
1

1 − zπ(A) − vπ(w)z|w|

1 − v(C(z) − 1)

.

Then thanks to the symbolic exclusion-inclusion principle, denoting |t|w the number
of occurrences of w in t, we get directly

P (z, u) =
∑

t∈A∗

π(t)z|t|u|t|w = Q(z, u− 1).

Example 2. Consider the word w = aaa and the binary alphabet A = {a, b},
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



Counting occurrences for a finite set of words · 9

and pose π(a) = π(b) = 1 (so that we get the enumerative generating function, i.e.,
any word has weight 1). Then C(z) = 1 + z + z2, and one gets

Q(z, v) =
1

1 − 2z − vz3

1 − v(z + z2)

, P (z, u) = Q(z, u− 1).

Our goal is to generalize this process to any finite set of words.

4.2 Preliminary

We formally state the generating function in terms of occurrence positions.

Definition 4.1 Occurrence positions set. The occurrence positions set of a word
u in a (longer) word w is the set of final positions of occurrences of u in w (indices
start at 1 in w):

Occ(u,w) =
{
p ∈ {|u|, |u| + 1, . . . , |w|}

∣∣ w[(p−|u|+1) . . . p] = u
}
.

With this definition, we can rewrite the counting generating function of Equa-
tion (1) on p. 3

F (z,x) =
∑

w∈A∗

π(w)z|w|
r∏

i=1

x
Card(Occ(ui,w))
i .

Note that the occurrences of two distinct words ending at the same position are
both counted. We need here the following definitions.

Definition 4.2 Clustering-word. A clustering-word for the set U = {u1, . . . , ur}
is a word w ∈ A∗ such that any two consecutive positions in w are covered by the
same occurrence in w of a word u ∈ U . The position i of the word w is covered by a
word u if u = w[(j−|u|+1) . . . j] for some j ∈ {|u|, . . . , |w|} and j−|u|+1 ≤ i ≤ j.
The language of all clustering-words for a given set U is noted KU .

Definition 4.3 Cluster. A cluster of a clustering-word w in KU is a set of words
with their occurrence positions { Su ⊂ Occ(u,w) | u ∈ U } which covers exactly w;
a cluster is therefore a subset of the occurrences in the text, with their positions.
Moreover, every two consecutive positions i and i+ 1 in w are covered by at least
one same occurrence of some u ∈ U . More formally

∀i ∈ {1, . . . , |w|−1} ∃u ∈ U , ∃ p ∈ Su such that p− |u| + 1 ≤ i < i+ 1 ≤ p.

The set of clusters with respect to clustering-words built from some finite set of
words U is noted LU . We note LU (w) the subset of LU corresponding to the
clustering-word w ∈ KU . For a cluster C = {Su | u ∈ U}, we also define w(C) the
corresponding (unique) clustering-word and |C|u the number of marked occurrences
of the word u in the cluster, i.e.,

|C|u = CardSu.

Example 3. Let U = {baba, ab} and w = abababa, so that w ∈ KU . We have

LU (w) =
{{

Sab = {2, 4, 6},Sbaba = {5, 7}
}
,
{
Sab = {2, 6},Sbaba = {5, 7}

}
,

{
Sab = {2, 4},Sbaba = {5, 7}

}
,
{
Sab = {2},Sbaba = {5, 7}

}}
.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



10 · Bassino, Clément, Fayolle and Nicodème

Definition 4.4 Factor relation for occurrences. An occurrence qu of a word u is
factor of an occurrence qu′ of a word u′ in a cluster C if

—the word u is a factor of the word u′

—and denoting pos(qv) the position of the occurrence qv of the word v in the
clustering-word

0 ≤ pos(qu′) − pos(qu) ≤ |u′| − |u|
.

Definition 4.5 Skeleton of a cluster or reduced cluster. Given a cluster C, letQ =
{q1, . . . , qj} be the set of occurrences of words of the cluster. The factor relation
induces a partial order on the set Q:

qx ≺ qy if qx is factor of qy (qx, qy ∈ Q).

Comparing by pairs all the elements of Q, we can remove any element that is smaller
than another one; this gives a reduced set of occurrences Q, that defines a reduced
cluster of the original cluster. Then one has

Lemma 4.6. Given a cluster C with clustering word w, let C be a reduced cluster
as described in Definition (4.5). We have the following properties.

(1 ) C is uniquely defined.

(2 ) The clustering word of C is w.

(3 ) The occurrences {w1, . . . , wk} in C can be increasingly ordered with respect to
their positions such that each occurrence overlap the following one, when it
exists. This ordering is unique.

Proof. The removal process described in Definition (4.5) is independent of the
order along which the pairs have been taken. This proves unicity. To prove the
second assertion, let us start from the cluster C and suppose that this cluster is not
reduced. When removing the first factor occurrence ui1 , we know that there exists
a word ux such that ui1 ≺ ux or equivalently that ui1 is factor of ux. This implies
first that removing ui1 cannot disconnect the cluster and second that if the last
letter of ux is the last letter of w or if the first letter of ux is the first letter of w,
this will remain unchanged after removing ui1 . Therefore the clustering-word of the
cluster obtained after removing ui1 is w. Iterating this reasoning proves the second
assertion since a cluster contains a finite number of words. The last assertion is
proved by removing iteratively the leading occurrence of the cluster and numbering
the occurrences correspondingly; the unicity in the choice of the leading term comes
from the fact there are no factor occurrences.

It will be important in the following that the reduced cluster is unique. We will
call also this cluster skeleton of the original cluster.

Example 4. In Example 3, the cluster C =
{
Sab = {2, 4, 6},Sbaba = {5, 7}

}

gives rise to the reduced cluster C =
{
Sab = {2},Sbaba = {5, 7}

}
. Note that in this

particular case C is the skeleton of all clusters of LU (w).
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In the non-reduced case, a word ui may occur within some other word from U .
In order to properly generate the clusters we introduce the notion of right extension
of a pair of words (h1, h2). This notion is a generalization of the correlation set of
two words h1 and h2 but differs in that:

(i) overlapping is not allowed to occur at the beginning of h1.

(ii) extension has to add some letters to the right of h1.

More formally we have

Definition 4.7 Right extension set. The right extension set of a pair of words
(h1, h2) is

Eh1,h2 = { e | there exists e′ ∈ A+ such that h1e = e′h2 with 0 < |e| < |h2|}.
Note that, when h1 and h2 have no factor relation, the right extension set Eh1,h2 is
the correlation set of h1 to h2. Moreover, when h1 = h2, the set Eh1,h2

is the strict
autocorrelation set of h1 (the empty word does not belong to Eh1,h2

).
One can also define the right extension matrix of a vector of words u = (u1, . . . , ur)

E =
(
Eui,uj

)
1≤i,j≤r

.

Example 5. We give some examples and their right extension matrices.

(1) For u = (ab, aba), we have E =

(
∅ ∅
b ba

)
.

(2) For u = (a3 = aaa, a7 = aaaaaaa), we have

E =

(
a+ aa a5 + a6

a+ aa a+ a2 + a3 + a4 + a5 + a6

)
.

