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Abstract 

The question whether liquid atomization (or pulverization) resorts to instability dynamics 
(through refinements of Rayleigh-Plateau, Rayleigh-Taylor or Kelvin-Helmholtz mechanism) or 
to turbulent cascades similar to Richardson and Kolmogorov first ideas seems to be still open. In 
this paper, we report experimental evidences that both mechanisms are needed to explain the 
spray drop PDF obtained from an industrial nozzle. Instability of Rayleigh-Taylor kind governs 
the size of the largest droplets while the smallest ones obey a PDF given by a turbulent cascading 
mechanism resulting in a log-Lévy stable law of stability parameter close to 1.68. This value, very 
close to the inverse of the Flory exponent, can be related to a recent model for intermittency 
modeling stemming from self-avoiding random vortex stretching. 

 

 

1 Introduction 
Lognormal probability density functions (PDF) are widely used by experimental 

analysts in many fields, including liquid pulverization. To explain their widespread 
appearance in many fields, Kolmogorov indirectly pioneered turbulent atomization modeling 
[1] by devising a discrete Markov process converging toward a lognormal PDF. Later 
Obukhov [2] used this result to describe the statistical distribution of intermittent dissipation 
in turbulent flows and this has later been retained by Kolmogorov [3] in his famous K62 
modeling of turbulence intermittencies. Many works have been since done in this field and 
Frisch’s book [4] is an excellent review. Maybe the most influential scientist still to be cited 
is Mandelbrot [5] who coined the word fractal, developed the multifractal formalism and 
made many contributions to economics where he widely used log-stable distribution (for a 
definition of Lévy stable laws many textbooks do exist now but [6] is still a good reference). 
Unfortunately, concerning turbulence or atomization modeling, Mandelbrot merely developed 
general ideas but no reproducible laws. While Schertzer and Lovejoy [7] emphasized their 
role in geophysics as universal multifractals (thanks to a generalized central limit theorem), 
Kida [8,9] explained empirically the statistical laws of turbulence intermittencies with a log-
stable law of stability parameter 1.65. Though this is still debated nowadays[10], a recent 
advance in this field can be found in [11,12] where Kida’s results are discussed and proved 
thanks to a self-avoiding random vortex stretching process. In this modeling, the topological 
constraint of non intersection, applied to a vortex tube, enforces the value of the stability 
parameter to be the inverse of Flory’s exponent (i.e. 1/.588 or 1.70), a scaling exponent well 
known in polymer physics [13]. The stable law is proved to be fully asymmetric to the left 
and its scale parameter can be related to the important scale of turbulent flows: Kolmogorov’s 
and Taylor’s scales. 

As for turbulent atomization modeling, few improvements have been made in this 
field since Kolmogorov’s work: while experimentalists still resort to a variety of empirical 
laws [14], some of them close to the lognormal law (such as the upper limit lognormal Evans 
law or the log-Weibull law), theoreticians widened their view to either log-infinitely divisible 
distributions [15], multifractal analysis [16], or refinements of Kolmogorov first modeling 
[17]; all of which not very helpful for the experimentalists. In a more practical way, in [18], it 
has been shown that log-stable laws (which now can be easily computed thanks to FFT) are 
also good candidates to model some turbulent spray PDF. Atomization being a growing field 
of interest a more detailed review can be found for instance in [19,20]. 
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However, though multistep cascading mechanisms are very useful to describe 
turbulent intermittencies, it is appropriate to question whether they pertain to atomization 
modeling: there are numerous records of primary atomization and secondary atomization, but, 
except in the so-called catastrophic breakup [21], almost never of ternary atomization (i.e. no 
third steps!). This may actually be related to the fact that after two breakup events, some air is 
entrapped in the neighborhood of the drops in what is often called the “added mass” so that 
liquid droplets are no longer sheared. Moreover recent evidence indicates that a cascading 
mechanism seems to be still appropriate [22] for high-speed sprays. For lower speed, most 
analysis made in the non turbulent regime, resort to instability theory. It usually leads to a 
competition between surface tension effect (Rayleigh-Plateau mechanism), acceleration of a 
droplet in the ambient air (Rayleigh-Taylor mechanism) and shear instability appearing on the 
edge of the droplet (Kelvin-Helmholtz mechanism, for a review of these mechanisms, see 
[23] for instance). In a recent study of the so-called non turbulent bag breakup regime [24], 
the Rayleigh-Taylor mechanism is widely used to explain experimental results. 