(3) For u = (aa, ab, ba, baaab), we have E =





a b ∅ ∅
∅ ∅ a aaab
a b ∅ ∅
∅ ∅ a aaab



.

4.3 Generating function of clusters

We define the generating function ξ(z, t) of the set of clusters LU on U where the
length of the corresponding clustering word is marked by the formal variable z and
each marked occurrence of ui in clusters is marked by the formal variable ti. The
set of all possible clusters is the disjoint union over all clustering-words w of the set
of all the clusters built from w, hence

ξ(z, t) =
∑

w∈KU

∑

C∈LU (w)

z|w|π(w)t
|C|

u1
1 . . . t

|C|
ur

r .

4.3.1 Basic decomposition. We establish a bijection between clusters and paths
in a graph to derive an expression for the generating function ξ(z, t) of clusters in
LU .

Definition 4.8 Right extension graph. Let U = {u1, . . . , ur}; the right extension
graph GU = (V,E) of the set of words U is the directed labeled graph such that:

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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(a) the set of vertices is V = {ε} ∪ U ;

(b) the set of edges is E = {ε u−→ u | u ∈ U} ∪ {u y−→ u′ | u, u′ ∈ U and y ∈
E(u, u′)}.

See an example on Figure 2 with U = {aa, ab, ba, baaab}.
We now prove a key bijection between clusters and “decorated” paths in the

extension graph.

Theorem 4.9. There exists a bijection between the set of clusters C and the set
of pairs (c,Fc) where c is a path in G (starting at ε) and Fc is a k-tuple (k is the
length of the path c in terms of number of edges traversed) of sets of occurrence
positions.

Proof. If the set U is reduced (i.e., without factor relations) then a cluster is
completely described by a path in this graph starting at ε. When the set is not
reduced, this is no longer true. We need to associate along the path the possible
occurrences of U within the last label read.

We partition the set of clusters with respect to the set of reduced clusters. For a
given reduced cluster R, let

GR = {C; C = R},
be the set of clusters having reduced cluster R.

For each reduced cluster R, we know by the last assertion of Lemma (4.6) that
there is a unique ordering of occurrences (w1, . . . , wk) ∈ Uk. The same assertion
states that for each wi with i ∈ {1, . . . , k − 1} there exists v and yi+1 with |v| > 0
and |yi+1| > 0 such that wi · yi+1 = v · wi+1. This corresponds to a unique path

ε
y1−→ w1

y2−→ w2
y3−→ . . .

yk−→ wk in the right extension graph, which implies an
injection from the set of reduced clusters into the set of paths of the right extension
graph.

Reciprocally, considering any path c = y1 · y2 . . . yk in the graph G
ε

y1−→ w1
y2−→ w2

y3−→ . . .
yk−→ wk,

where wi ∈ U , so that while reading transition yj we get an occurrence of a word of
U together with its position (which is just

∑
i<j |yj |); this follows from the definition

of the right extension sets, all transitions yj , but y1, being such extensions and y1
being the occurrence ui1 . Therefore any path c corresponds to a unique reduced
cluster R.

We consider now the factor occurrences. Each set in Fc is composed of positions
of occurrences of words from U that end within the label of the corresponding
edge of the path. If R is a reduced cluster where there are h potential or flip-
flop marked factor occurrences, there are |GR| = 2h possible configurations, each
one being unique. There are also h possible factor occurrences induced by right
extensions when going through the path c corresponding to R; this gives 2h different
configurations. Going through the edges of the path c provides also the positions
of the factor occurrences, and therefore to each pair (c,Fc) corresponds a cluster
C ∈ GR. This completes the proof.

It remains to translate this combinatorial description of clusters to a formal de-
scription in terms of generating functions. We introduce hereafter two notations
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baaab

ǫ ab

aa

ba

baaab

ab

aa

aaab

a

aaab

b

ba

b

a
a

a

E =

0

B

B

@

a b ∅ ∅
∅ ∅ a aaab

a b ∅ ∅
∅ ∅ a aaab

1

C

C

A

, E =

0

B

B

@

zπ(a) zπ(b) 0 0

0 0 zπ(a) z4π(aaab)(1 + tba)(1 + taa)2(1 + tab)
zπ(a) zπ(b) 0 0

0 0 zπ(a) z4π(aaab)(1 + tba)(1 + taa)2(1 + tab)

1

C

C

A

.

Fig. 2. Graph G for U = {aa, ab, ba, baaab} (top). On the bottom, the right extension matrix
E (rows and columns are ordered as in aa, ab, ba, baaab). We remark that several paths may

correspond to the same labelling. For instance the word baaab corresponds to different paths

ε
baaab
−→ baaab, and ε

ba
−→ ba

a
−→ aa

a
−→ aa

b
−→ ab

with different skeletons.

u◦ and E in order to express the formal equivalent of u and E . Basically, when
a word um is factor of a word ui, it may be marked or remains unmarked during
the marking process; this induces a term (1 + tm) in the associated multivariate
generating function.

Definition 4.10 Inclusion-exclusion formal marking. Let u = (u1, . . . , ur) be a
vector of r words, the formal marking of u denoted by u◦ has its i-th coordinate
element equal to

u
◦
i = π(ui)z

|ui|
∏

m6=i

(1 + tm)|ui|m ,

where |ui|m is the number of occurrences of the word um in the word ui. The formal
marking of the matrix of right extension sets E is the matrix E, where the element
of indices (i, j) is

Ei,j =
∑

e∈Ei,j

π(e)z|e|
∏

m6=j

(1 + tm)min(|uie|m−|ui|m,|uj |m). (8)

There is a need of two different definitions since when considering the right extension
matrix we are only counting factor occurrences that begin and finish within the last
occurrence considered (uj in the definition) and also finish inside the extension; in
contrary, when considering a single word u we consider all factor occurrences, and
we note this particular case by the symbol ◦ in exponent.
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Example 6. We develop further the Example 5 p.11 by taking π(a) = π(b) = 1.

(1) For u = (ab, aba), we have E =

(
0 0
z z2(1 + t1)

)
.

(2) For u = (a3 = aaa, a7 = aaaaaaa) (see Figure 2), the matrix E is equal to
(
z + z2 (1 + t1)

5(z5 + z6)
z + z2 (1 + t1)z + (1 + t1)

2z2 + (1 + t1)
3z3 + (1 + t1)

4z4 + (1 + t1)
5(z5 + z6)

)
.

Here the crucial point is to only consider which factor occurrences are within the
last occurrence read (hence the min operator in Equation (8)) and finish inside
the extension.

(3) For u = (aa, ab, ba, baaab), we have

E =





z z 0 0
0 0 z z4(1 + t1)

2(1 + t2)(1 + t3)
z z 0 0
0 0 z z4(1 + t1)

2(1 + t2)(1 + t3)



 .

With these notations, we get to the following proposition.

Proposition 4.11. The generating function ξ(z, t) of clusters built from the set
U = {u1, . . . , ur} is given by

ξ(z, t) = u
◦∆(t) ·

(
I − E∆(t)

)−1

·




1
...
1



 , (9)

where u = (u1, . . . , ur), t = (t1, . . . , tr), and the matrix ∆(t) is the r × r diagonal
matrix with entries t1, . . . , tr.

Proof. The matrix E is the formal expression of the transition matrix of the
graph G where the vertex ε and its corresponding edges have been removed. Some
occurrences of the word ui (for each i ∈ {1, . . . , n}) are marked with the formal
variables ti in the labels of G. More precisely, a word occurrence ui obtained when
visiting a vertex ui is marked by the formal variable ti (and appears in the calculus
through the diagonal matrix ∆(t) in (9)); in contrary, a factor occurrence can be
marked or not (this does not change the path in the graph), hence providing a term
of the form

∏
m6=i(tm +1)k where k is the number of possible new occurrences. The

first transition from ε to any u ∈ U is handled similarly. So the paths with k + 1
transitions in G starting from ε have generating function

u
◦∆(t) ·

(
E∆(t)

)k

·




1
...
1



 .

Finally we use the quasi-inverse notation
∑∞

j=0

(
E∆(t)

)j
=
(
I − E∆(t)

)−1
to get

the result.

4.3.2 Applications. We examine special cases where we apply Proposition 4.11.
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Reduced set. When the set U is reduced, that is, no word of U is factor of another,
the clusters are uniquely defined by a path in the previous graph G. So u◦ and E

do not depend on any of the variables ti’s. Hence in Equation (9), the variables ti’s
appear only inside ∆(t). This is another formulation of the result of Goulden and
Jackson [Goulden and Jackson 1983].

One word. For U = {u}, we get

ξ(z, t) =
tu

1 − tE
=
tπ(u)z|u|

1 − tĉ(z)
=

tπ(u)z|u|

1 − t(c(z) − 1)
, (10)

where c(z) and ĉ(z) respectively are the autocorrelation polynomial and the strict
autocorrelation polynomial (empty word ε omitted) of u.

Two words. For a set of two words {u1, u2}, we can compute explicitly ξ(z, t1, t2)
by the Cramer’s rule,

ξ(z, t1, t2) =
t1u1 + t2u2 − t1t2

(
u1

[
E2,2 − E1,2

]
+ u2

[
E1,1 − E2,1

])

1 − t2E2,2 − t1E1,1 + t1t2
(
E1,1E2,2 − E2,1E1,2

) , (11)

and this expression is computable from the right extension matrix of {u1, u2}.

Example 7. Let u = (a3, a7). Recall the right extension matrix (see Example
6(2)) is:

E =

(
a+ a2 a5 + a6

a+ a2 a+ a2 + a3 + a4 + a5 + a6

)
.

If we consider π(w) = 1 for all words w (the unweighted “enumerative” model where
each word has weight 1), we have u◦ =

(
z3, (1 + t1)

5z7
)
;

E1,1 =z + z2, E1,2 = (1 + t1)
5(z5 + z6), E2,1 = z + z2,

E2,2 =(1 + t1)z + (1 + t1)
2z2 + (1 + t1)

3z3 + (1 + t1)
4z4

+ (1 + t1)
5(z5 + z6),

By substituting these values in Equation (11), the generating function ξ(z, t1, t2)
can be written as

z3
“

t2 (1 + t1)4 z4
− t2t1 (1 + t1) z3

− t2t1 (1 + t1)2 z2
− t2t1 (1 + t1) z + t1

”

1 − z3t2(1 + t1)
“

(1 + t1)3 z3 +
“

t1
3 + 3 t1

2 + 2 t1 + 1
”

z2 +
“

t1
3 + 2 t1

2 + t1 + 1
”

z + 1 − t1
2 − 2 t1

”

− (t2t1 + t2 + t1) (z2 + z).

4.4 Generating function of texts

A text is decomposed combinatorically as a sequence of letters from A (with gener-
ating function A(z)) and clusters (or more rigorously of clustering words) from LU

(with generating function ξ(z, t)). The multivariate generating function F (z,x) of
Equation (1) p.3 is derived by substituting ti 7→ xi − 1 for i ∈ {1, . . . , r} in each
(A(z) + ξ(z, t))k, where k is the number of combinatorial objects in the decompo-
sition.

To summarize, we have the following theorem.

Theorem 4.12. Let u = (u1, . . . , ur) be a finite vector of words in A∗ and E
the associated right extension matrix. The multivariate generating function F (z,x)
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counting texts the length of which is counted by the variable z and where the occur-
rences of ui are counted by the vector of formal variables x = (x1, . . . , xr) is

F (z,x) =
1

1 −A(z) − ξ(z,x − 1)
, (12)

where A(z) =
∑

σ∈A π(σ)z is the generating function of the alphabet and ξ(z, t) is
defined in Equation (9).

Proof. The proof relies on two main points. On one hand, the generating func-
tion ξ(z, t) counts all the clusters (see Proposition 4.11 in Section 4.3.1). On the
other hand, the inclusion-exclusion principle yields the final result by the substitu-
tions ti 7→ xi − 1.

The application of the standard techniques of analytic combinatorics (see [Fla-
jolet and Sedgewick 2009]) to the multivariate generating function F (z,x) gives
access to many statistics (e.g. mean, variance, covariance...).

4.5 Algorithmic construction of the Right Extension Sets

We present here a general method in order to compute the generating function
ξ(z, t). We compute the r × r right extension matrix E (where r is the number of
words in U) with the help of the Aho-Corasick automaton AU . We remark that the
coefficients of the matrix are polynomials whose degree (in any variable) is bounded
by maxu∈U |u| − 1. Here the r × r matrix is smaller and more compact than the
linear system obtained by applying the Chomsky-Schützenberger algorithm on the
Aho-Corasick automaton of Section 2 which has size O((

∑
u∈U |u|)2) since there

are O
(∑

u∈U |u|
)

states in the automaton.
In the following, we provide an algorithm derived from the Aho-Corasick automa-

ton (represented by a failure function) which computes the multivariate matrix E

and the vector u◦ in time O(r2×s+
∑

u∈U |u|) where r is the cardinality of U and
s is the size of the longest suffix chain2 of a word u ∈ U .

First we compute an auxiliary function which associates to any prefix w of the
set U a vector fw = (f1(w), . . . , fr(w)) defined by

fi(w) =
∑

v
w·v=ui

π(v)z|v|
∏

m6=i

(1 + tm)|ui|m−|w|
m .

Informally, given a particular left “context” w (a word in Pref(U)), we examine
the set of words v such that wv is a word ui of U , and we compute the number
of new occurrences of um (m 6= i and marked by (1 + tm)) added by considering
the extension v to w. We remark that u◦ = (f1(ε), . . . , fr(ε)) where ε is the empty
word. Two examples are given on Figure 3. The Aho-Corasick construction is
useful here because, intuitively, first it enables us, given a prefix w, to consider the
set of suffixes v such that wv is a word of U (since they correspond to terminal
states attainable from the current state), and secondly, the suffix links give access
to the suffixes of any word (and so record possible correlations between words of
U).