In this work, we will show firstly, that for an industrial nozzle, in the bag-breakup 
regime, Rayleigh-Taylor instability can explain the first stage of the breakup (as well as 
accepted values of the so-called bag breakup regime) It is then reported how a turbulent 
cascade mechanism seems to be necessary to describe the finer droplets PDF resulting from 
the burst of the bag. In a way, this can be related to the late stage of the turbulent mixing in 
the Rayleigh-Taylor instability where recently a Kolmorogov-like cascading scenario has 
been put in evidence (cf. [25] for a description of the one-phase RT instability developing 
between a hot gas and a cold gas).  

2 Experimental setup  
Experimental setup was devised to test several kinds of industrial nozzles, among 

which two Lechler Nozzles (ref. 665-042 and 665-122) were tested. Their aperture is depicted 
in Fig. 1: it is made of two identical circle segments pieced together. The measured value of 
parameter 2a and 2b of Fig. 1 are respectively 977m and 646 m for ref. 665-042. and 1185 
and 864 m for ref. 665-122. Their equivalent radiuses req are thus respectively 452 m and 
488 m. Results obtained from either nozzle are thus quite similar. Their nominal flow rate is 
around 80 liters of water per minutes (varying with pressure). Several pressures were tested 
but most measurements were made at 8 bars and 15 bars. 

 
 

a b 

 

 

FIG. 1: sketch of the nozzle orifice and photograph of the experimental set-up (Lechler Nozzle ref. 665-042, 8 bars) 

For the 665-122 nozzle, for a given pressure of 15 bars, the liquid velocity U was 
found to be 41 m/s and the standard deviation u’ around this velocity was 2 m/s (cf. FIG. 3.). 
Let us notice that these velocities are independent of the droplets size. Data were collected 
using a Dantec Dynamics PDA (Phase Doppler Anemometer) and a green argon continuous 
laser (wavelength: 514.5 nm). The PDA equipped with a classic receiver, has been used in 
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refraction mode with a diffusion angle of 72°. According to the manufacturer droplets size 
can be measured with confidence in a dynamic interval ranging from 1x to 40x (or 1.6 
decades). This means that bigger droplets have a tendency to saturate the photomultipliers 
while smaller ones may not trigger it. However data were collected over three decades. While 
droplet frequency measurement may not be very accurate on this wide range, caution was 
made to configure measurements so that small drops resulting from the bag-breakup were 
accurately resolved (i.e. no aperture mask and a high enough voltage amplification ratio was 
used in the photomultiplier). Actually the measuring volume was an ellipsoid of dimension 
600m x 600m x 4000m so that only droplets of diameter inferior to 600 m could be fully 
contained in the measuring volume. This setup resulted in a detected maximum droplet size of 
1754 m. Moreover droplets bigger than 600m were mostly detected when they cut the 
volume measure on the side of it, i.e. when the amount of light they emitted was small enough 
not to saturate the photomultipliers. This can be seen by comparing the measured transit time 
to an idealized transit time given by: 

  6600 .10
idealTT

U



      (1) 

Here the Gaussian characteristic of the laser beam is neglected and the droplets are considered 
as point particle. Results of such a comparison can be found in FIG. 2 which depicts the 
evolution of the ratio of the measured transit time (given by the PDA) to the idealized transit 
time as a function of droplets’ diameters. It can be seen that larger droplets have a very short 
measured transit time indicating that they were mainly cutting the measuring volume on its 
borders. Accordingly, their number cannot be assessed with certainty. Following, this 
analysis, the center of the measurement range where the statistics of the droplets is adequately 
reported can be estimated to be around 50m resulting in a PDF fully resolved somewhere 
between 10 and 400m (but this is an harsh estimate). Note finally that since the three 
detectors are in line, what is truly measured by the PDA, are two inline radii of curvature of 
the interface between water and air; when these radii share a common value, the latter is then 
assimilated to the radius of the measured drop. This (common) approximation will be 
naturally made in this paper. 