2The suffix chain of u ∈ U is the sequence (u1 = u, u2 = Border(u1), u3 = Border(u2), . . . , us =
Border(us−1) = ε).
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0
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3

4

5

6

7

a

a

a

a

a

a

a

f(ε) = (z3, z7(1 + t1)
5)

f(a) = (z2, z6(1 + t1)
5)

f(aa) = (z, z5(1 + t1)
5)

f(aaa) = (1, z4(1 + t1)
4)

f(aaaaaa) = (0, z(1 + t1))

f(aaaa) = (0, z3(1 + t1)
3)

f(aaaaa) = (0, z2(1 + t1)
2)

f(aaaaaaa) = (0, 1)

a

a
b

b

a

a

a

b

f(ε) = (z2, z2, z2, z5(1 + t1)2(1 + t2)(1 + t3))

f(baaab) = (0, 0, 0, 1)

f(baaa) = (0, 0, 0, z(1 + t2))

f(baa) = (0, 0, 0, z2(1 + t2)(1 + t1))

f(ba) = (0, 0, 1, z3(1 + t2)(1 + t1)2)

f(b) = (0, 0, z, z4(1 + t2)(1 + t1)2(1 + t3))

f(aa) = (1, 0, 0, 0)

f(ab) = (0, 1, 0, 0)

f(a) = (z, z, 0, 0)

Fig. 3. Illustration for the computation of the functions f = (fi)
r
i=1 for U = {a3, a7} (top) and

U = {aa, ab, ba, baaab} (bottom). The Aho-Corasick automata are represented together with their

failure functions (dotted arrow) and the value of f(w) for w ∈ Pref(U) in both cases.
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The “time complexity” (measured as the number of updates of the fi(w)’s) of
the following algorithm is O(r ×∑u∈U |u|).

Init(AU )

1 for i← 1 to r do

2 fi(ui)← 1
3 for w ∈ Pref(U) by a postorder traversal of the tree do

4 for i← 1 to r do

5 for ℓ ∈ A such that w · ℓ ∈ Pref(ui) do

6 fi(w)← π(ℓ)zfi(w · ℓ)
Q

j 6=i
(1 + tj)

Juj suffix of w · ℓK

7 return (fi)1≤i≤r

One then can show that

Ei,j =
∑

v suffix of ui

v 6∈{ε}∪U

fj(v).

So the matrix Eu can be computed thanks to the following algorithm.

Build-Extension-Matrix(AU )

1 ⊲ Initialize the matrix (Ei,j)1≤i,j≤r

2 for i← 1 to r do

3 for j ← 1 to r do

4 Ei,j ← 0
5 ⊲ Compute the maps (fi(w)) for i from 1 to r and w ∈ Pref(U)
6 (fi)1≤i≤r ← Init(AU )
7 ⊲ Main loop
8 for i← 1 to r do

9 v ← ui

10 do v ← Border(v)
11 for j ← 1 to r do

12 if fj(v) 6= 1 then

13 Ei,j ← Ei,j + fj(v)
14 while v 6= ε

15 return E

The main loop is iterated O(s × r2) where r is the number of words and s is
the length of the longest suffix chain. Hence the total time complexity (considering
the number of operations on polynomials such as the fi,j ’s or the entries of E) is
O(r × L + s × r2), where r is the number of words, L is the total length of words
in U and s is the length of the longest suffix chain.

5. ASYMPTOTIC LIMIT LAWS

In this section, we review and reshape some general results from Bender and
Kochman [Bender and Kochman 1993] concerning central limit theorems for oc-
currence statistics. Our contribution is twofold: first we propose to use an Aho-
Corasick automaton (usually smaller than the de Bruijn graph proposed in [Bender
and Kochman 1993]); second, we make use of nowadays standard notions like cor-
relations and autocorrelations on words, and right extensions on words that we
introduce in this paper.
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Using the large power theorem of [Hwang 1998] that applies in dimension one,
[Nicodème et al. 2002] prove a normal limit law for number of occurrences of reg-
ular expressions in texts under Bernoulli and Markovian model. This result has
been extended to dynamical sources by [Bourdon and Vallée 2006]. Bender and
Kochman [Bender and Kochman 1993] state central and normal limit theorems
for occurrences of generalized words in any finite dimension, with possibly some
forbidden generalized words in random texts under a Bernoulli model (where a
generalized word of length ℓ is a set of words of length ℓ). The overall number of
words considered is always finite. Recall that in the following a pattern is always a
finite set of finite words.

The main asymptotic results of Bender and Kochman state limit laws for a set of
patterns, when conditioning on observed counts of another set of patterns. Their
proofs rely importantly on previous works of Bender et al in a series of articles [Ben-
der 1973; Bender and Richmond 1983; Bender et al. 1983a].

We skip in this section some proofs that would closely follow the paths of the
series of articles of Bender et al.. In particular, Bender and Kochman use a de Bruijn
graph of high enough order, and large powers of the associated weighted adjacency
matrix; we claim that it is equivalent to use the adjacency matrix associated to
the recurrent component of any deterministic automaton accepting the language
considered (and in particular the Aho-Corasick automaton).

A very nice feature of Bender et al. results is that the limiting normal law may be
proved by enumerating a finite number of cases; in the context of words counting,
this means that, by considering a finite number of (short) texts, it is possible to
deduce a multivariate normal limit law. Disproving a normal limit law of given
order by this method is however more difficult.

We will consider in Section 5.4.1 the conditioned case (where we can constrain a
part of the occurrence counts to have a certain average value) that, as an interest-
ing application, provides an asymptotic limit law under an asymptotic Markovian
model.

We define now the lattice introduced by Bender et al. We consider next the
unconditioned case for which nice closed formulas are available.

5.1 Lattices of differences of word counts

Let U = W0 ∪ W1 ∪ . . . ∪ Wd be a finite union of patterns. The Aho-Corasick
automaton recognizing U can be decomposed into two subautomata: the initial
subautomaton and the recurrent subautomaton. Let C(x) be the adjacency matrix
of the subautomaton obtained by considering only the states in the recurrent part
of the Aho-Corasick automaton. Note that the Aho-Corasick is not necessarily a
minimal automaton.

5.1.1 Primitivity. By definition, the matrix C(x) is primitive if there exists an
integer j such that all entries of Cj(x) are strictly positive. Primitivity implies
irreducibility. We say that a set of patterns {W1, . . . ,Wd} is primitive if the associ-
ated matrix C(x) is primitive. This definition extends to the case where a pattern
W0 is forbidden (the random sequences considered are the subset of all sequences
containing no occurrence of words of this pattern) by forbidding access to states
recognizing words of W0.
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a

b
ba

a

b

a

b
ba

Fig. 4. (Left) Automaton for U = {a, b} over a binary alphabet. The connected automaton is

drawn with bold lines. (Right) the same automaton with forbidden words W0 = {aa, bb}; for this
latter automaton, we do not have primitivity.