 
FIG. 2: comparison between the measured transit time and the ideal transit time of formula (1) showing 

that big droplets are mostly detected on the edge of the measurement volume. The overall intensity  

3 Experimental results 
As PDA collects both size and velocity of droplets, results can be given in the form of 

joint PDF. Figure 3 depicts such kind of representation. Middle picture is the joint velocity-
diameter PDF and lower picture is the joint velocity-magnitude PDF (magnitude is here 

 3



LEMTA UMR CNRS 7563  PREPRINT 

defined as the decimal logarithm of the diameter; origin is chosen such that magnitude 0 
stands for 1 m).  

 

FIG. 3: experimental size-velocity PDF. (Lechler Nozzle ref. 665-122, 15 bars, 4cm below the exit) On top the domain 
of the bag-breakup (12<We<50) is delimited. Comparison between the frequency distribution of the droplet velocity 
and diameter (in the middle) and the distribution of the velocity and magnitude (log10(d), on the bottom). It can be 
seen that a large amount of droplets are located under 100m, that is in the aerodynamic stability domain. 

The non dimensional parameters governing the stability of a droplet in an air stream 
are the (aerodynamic) Weber number and the Ohnesorge number defined by: 

2
G

aero

U d
We




  and L

L

Oh
d




     (2) 

where G and L stand for, respectively, air (gas) density and water (liquid) density;  is the 
air-water surface tension, L is the liquid dynamic viscosity while d stands for the droplet 
diameter. According to [26] at low Ohnesorge number (i.e. mainly for liquids with low 
viscosity), a Weber number inferior to 12 indicates that the droplet is aerodynamically stable 
whereas a Weber number located in the interval [12,50] indicates that the droplet shall break 
in what is called a bag-breakup (cf. Fig. 4). On top of figure 3, iso-contour of Weber number 
are given in the velocity-diameter plane. From it, it can be seen that most droplets on the 
millimeter scale are located in the bag-breakup regime whereas droplet whose radii are 
located under 350 m are aerodynamically stable. Actually the fact that droplets of every size 
are flowing at the same speed and that the all droplets size-velocity PDF have roughly the 
same shape on the vertical axis seems to indicate that apart from initial bag breakups, droplets 
are subsequently not submitted to any particular shear from the ambient air (the opposite 
would result in smaller droplets going slower, being more decelerated). This suggests that the 
air surrounding the spray is entrapped in the water flow. This induced a slight wind in the 
surrounding which could actually be felt during experimental work. Therefore values of the 
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Weber number given by (2) is an overestimation since the velocity of water U shall be 
replaced by the drift velocity Udr between water and air. If the preceding remark is true this 
means that when not submitted to primary or secondary breakup, droplets of any size can be 
stable in the air flow. This may also explain the observed stability of the PDF on the vertical 
axis. 

 

Udr 

(i) 
 

RT  (iv) 
 

x 
y 

        (ii)     (v) 

 

2RT 
(iii) 

 (vi) 

FIG. 4: the six stages of the bag breakup (cf. [23]): (i) the droplets result from the Rayleigh-Plateau mechanism, (ii) 
they elongate in the relative air flow, (iii) this results in a Rayleigh-Taylor wave and (iv) in the formation of a ring and 
a bag, (v) the blow up of the bag and (vi) of the ring leads to a bimodal distribution.  

In these PDF, three peaks do appear (especially when considering the magnitude 
scale) each corresponding to a peculiar physical mechanism. Position of the three peaks in the 
distribution are found to be 1355 m (magnitude 3.13), 661 m (magnitude 2,82) and roughly 
100 m (and more precisely 200m considering the Sauter Mean Diameter of the bag). 
Statistics were made over 50 000 droplets. Since all droplets have the same velocity, this 
number was large enough to obtain converged results. Note that sizing techniques based on 
image analysis (usually obtained by high-speed imaging) would lead to a very tedious 
analysis protocol to obtain such a high number (moreover for a smaller dynamic range).  