Example 8. We consider a binary alphabet and the pattern W1 = {a, b}. Au-
tomata recognizing matches with W1 respectively if W0 = ∅ and W0 = {aa, bb} are
depicted in Fig.4 (left) and Fig.4 (right). In the first case, the matrix associated to
the recurrent part of the automaton is primitive. In the second case, this matrix is

J =

(
0 1
1 0

)
; we have J2 = I2, the identity matrix and therefore no power of J has

all entries different of zero, which excludes primitivity.

We only consider in the following primitive sets of patterns {W0,W1, . . . ,Ws}.
5.1.2 The lattice Λ. We define now the lattice Λ associated to counts of a set

of patterns {W1, . . . ,Ws}.

Definition 5.1 (Difference index set). Let C(x) (with x = (x1, . . . , xr)) a matrix
of polynomials in the variables x1, x2, . . . , xr. We consider all the power indices i =
(i1, . . . , ir) of the monomials xi = xi1

1 . . . xir
r appearing in all elements (Cs(x))ℓ,m.

We define now the difference index set Is as the abelian group generated by all
possible differences i − i′. We define the lattice of the system as

Λ =
⋃

s={1,2,3,...}

Is. (13)

This definition generalizes immediately to a finite set of patterns by evaluating the
variables associated to the words w ∈ Wi to a variable yi, and considering the
vector of counts y.

We have the following (degenerate) example.

Example 9. We consider again a binary alphabet and W1 = {0, 1} while W0 =
∅. The automaton and its decomposition are depicted on Fig. 4 (left). The transition
matrix of the connected automaton (posing π(α) = 1 for all symbols α since the
weights, if non null, do not influence the definition of the lattice) is

C(x1, x2) =

(
x1 x2

x1 x2

)
, and C

s(x1, x2) = (x1 + x2)
s−1

(
x1 x2

x1 x2

)
.

The lattice obtained is Λ = (1,−1)×Z, and we remark that Λ has dimension 1; in
particular, we have Λ 6= Z2.
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5.2 Number of occurrences for a non-reduced pattern

We consider here a Bernoulli model and extend the probability measure π defined
for words to sets of words in the following way

π(U) =
∑

u∈U

π(u).

We provide for the case of a pattern U = {u1, . . . , uk} expressions for the expected
value and variance of Xn counting the number of occurrences of U in a text of
size n. Section 4.3 gives a mean to obtain the generating function for clusters
ξ(z, t1, . . . , tk) where word ui ∈ U is marked by variable ti. The cluster generating
function C(z, t) related to occurrences of U is then defined by

C(z, t) = ξ(z, t, . . . , t). (14)

Finally the generating function of occurrences is by Equation (12)

F (z, x) =
1

1 − z − C(z, x− 1)
,

and, since F (z, 1) = 1/(1 − z), we have C(z, 0) = 0. Setting Ct(z) = ∂
∂tC(z, t)

∣∣
t=0

and Ctt(z) = ∂2

∂t2 C(z, t)
∣∣∣
t=0

and using basic algebra, we have

∑

n≥0

E[Xn]zn = ∂
∂xF (z, x)

∣∣
x=1

=
Ct(z)

(1 − z)2

∑

n≥0

E[X2
n]zn =

∂2

∂x2
F (z, x)

∣∣∣∣
x=1

+ ∂
∂xF (z, x)

∣∣
x=1

=
2Ct(z)

2

(1 − z)3
+

Ctt(z) + Ct(z)

(1 − z)2
.

It is easy to see that Ct(z) =
∑

u∈U π(u)z|u| (the clusters with one and only one
marked occurrence). The expression for Ctt(z) takes into account that some words
of U are factor of other ones

Ctt(z) =
∑

u,v∈U

(2π(u)|u|vz|u| +
∑

e∈Eu,v

2π(ue)z|ue|),

with the convention that |u|u = 0. After some algebra, we get the following result.

Proposition 5.2. Let U = {u1, . . . , uk} be a pattern. The expected value and
variance of the variable Xn counting the number of occurrences of U in a text of
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size n satisfies

E[Xn] =
∑

u∈U

π(u)(n− |u| + 1)

1

n
Var[Xn] =

∑

u∈U

π(u) −
∑

u,v∈U

π(u)π(v)(|u| + |v| − 1)

+
∑

u,v∈U

2π(u)π(Eu,v) +
∑

u,v∈U

2π(u)|u|v + o(1).

We point out that the last sum is a correcting factor and is non zero only if the set
is non reduced.

If the set contains only one word u, we obtain (as we should!) the classical result
for the variance

lim
n→∞

1

n
Var(Xn) = π(u) + 2π(u)π(Eu,u) − (2|u| − 1)π(u)2. (15)

5.3 Covariance matrix for a non-conditioned set of patterns

Here we consider again a Bernoulli model and provide for the case of a (loosely
denoted as a list) set of patterns (W1, . . . ,Wd) an alternative form to Bender and
Kochman theorem. We analyse covariance by considering these motifs by pairs and
choosing any pair (U ,V) amongst the preceding set of patterns. As an application
of Theorem 4.12, we find an alternative form of Bender and Kochman [Bender
and Kochman 1993, Theorem 2], where we use the notion of right extensions sets
introduced in this paper.

Theorem 5.3. The normalized asymptotic correlation coefficient of co-occurrences
of two patterns Wi and Wj verifies

Bij =
∑

u∈Wi

v∈Wj

(
π(u)π(Eu,v) + π(v)π(Ev,u) − (|u| + |v| − 1)π(u)π(v)

)
(16)

+ π(Wi ∩Wj) +
∑

u∈Wi

v∈Wj

(|u|vπ(u) + |v|uπ(v)) + o(1),

with the convention |u|u = 1. Moreover the non-singularity3 of the matrix (Bij) is
equivalent to the d-dimensionality of the lattice Λ.

Proof. We consider here the weighted case where A(z) = z. Let U and V be
two sets of words. We first decompose as a direct sum the set U ∪ V:

U ∪ V = (U \ V) ⊕ (V \ U) ⊕ (U ∩ V).

In order to ease notation, we index variables in the generating function ξ(z, t) by
words, i.e., the variable tu corresponds to word u. Then we consider the generating

3In dimension two, this condition is equivalent to the non-nullity of the Hessian of the sys-
tem [Heuberger 2007]. Note also that the large powers κ(n) considered by Hwang and Heuberger
are any function of n tending to infinity. We have here the particular case κ(n) = Θ(n).
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function of clusters for the three disjoint sets U ′ = U \V, V ′ = V \U and W = U∩V,
with t = (tu)u∈U∪V with the respective variables t1, t2 and t3

C(z, t1, t2, t3) = ξ(z,u)|tu = t1 for u ∈ U \ V
tu = t2 for u ∈ V \ U
tu = t3 for u ∈ U ∩ V

, (17)

that is we simply substitute variables for words appearing in each of the three sets
with t1, t2 and t3.

Let F (z, x, y) be the corresponding generating function counting occurrences. We
have by Equation (12) and since occurrences in U ∩ V are marked two times

F (z, x, y) =
1

1 − z − C(z, x− 1, y − 1, xy − 1)
. (18)

By construction, since F (z, 1, 1) = 1
1−z , one has

C(z, 0, 0, 0) = 0.

To simplify notation, we set

Ci(z) = ∂
∂ti

C(z, t1, t2, t3)
∣∣∣
(t1,t2,t3)=(0,0,0)

for i = 1, 2, 3

Cij(z) = ∂2

∂ti∂tj
C(z, t1, t2, t3)

∣∣∣
(t1,t2,t3)=(0,0,0)

for i, j ∈ {1, 2, 3}.

By general mechanisms [Flajolet and Sedgewick 2009] we get from Equation (18)

∑

n≥0

E(Xn)zn = ( ∂
∂xF (z, x, y)

∣∣
x=y=1

=
1

(1 − z)2
(C1(z) + C3(z))

∑

n≥0

E(Yn)zn = ( ∂
∂yF (z, x, y)

∣∣∣
x=y=1

=
1

(1 − z)2
(C2(z) + C3(z)) ,

which gives

E(Xn) =
∑

u∈U

(n− |u| + 1)π(u), E(Yn) =
∑

u∈V

(n− |u| + 1)π(u).

We have also easy access to the covariance since
∑

n≥0

E(XnYn)zn = ∂2

∂x∂yF (z, x, y)
∣∣∣
x=y=1

= 2
(C1(z) + C3(z))(C2(z) + C3(z))

(1 − z)
3 +

C12(z) + C13(z) + C23(z) + C33(z) + C3(z)

(1 − z)
2

= 2
C1(z)C2(z)

(1 − z)
3 +

C12(z)

(1 − z)
2 + 2

C3(z)
2

(1 − z)
3 +

C33(z) + C3(z)

(1 − z)
2

+ 2
C3(z)(C1(z) + C2(z))

(1 − z)
3 +

C13(z) + C23(z)

(1 − z)
2 .
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A Taylor expansion at z = 1 gives for i = 1, 2, 3 (with f ′(z) = ∂
∂z f(z))

Ci(z) = Ci(1) − (1 − z)C′
i(1) + o(1 − z).

Hence we get

E(XnYn) = (n+ 1)(n+ 2)
(
C1(1) + C3(1)

)(
C2(1) + C3(1)

)

+ (n+ 1)

((
C
′
1(1) + C

′
3(1)

)(
C2(1) + C3(1)

)

+
(
C1(1) + C3(1)

)(
C
′
2(1) + C

′
3(1)

)

+ C12(1) + C13(1) + C23(1) + C33(1) + C3(1)

)

+ o(n).

Now we can interpret each of the coefficients: we have for instance

C1(1) + C3(1) =
∑

u∈U

π(u),

C13(1) =
∑

u∈U\V

∑

v∈V∩U

(
π(u)|u|v + π(u)π(Eu,v)) + π(v)|v|u + π(v)π(Ev,u))

)
.

Summarizing and after some computations, we find that

1

n
Cov(Xn, Yn) =

∑

u∈U

∑

v∈V

(
π(u)π(Eu,v) + π(v)π(Ev,u) − (|u| + |v| − 1)π(u)π(v)

)

+ π(U ∩ V) +
∑

u∈U

∑

v∈V

(|u|vπ(u) + |v|uπ(v)) + o(1),

where, by convention, |u|u = 0. Substituting U and V respectively by Wi and Wj

leads to Equation (16).

The following theorem is proved in Bender and Kochman [Bender and Kochman
1993]; its proof suppose to unwind the proofs of the series of articles [Bender 1973;
Bender and Richmond 1983; Bender et al. 1983a; Bender and Kochman 1993].

Theorem 5.4. Given a set of finite patterns {W1, . . . ,Wr}, the non-singularity
of the covariance matrix (Bij) where Bij is defined in Equation (16) is equivalent
to the d-dimensionality of the lattice Λ.

Example 10. We apply the results of this section to W1 = a3 and W2 = a7 in
a Bernoulli model with p = π(a). We get by Equation (16),





π(a3)π(Ea3,a7) = p3(p5 + p6),
π(a7)π(Ea7,a3) = p7(p+ p2),
|a7|a3π(a7) = 5p7,
|a3|a7π(a3) = 0,
(|a7| + |a3| − 1)π(a7)π(a3) = 9p10

∣∣∣∣∣∣∣∣∣∣

=⇒ B12 = 5p7 + 2p8 + 2p9 − 9p10.

Computing the full matrix B(a3,a7) = (Bij) for i, j = {1, 2}, and the corresponding
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determinant ∆, we get

B
(a3,a7) =

(
p3+2p3(p+p2)−5p6 p7(5+2p+2p2−9p3)

p7(5+2p+2p2−9p3) p7+2p7(p+p2+p3+p4+p5+p6)−13p14

)
,

∆ = |B(a3,a7)| = p10 + 4p11 + 8p12 + 5p13 − 25p14 − 20p15 − 24p16 + 67p17 − 16p20.

Let us remark that ∆ is zero if p = 0 or p = 1 and nowhere else. This corresponds to
a degeneracy of the system. In these cases, we have Λ = (0, 0), and the dimension
of Λ is zero, which corresponds to the lack of variability of the system. If, on the
opposite, we consider 0 < p < 1, and texts of size 15, we see that among the
possibility of occurrences, we have

(0, 1), (0, 2), (0, 3), (0, 4), (1, 5), (1, 6), (1, 7), . . . , (9, 13);

applying the differences i − i′ provides a lattice of dimension 2, which corresponds
to the non-singularity of the matrix B(a3,a7).

5.4 General case

Considering two sets of patterns S1 and S2, Bender and Kochman use an analytic
heuristic method to obtain the average values of the counts of S2 when the counts
for S1 are fixed at any value possibly happening for a text. This method relies
on the exponential shift xi

; rixi for the variables counting the patterns in S1

and an a posteriori normalization to recover a probability distribution. Since this
shift modifies the mean of the distribution, it is often called mean-shifting method.
Note that the resulting distribution is distorted; however, it is still possible to get
a matricial equation for the covariances of patterns in S2.

We provide here an introduction to the mean-shifting method, restate Theorem 1
of [Bender and Kochman 1993], and apply the results to an asymptotic Markovian
model for the sequences.

5.4.1 Mean shifting.

Principles. Bender and Kochman [Bender and Kochman 1993] use without ex-
plicitly mentioning it the analytical mean shifting method, that substitutes the
formal variable x by ρx and normalize to recover a probability generating function.
Bender-Kochman [Bender and Kochman 1993] use extensively this method to prove
that, even when conditioning on a given (“analytic”) value ρ, there is a limiting
normal distribution for the counts.