 

FIG. 5: marginal size distribution. (Lechler Nozzle ref. 665-122, 15 bars, 4cm below the exit) From right to left, the 
first droplet is given by the Rayleigh-Plateau theory, the first peak is given by the Rayleigh-Taylor theory while the 
second peak is another harmonic Rayleigh-Taylor peak. The third peak is the bag breakup peak.  
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Figure 4 depicts the classical way of describing the bag-breakup mechanism (cf. [19] 
for more details). Five stages are usually described: the drop is first deformed by the air 
stream, this leads to the onset of a Rayleigh-Taylor instability which leads to the formation of 
a rim and a bag. The bag bursts before the rim which follows soon afterwards (characteristic 
times can be found in [26,27,28]). Figure 5 shows the marginal magnitude PDF obtained 
from the joint velocity magnitude PDF. Small size PDF are very similar whereas large size 
peaks are located at roughly the same place but differs in intensity. Since they mainly 
corresponds to off-center droplets there is clearly a reproducibility issue concerning their 
intensity. Since air is entrapped in the water curtain, it can be supposed that the first peak 
corresponds to unburst droplets while the second peak corresponds to droplets resulting from 
the fragmentation of the rim and the third peak to the cloud of droplets created by the bursting 
of the bag. This can be confirmed by the fact that the Sauter Mean Diameter of the bag 
droplets has been found to be 200 m so that the ratio: 

200
0.148

1350
bag

init

SMD

d
       (3) 

is also very close to the value 0.14 reported in [19] and [21].  

4 Rayleigh-Taylor breakup 
An explanation of the ratio (close to 2) between the diameter of the mother droplet and the 
diameter of the rim droplets can be developed as in [19] by adapting Rayleigh-Taylor theory. 
This had been attempted by Kytschtka et al. [29] but without taking into account the 
deformation of the droplet. Influence of the deformation on the trajectory and drag coefficient 
of the droplet has been studied in [30, 31] but without really considering the breaking 
mechanism. This leads to an ordinary differential equation (ODE) of evolution for the 
deformation, coupled to another ODE for the droplet position. The resulting model is named 
droplets deformation and breakup (or DDB). The breakup is then assumed to occur naturally 
at the end of the deformation phase. This hypothesis will be followed hereafter and it will be 
supposed that the droplet has already deformed into an oblate ellipsoid of major semiaxe x 
and minor semiaxe y (cf. Fig. 4) when the Rayleigh-Taylor induced breakup starts. Now, let 
us suppose that x y  so that the final shape of the droplet can be assimilated to a disk. If the 
droplet’s Reynolds number is high enough (Re >1000), its drag coefficient Cd can be 
supposed constant and is given by Cd ranging from 1.7 for incompressible flow to up to 3 for 
compressible flow [21, 31], 1.7 being very close to the 1.5 high Reynolds drag coefficient of a 
disc in incompressible flow. Now, let us compute the condition upon which a Rayleigh Taylor 
wave of wavelength equal to the major semiaxe can grow on the drop surface (cutting the 
droplet in its center). The fastest growing wavelength is given by: 

,max

3
2RT f

 





      (4) 

where f is the deceleration of the disk in the air stream, which is given by: 
2

2
3

3

8
G

d
L

x
f C U

r




       (5) 

So that  

,max

2

8
2RT

d G

r

r x C

 


   
  U r

    (6) 

The condition ,maxRTx   leads to 
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4
2

2
32 10.8

G d

x

r C U r




   
 

     (7) 

where G = 1.3 kg/m3, r = 675 m, U = 40 m/s, Cd = 1.5 and  = 0.072 N.m-1. Note that 
/ 1800GRe Ud   . This deformation corresponds to 1.8x r  which means that when the 

droplet has reached this deformation, deceleration is high enough for a Rayleigh-Taylor wave 
of fastest growth to cut the drop in half. According to DDB theory, the maximum deformation 
is given for this Weber number by: 

2

2
6 6

x We U d

r


 

        (8) 

So the value 1.8 can be considered as a reachable state. 
Equation (8) also reads  

264
38

10.8 d

We
C


       (9) 

This is a hint that by slightly modifying the preceding reasoning more general conclusions can 
be obtained. Let us set the deformation criteria for the bag breakup to be x/r = 2 = /r and let 
us use the experimental Cd = 1.7 [21], one gets  

4
4 2 1

2 16 64
d

x

r C
     

  We
    (10) 

and finally 
2

min

4
23.2

d

We
C


       (11) 

which corresponds to Hinze’s measurement for free falling drops [14] (the use of Cd =3 leads 
to Wemin = 13 which is Hinze’s measurement in shock tube experiment). It is also very easy 
using this simple modeling to evaluate the ratio of the ring-to-bag volume: on Fig. 4 (iii) it 
can be seen that the droplet is separated in three parts by the two inflexion points of the wavy 
surface , two third of the drop leading to the rim and one third to the bag. Actual measurement 
of the rim to mother droplet volume [31] led to the value 70% very close to the proposed 
66%. Note that the condition 2 3 RTx   (i.e. three waves do grow on the disc surface) leads to 

the equation 
4

2 2 1
12

d

x

r C
   

  We
     (12) 

And setting x = 2r leads to the minimum value 
2

min

144
52

16 d

We
C


       (13) 

for the onset of the so-called bag-and-stamen or umbrella breakup. To conclude this analysis, 
it can be said that this quite simple modeling leads to a proposed range for the bag breakup of 
[23-52] compatible with previous and present (only the largest peak is in this range) 
incompressible measurements. 

5 Turbulent cascading mechanism 
During the preceding events, numerous tiny droplets are produced as a result of the 

burst of the bag. Greatly different from the first two narrow peaks, their size distribution is 
very wide. This section will be devoted to the interpretation of this widespread distribution of 
fragments. 
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It is postulated thereafter that this widespread distribution is the image of the 
widespread distribution of vortices in turbulent flows, a phenomenon known as 
intermittencies. In [12] a detailed scenario of turbulent intermittencies is devised thank to a 
self-avoiding random vortex stretching mechanism which ultimately results in a log-stable 
distribution of vortices. In this work, in a very classic way, the size of the most common 
vortices is given by the Taylor micro scale and the size of the smallest vortices by the 
Kolmogorov scale. Stable distributions are defined by four parameters. These are proved to be 
 = 1.70 (theoretically) and 1.68 (experimentally) for the stability index,  = -1 for the 
asymmetry parameter (both theoretically and experimentally, the resulting distributions are 
said to be totally skewed to the left), the scale parameter is given by 

ln ln




 

  
 

,       (14) 

and the shift parameter ln is given by the average dissipation of turbulent kinetic energy per 
unit volume and is therefore related to the large scale of the flow.  
It is in the present experiment quite difficult to estimate a priori the different scales of 
turbulence. Setting some reference values for the turbulent kinetic energy and the large scale 
of is required [32], let us try to do so: 

3 3
2

6
int

' 2
5900 /

1350.10

u
m s

L
    3     (15) 

20 137
k

m 


    (Magnitude 2.13)   (16) 

1/ 43

3 m
 


 
  
 

 (Magnitude 0.48)   (17) 

 

FIG. 6: The bag-breakup wide peak is fitted with a log-stable distribution of stability parameter close to 1.68 

Note that the value of the turbulent fluctuating velocity inside the liquid phase has been 
identified with the RMS fluctuation of the droplets velocity and is therefore as likely to 
represent the fluctuation of the air velocity; anyway the value of turbulence dissipation rate  
can thus be quite underestimated. However the resulting Taylor micro scale seems to be a 
good order of magnitude of the most common droplets. Yet some droplets whose sizes are 
located under the estimated Kolmogorov scale are also observed. While this could be related 
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to the underestimation of the turbulence dissipation, this could also be related to some 2-
phase ambiguity of the measuring device where big droplets can be interpreted as very small 
one (hopefully they are not very numerous). To circumvent this potential problem and to stay 
closer to the 1.6 decade dynamic, the bag number PDF has been fitted with a log-stable law 
(cf. [16] for the fitting procedure) in the magnitude range [0.8, 2.5]. The result is shown in 
figure 6. The value of the stability parameter is found to be 1.688 very close to the 
experimental value of 1.684 found in [12] for turbulent intermittencies (a fitting on the [0,2.5] 
magnitude range gives the value 1.70). Using (14) and values (15), (16), (17), the expected 
value of the scale parameter for the turbulent dissipation is found to be ln = 2.2. Present 
fitting of droplets PDF led to a scale parameter lnd equals to 1.1 i.e. about half the scale 
parameter of the turbulent dissipation.  