We consider as introductory example the bivariate case. Let

F (z, x) =
∑

n≥0,0≤k≤n

fn,kx
kzn =

∑

n,k

Pr(Xn = k)xkzn (19)

be a multivariate generating function where Xn counts the number of some objects
in a system of size n. We have

µ(1)
n = E(Xn) = [zn]

∂F (z, x)

∂x

∣∣∣∣
x=1

.
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We write φ(x) = [zn]F (z, x), and use ρ as a shift variable. We consider

ψ(ρ)(x) =
φ(ρx)

φ(ρ)
; (20)

since ψ(ρ)(1) = 1, we did define the probability generating function of a random

variable X
(ρ)
n . We have

µ(ρ)
n = E

(
X(ρ)

n

)
=

∂

∂x

φ(ρx)

φ(ρ)

∣∣∣∣
x=1

= ρ
φ′(ρ)

φ(ρ)
.

When ρ tends to infinity, if φdx
d is the monomial of highest degree of φ(x), we have

lim
ρ→∞

µ(ρ)
n = lim

ρ→∞

ρ× dφdρ
d−1

φdρd
= d,

and d is the largest possible count; similarly, if i is the smallest possible count, we

have µ
(ρ)
n → i as ρ tends to 0.

An important result is that, when ρ varies from 0 to ∞ the variable µ
(ρ)
n increases

continuously and goes through all the possible (discrete) values that the variable

Xn can take. Moreover, µ
(ρ)
n is a convex function of r. Therefore, for any “possible”

value α of µ
(r)
n , it is possible to find a value ρ∗ for ρ such that µ

(ρ∗)
n = α. We have

thus a way to condition the random variable to have a certain average value.
This result extends to several dimensions.

Perron-Frobenius dominant eigenvalue. We relate here the mean shifting method
and the logarithmic derivatives used in Bender et al..

Since we consider positive matrices and the induced rational generating functions,
we have, asymptotically, by a Cauchy integration along a suitable contour,

φ(x) = [zn]F (z, x) = c(x)λ(x)n ×
(

1 +O

(
1

Rn

))
, (R > 1), (21)

where λ(x) is the dominant eigenvalue of the positive matrix of our system and
c(x) is analytic. We get, as n tends to infinity,

µ(ρ)
n =

∂

∂x

φ(ρx)

φ(ρ)

∣∣∣∣
x=1

=

(
c′(ρ)

c(ρ)
+

∂

∂x

λ(ρx)n

λ(ρ)n

∣∣∣∣
x=1

)
×
(

1 +O

(
1

Rn

))

∼ n× ρ
λ′(ρ)

λ(ρ)
= n× ∂ log(λ(ρ))

∂z
(22)

where ρ = log z. This is precisely the definition given by Bender et al. who only
consider the dominant asymptotic term. This approach extends obviously to second
derivatives; see similar conditions in [Heuberger 2007].

Considering for sake of simplicity counting of matches of two patterns, we have

φ(z, x1, x2) = [zn]F (z, x1, x2) = c(x1, x2)λ(x1, x2)
n×
(

1 +O

(
1

Rn

))
, (R > 1).
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This gives

µ
(ρ1,ρ2)
n,1 =

∂

∂x1

φ(ρ1x1, ρ2x2)

φ(ρ1, ρ2)

∣∣∣∣x1=1
x2=1

∼ nρ1 ×
λ′1(ρ1, ρ2)

λ(ρ1, ρ2)
,

(
µ

(ρ1,ρ2)
n,1 , µ

(ρ1,ρ2)
n,2

)
∼ n×

(
ρ1
λ′1(ρ1, ρ2)

λ(ρ1, ρ2)
, ρ2

λ′2(ρ1, ρ2)

λ(ρ1, ρ2)

)
, (23)

where µn,i is the expectation of the number of occurrences of the pattern i in texts
of size n and λ′i(s, t) is the derivative of λ(s, t) with respect to the parameter at
position i.

Then, provided that the values (⌊nξ1⌋, ⌊nξ2⌋) are possible for the counts, we can
compute the corresponding values ρ1 and ρ2 by simultaneously solving the equations

{
λ′1(ρ1, ρ2)

λ(ρ1, ρ2)
= ξ1,

λ′2(ρ1, ρ2)

λ(ρ1, ρ2)
= ξ2

}
. (24)

All this generalizes to multivariate generating functions with a higher number of
parameters.

Bender and Kochman prove that the map from (ρ1, . . . , ρr) to the possible limit
frequencies of the patterns is bijective, and that the set of limit frequencies is convex.

5.4.2 From average conditioning to exact conditioning. In [Bender and Kochman

1993, Theorem 1], the authors give a limit law for counts X
(n)
j of patterns Wj with

j ∈ {c+1, . . . , d}, assuming that the counts X
(n)
i of patterns Wi with i ∈ {1, . . . , c}

are ⌊n× ki⌋+ o(n) for given k1, . . . , kc. The result is also conditioned by X
(n)
0 = 0.

We have seen previously that for any “possible” (ξ1, . . . , ξd) we can find a corre-
sponding (ρ1, . . . , ρd). The corresponding values for (µ1,n, . . . , µi,n) = lim 1

n (µ1,n,
. . . , µd,n) do not depend on n.

We consider the probability multivariate generating function

F (z,x) = F (z, x0, x1, . . . , xc, xc+1, . . . , xd)

where z counts the size of the texts and xi counts the number of occurrences of
the pattern Wi. We condition now on the forbidden set of words W0 and on the
expected counts for Wj with j ∈ {1, . . . , c}. This gives

Φn(xc+1, . . . , xd) =
[zn]F (z, 0, ρ1, . . . , ρc, xc+1, . . . , xd)

[zn]F (z, 0, ρ1, . . . , ρc, 1, . . . , 1)
. (25)

This last equation provides the conditioned variables X
(n)
i with i ∈ {c+ 1, . . . , d}.

The dominant asymptotic term of the means of these variables is n×mi where

mi = lim
n→∞

1

n

∂Φn(1, . . . , 1, xi, 1, . . . , 1)

∂xi

∣∣∣∣
xi=1

.

We need for what follows a lemma on conditional distributions analysis (see [Gelman
et al. 1995, p. 79]).

Lemma 5.5. We consider two random vectors X1 and X2 with respective size c
and d − c and the vector X = (X1,X2) of size d. Let m be the vector of expected
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values of X and B be its covariance matrix. If the expectation vector m and the
covariance matrix B are partitioned as follows

m =

(
m1

m2

)
with sizes

(
c× 1

(d− c) × 1

)
,

B =

(
B11 B12

B21 B22

)
with sizes

(
c× c c× (d− c)

(d− c) × c (d− c) × (d− c)

)
,

and such that B11 is invertible, then the distribution of X2 conditional on X1 = o

is multivariate normal
(
X2|X1 = o) ∼ N(m2,B22) where

m2 = m2 + B21B
−1
11 (o − m1), (26)

B22 = B22 − B21B
−1
11 B12. (27)

The matrix B21B
−1
11 is known as the matrix of regression coefficients.

Note that if the random vector X1 is gaussian, then B11 is invertible. Moreover,
the matrix B22 does not depend on the value of o.

5.4.3 Normal limiting distributions. We note in the following, for a set of words
U = {u1, . . . , ur}

|w|U =
∑

u∈U

|w|u.