1
ln ln2d         (18) 

It seems, at first, rather difficult to relate, theoretically, this new scale parameter to the 
previous turbulent intermittency scale parameter. It is well known that breakup of the bag 
leads to the formation of filaments which then turn into droplet [31], therefore volume of the 
droplet shall be related in a way to the size of these filaments. However the very nature of 
these filaments remains unknown .As they are seemingly coherent structures, a possible 
explanation could be that they are composed of vortex filaments resulting from a turbulent 
vortex cascading mechanism. Yet, this consideration can only be qualitative. 

A possible scenario leading to more quantitative value, has been given by Hinze 
[33,15] when he devised a mechanism of droplets breakup by the turbulence of the carrier 
phase. It can be easily adapted to a situation where the turbulence inside the (carried) fluid 
leads to interface creation and to the formation of droplets. Let us equate the turbulent 
dynamic pressure at the surface, induced by either inner or outer movements, to the surface 
tension pressure of a cylindrical filament of diameter d centered in x (this leads to a turbulent 
breakup condition for a droplet of diameter d): 

    2
1
2 / 2L u x d u x

d

       (19) 

Then, using Kolmogorov 4/5th law, one gets: 

 
3/5

2 /5 2 /55
2

2
d

L

d
 


 
  
 

,    (20) 

Therefore 
   2

5ln lnd    cst     (21) 

and the following relation between scale parameters could be expected: 
2

ln ln5d        (22) 

This leads to an expected value of 0.9 for d whereas 1.1 was measured. Agreement is not 
perfect and could be due to the harsh estimates of the different turbulent scales and to some 
uncertainty on the parameter estimation of the log-stable law. However the minus sign in (11) 
reverse the skewness of the stable distribution and the skewness parameter of the distributions 
of ln(d) and ln() shall be equal but opposite. It is therefore not compatible with present 
measurements (lnd = -1) and the log-stable turbulence model (ln = -1). Moreover a simple 
computation of the order of magnitude in (10) leads to: 

   
3/5

2/5 2/55
2

2 0.072
5900 221  (magnitude 2.3)

1000
d m   

 
  (23) 

This gives a good order of magnitude of the Sauter Mean Diameter of the bag but also 
indicates that smaller droplets shall be stable. Both these arguments indicate that inner 
turbulence in the mother droplet cannot be considered to be the mechanism by which the 
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droplets resulting from the bag breakup do appear. Note that considering that turbulent 
movements of the air leads to the breakup of droplets(i.e. replacing L by G as Hinze 
originally did) leads to higher values in (23) 

Therefore finding another model seems necessary. Liu and Reitz observed [31] that 
the breakup of the bag resulted in numerous tiny filaments which then reorganize into 
droplets. These ligaments can then be covered, according to Pr Villermaux [20,34], by small 
balls (blobs) which add up their volume to make the final droplet. By making some 
hypotheses about so-called interaction layers, which can be (roughly) understood as a 
hypothesis of independence of the size of the covering balls whose radius are supposed to be 
exponentially distributed [35], this results in a self-convolution process leading to a gamma 
PDF (i.e. a product of a power law and a exponential). The conclusion is interesting but some 
hypothesis concerning these interaction layers seems questionable [34]. It is known that 
lognormal PDF can be replaced by gamma PDF in some turbulence modeling [36], but this 
make intermittency disappear as the tail of the distribution is much shorter. Unfortunately, 
since high-speed imaging leads to a limited range of droplets size, Pr Villermaux and 
coworkers use less than a decade to comfort their model. Nevertheless, the physical insight 
contained in their work seems interesting and may be adapted to give another interpretation of 
present bag droplets PDF.  