We have the following theorem.

Theorem 5.6 [Bender and Kochman 1993]. Suppose that W = (W0, . . . ,Wd)
is primitive and that Λ(W) is d-dimensional.

Then the set F of accumulation points of

⋃

n

⋃

w∈An

{
1

n
(|w|W1

, . . . , |w|Wc
)

∣∣∣∣ |w|W0
= 0

}

is c-dimensional.
Considering in random texts of size n unconditioned counts X

(n)
0 , X

(n)
1 , . . . , X

(n)
c

of the patterns W0, . . . ,Wc, unconditioned counts X
(n)
c+1, . . . , X

(n)
d of the patterns

Wc+1, . . . ,Wd, and the counts X
(n)

c+1, . . . ,X
(n)

d of Wc+1, . . . ,Wd conditioned by X
(n)
0 =

0 and X
(n)
i = ⌊nji⌋ with i ∈ [1, c], where (j1, . . . , ji) ∈ F , let (ρ1, . . . , ρc) be the

vector of mean shift parameters such that

lim
n→∞

1

n
E(X

(n)
1 , . . . , X(n)

c ) = (j1, . . . , jc);

considering now the conditioned variables X
(n)

i , the generating function of which is

given by Equation (25), and the vector of variables Vn = (Y
(n)
c+1, . . . , Y

(n)
d ), where

Y
(n)
i =

X
(n)
i − n×mi√

n
, and mi =

λ′i(0, ρ1, . . . , ρc, 1, . . . , 1)

λ(0, ρ1, . . . , ρc, 1, . . . , 1)
, (i = c+1, . . . , d);

there exists a non-singular computable matrix B such that:
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(1 ) the vector V verifies a central limit theorem with mean (0, . . . , 0) and covariance
matrix B;

(2 ) if Λ(W) = Zd, we have a local limit theorem,

lim
n→∞

sup
kc+1,...,kd

∣∣∣∣∣∣∣∣
n(d−c)/2 Pr

(
X

(n)
c+1 = kc+1, . . . , X

(n)
d = kd

)
−

exp

(
−1

2
VnB−1V′

n

)

√
(2π)d−c det B

∣∣∣∣∣∣∣∣
= 0,

(28)
where V′

n is the transpose of Vn.

Proof. (Sketch) The conditioning by Xn,0 = 0 may be done directly on the
Aho-Corasick automaton by removing all transitions pointing to a state recognizing
a word of W0. We remark that the transient part of the automaton provides
only a finite number of occurrences in the counts (read at the beginning of the
sequence), which has no influence when the size of the texts tends to infinity; on
contrary the values of the limiting average counts come from the recurrent part of
the automaton. We recall here that we supposed that this recurrent part is primitive
after having forbidden access to states recognizing words of W0; this corresponds
to the hypothesis that W = (W0, . . . ,Wd) is primitive and this implies that the
resulting automaton cannot be disconnected.

The proof follows from Theorem 1 of [Bender et al. 1983b] that considers large
powers of matrices with entries that are multivariate polynomials with positive
coefficients; this theorem applies to the case of the matrix of the Aho-Corasick
automaton under consideration. At this stage, there is no conditioning.

Bender and Kochman then proceed in two steps.

(1) Apply the mean shift xi ; ρixi (i ∈ [1..c]) such that the expected counts for
W1, . . . ,Wc are j1n, . . . , jcn.

(2) Use the Lemma 5.5 to get the desired “section” of the distribution, which
provides the value of the covariance matrix B, as a function of the components
of the covariance matrix B. The matrix B, in turn, is given by its entries Bij

of Equation (16); its computation therefore follows from using asymptotics and
singularity analysis, what was done in Section 5.3.

5.5 Application: asymptotic Markovian model

There is a very simple and direct application of Theorem 5.6 to the case of a model
related to a Markovian source. Let us consider for instance a Markov model of order
1 and a binary alphabet. The model is totally described by the (trivial) system






1 = π(0) + π(1)
π(0)=π(00) + π(10)
π(1)=π(01) + π(11)

so that the probabilities π(00), π(01), π(10) (for instance) are sufficient to deduce
the other ones. Asymptotically, by the strong law of large numbers [Grimmet and
Stirzaker 1992], it is equivalent to consider a model where the probability of the
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sequences xy is π(xy) and a model where the probability that an y follows an x is
π(xy) for x and y equal to 0 or 1. Therefore, choosing c = 3 and W1 = {00},W2 =
{01},W3 = {10} in Theorem 5.6, we get an asymptotic central theorem for any
finite set of patterns {W4, . . . ,Wd}, provided that Λ(00, 01, 10,W4, . . . ,Wd) is d-
dimensional, and we get a local limit theorem if Λ = Zd, which is mostly often the
case. When doing so, we only need Step 1 of the proof of Theorem 5.6, that ensures
that the limiting conditioning frequencies fit to the frequencies of the Markov model.
Note that we are not in an exact Markov model since we are only insured that the
average value of frequencies tends to the one of the Markov model (hence the name
of asymptotic Markov model).

This generalizes to an (asymptotic) Markov model of highest order. We should
however notice that, in the case of a Markov model of order k, we should not over-
constrain the problem in choosing the “Markov fitting words” W1, . . . ,Wc. For in-
stance, for k = 1, the frequencies are totally described by giving π(00), π(01), π(10)
since then we are able to compute π(11) = 1 − π(00) − π(01) − π(10), π(1) =
π(01) + π(11), π(0) = π(00) + π(10). In fact for a general order k we need to fix
exactly c = 2k+1 − 1 frequencies to describe the model.

Proposition 5.7. Provided a description of the Markov model with the vector of
words (W1, . . . ,W2k+1−1), and considering a vector of patterns (W2k+1−1, . . . ,Wd),
in an asymptotic Markov model of order k, the vector of counts (X2k+1−1, . . . , Xd)
verifies asymptotically

(1 ) a central limit theorem if the lattice Λ of the system is d-dimensional

(2 ) a local limit theorem if we have Λ = Zd.

The vector of expected counts and the covariance matrix are given in Theorem 5.6.

Proof. The proof follows from Theorem 5.6 and Lemma 5.5.

Conclusion and perspectives

We obtained a detailed proof and an explicit expression of the multivariate gen-
erating function counting texts according to their length and to their number of
occurrences of words from a finite set. This result facilitates access to various mo-
ments and may lead to limiting distributions. From Bender and Kochman [Bender
and Kochman 1993], we expect to find mostly a multivariate normal law for word
counts. Our approach can possibly provide simpler criteria to decide if such a limit-
ing law holds or not. Another nice aspect of the inclusion-exclusion approach is that
it provides explicit formulae like Equation (11), whereas the Aho-Corasick construc-
tion does not preserve the structure: even for a single pattern the autocorrelation
polynomial does not come out easily from the (Morris-Pratt) automaton.

Ongoing work is more concerned with the complexity of the diverse approaches
presented in this paper. Also we plan to extend the analysis to more complex
sources, such as Markovian or dynamical sources (see Vallée [Vallée 2001]).
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