Let us suppose that the fundamentals blobs are of radii equal to the Kolmogorov scale 
and that the interaction layers are the results of the agitation by the turbulence of the flow. 
Since the surface energy needed to form the filament does not seem to come from the 
turbulent motion developing inside the water (cf. (23)), let us suppose that this energy directly 
come from the average kinetic of the fluid (the minimum droplet size in this case is                 
d = 2/U2  90nm much below what is observed; nevertheless this also means that such an 
energy source is available) and that the mixing of the spray with the air is the result of the 
natural expansion of the jet. Let us suppose that coherent structures developing inside the 
water are more able to resist to this mixing process but ultimately recess thanks to an 
agglomeration process. Then the size distribution n(d,t) of droplets can given by 
Smoluchowski’s equation [37]: 

             1
2 0 0

,
, , , , , ,

dn d t
a d n d t n t d n d t a d n t d

t
      


   

     (24) 

where a is the aggregation kernel. If a is supposed constant this equation has an analytical 
solution [38] and the first order moments of the PDF are given by: 

    0
0

0

2

2

n
n t m t

an t
 


    (25) 

    1 0 0 0m t d n m t      (26) 

So that the average length reads: 
 
 

1 0
0

0 2

m t an t
d d

m t
       (27) 

d0 is the initial value of the blobs diameter or filaments thickness, n0 is their initial numeric 
density per unit volume, hence the product of these two quantities can be considered as the 
cumulated filament length per unit volume. Let us suppose that the aggregation speed is 

governed by the gradient of the fluctuating velocity i.e. /a u x      i.e. is the inverse 

of Kolmogorov turbulent time . Let us suppose that this aggregation characteristic time is 
much shorter than the overall aggregation time t which will be supposed equal to the turbulent 
integral time int i.e. aggregation can be supposed to happen inside the largest eddies.  
Using standard approximation [32], the integral scale can be written 
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1 1
2 2

6
int

int

1350.10
551

6

L
s

k
 



       (28) 

which is, as can be expected, much larger than the Kolmogorov time scale given by 
51.510

50
5900

G s
 




       (29) 

Using (27), (28) and (29), the droplet size can be written: 

 
 

1
2

1
2

1 0 int int
0

0 2 2 G

m t n Ll
d d

m t k

  
 

       (30) 

Therefore the expected scaling ½ between droplet size and turbulent energy dissipation (cf. 
Eq. 18) is recovered. Actually, the present modelling has been devised in order to recover this 
scaling. Actual test of this dependency is however quite difficult as it is hard to make sensible 
changes to the turbulence parameters without changing either the atomization device or the 
atomization regime. However the same dependency has been recovered for a very different 
atomization mechanism: a full cone pressure swirl nozzle [39], this therefore seems to 
indicate that this model has some relevance. Further tests will however be required to verify 
this dependency. To conclude with this section, let us pinpoint that the present model is very 
close to some micro mixing model developed in chemical engineering [40] where 
Kolmogorov time scale is the reference mixing time.  

6 Conclusion 
In this work, it has been shown that for some high flow-rate industrial spray, in the bag-

breakup atomization mechanism, the drop PDF was composed of three peaks. The first two 
peaks are narrow and correspond respectively to the mother droplet peak and to the peak of 
daughter droplets created by burst of the basal ring, or rim of the bag. The ratio 2:1 between 
these two peaks can be adequately explained by a combination of Rayleigh-Taylor instability 
and Droplet Distortion and Breakup modeling. An interesting upshot of this model is that it 
accurately predicts the transition between the bag-breakup and the bag-and-stamen or 
umbrella breakup regime. The third peaks related to the bag breakup leads to a very wide 
range of fragments. The most common size of these fragments can be related to the Taylor 
scale or size of the most common turbulent eddies. These eddies possibly develop inside the 
droplet during the formation of the bag and its subsequent bursting into numerous filaments. 
The size PDF of the resulting droplets is very close to log-stable distribution used in 
turbulence intermittency modeling and a possible scenario is built in order to explain the 
values of the observed parameters and their relative dependency: the value of the stability 
index is found to be equal to 1.68 as in turbulence intermittency experiments (theory leads to 
a value close to 1.70), the value of the skewness parameter is set to -1 and the value of the 
scale parameter seems to be half the value of the scale parameter of the turbulence energy 
dissipation distribution. The value of the shift parameter is set by the large scale of the flow 
i.e. by the wavelength of the main instability mechanism, here Rayleigh-Taylor instability. 
Though the relationship between scale parameters has still to be investigated more 
thoroughly, let us pinpoint that one of the main advantage of the present modeling is that it 
does not introduce any new parameter. It is our hope that the physical insight contained in our 
model will help in the design of future nozzles. 
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8 Appendix 

 

FIG. 7: Results for the 665-042 Lechler Nozzle 40 cm below the exit/ 
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