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A potential lagrangian formulation of ideal MHD

Bruno Després

January 12, 2010

Résumé On propose une reformulation du système de la magnétohydro-
dynamique idéale en variable de Lagrange comme un système étendu de type
hyperélastique. L’hyperbolicité est étudiée au travers du tenseur acoustique qui
est strictement positif pour toute direction non orthogonale au champ magné-
tique. L’extension à la formulation eulérienne est présentée ainsi que quelques
pistes pour la définition de méthodes numériques.

Abstract

We propose a reformulation of ideal magnetohydrodynamics written in

the lagrangian variable as an enlarged system of hyperelastic type, with a

specific potential. We study the hyperbolicity of the model and prove that

the acoustic tensor is positive for all directions which are non orthogonal

to the magnetic field. The consequences for eulerian ideal magnetohydro-

dynamics and for numerical discretization are briefly discussed at the end

of this work.

1 Introduction

Ideal magnetohydrodynamics models the strong interaction of a charged fluid
with an electromagnetic field, see [16, 15]. It has fundamental applications in
computational plasma physics and for astrophysical simulations. The model
admits a fully conservative formulation























∂tρ+ ∇ · (ρu) = 0,

∂t(ρu) + ∇ ·
(

ρu ⊗ u + pI + |B|2

2µ0

I − B⊗B

µ0

)

= 0, µ = 4π,

∂t(ρe+ |B|2

2µ0

) + ∇ ·
(

ρue+ pu + (u∧B)∧B

µ0

)

= 0,

∂tB −∇ ∧ (u ∧ B) = 0.

(1)

This system is supplemented by the divergence free condition for the magnetic
field

∇ · B = 0. (2)

This constraint is actually an involutive equation, that is it is automatically
satisfied for all t > 0 provided it holds at t = 0. On a physical ground this
relation is a fundamental one and is part of the system. The free divergence
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constraint is closely connected to the entropy balance. For smooth solutions one
can prove that

∂t(ρS) + ∇ · (ρSu) = − (B,u)

ρT
∇ · B. (3)

Here S is the physical entropy. It is a function of the internal energy ε =
e − 1

2 |u|
2

and of the specific volume τ = 1
ρ
, such that the second principle of

the thermodynamics TdS = dε + pdτ holds. Of course the right hand side in
(3) vanishes for magnetic fields (2).

A considerable attention has been paid recently to the analysis of (1) since
the understanding of the structure of this system is the key for a coherent,
stable and consistent discretization. We refer to [18, 20, 19, 6]. See also [10, 2]
for a discretization of lagrangian ideal MHD. A comprehensive reference is the
chapter about ideal MHD in the monograph [15] and references therein. In
most of these references one uses the eigenstructure of (1) to construct Riemann
solvers. The multi-dimensional case reveals to be much more difficult, essentially
because one cannot eliminate (2) by simple means as in dimension one. It has the
consequence that the eigenstructure of (1) is spoiled, and missing eigenvectors
make the design of Riemann solver problematic. The seminal paper of Powell
[19] is a good example. In this reference the author modifies (1) with a formally
non zero right hand side























∂tρ+ ∇ · (ρu) = 0,

∂t(ρu) + ∇ ·
(

ρu ⊗ u + pI + |B|2

2µ0

I − B⊗B

µ0

)

= −B∇ · B,
∂t(ρe+ |B|2

2µ0

) + ∇ ·
(

ρue+ pu + (u∧B)∧B

µ0

)

= (u,B)∇ · B,
∂tB −∇ ∧ (u ∧ B) = −u∇ · B.

(4)

The entropy law becomes

∂t(ρS) + ∇ · (ρSu) = 0 (5)

for smooth solutions. This eigenstructure of this system now admits a full set
of real eigenvalues and eigenvectors, but at the price of adding a formally non
zero right hand side. By comparisons of (1-3) and (4-5) it seems that one
has to choose between a conservative formulation (1) with a non conservative
entropy condition (3) and a non conservative formulation (4) endowed with a
conservative entropy condition (5). At the continuous level it makes no harm
since the involutive condition holds true. The real problem is a the discrete
level since the discrete preservation of the free divergence constraint is difficult
to enforce. This issue is also linked to what it called divergence cleaning, which is
a numerical procedure to insure the discrete satisfaction of the free divergence
condition. Some references are in [8, 23, 4, 15, 3]. To our knowledge this
problem has not been solved in a definitive manner, despite constant efforts. See
also [5, 21, 13] where the the compatibility of linear and non-linear Maxwell’s
equations is studied in conjunction with the free divergence problem.

In this work we study a reformulation of (1) in Lagrange coordinates by
rewriting ideal MHD as an hyperelastic like model (8) with a new potential.
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This new formulation sheds new light on a principle that was proposed by Go-
dunov [11, 12] about the advantage of having a common formulation of both
ideal MHD and elasticity. In the classical presentation [15], ideal MHD and
hyperelastic models are close but they are fundamentally different. With the
formulation proposed in this work, they share the same potential formulation:
only the potential changes. The price is to enlarge the size of the system (1) by
incorporating the gradient of deformation in the unknowns. The main result of
this work will be a proof that the satisfaction of the entropy criterion is true
for the conservative lagrangian formulation without any condition on the free
divergence of the magnetic field. This is stated in theorem 6. It shows a funda-
mental difference between lagrangian formulations of ideal MHD and eulerian
formulations.

The notations used in this work are standard. However we recall them
to have a coherent set of notations for tensors. The gradient of a vectorial

function E =





E1

E2

E3



 is ∇E =





∂x1
E1 ∂x2

E1 ∂x3
E1

∂x1
E2 ∂x2

E2 ∂x3
E2

∂x1
E3 ∂x2

E3 ∂x3
E3



. The curl of E is

∇∧E =





∂x2
E3 − ∂x3

E2

−∂x3
E1 + ∂x1

E3

∂x1
E2 − ∂x2

E1



. The divergence of E is noted ∇·Et = ∂x1
E1 +

∂x2
E2 + ∂x3

E3 = tr (∇E). The notation ∇ · Et is for the sake of compatibility
with the divergence of a matrix that will be introduced below. So the free
divergence condition for B will now be written ∇ · Bt = 0. The contraction of
two tensors (matrices), M = (mij) and N = (nij), is M : N =

∑

i,j mijnij .

The tensor product of vectors D and E is D⊗E =





D1E1 D2E1 D3E1

D1E2 D2E2 D3E2

D1E3 D2E3 D3E3



.

The product of vectors is D ∧ E =





D2E3 −D3E2

D3E1 −D1E3

D1E2 −D2E1



. As a consequence

∇∧ (D ∧ E) = ∇· (E ⊗ D − D ⊗ E). Since ∇· (D ⊗ E) = (∇ · Dt)E+(∇E)D,
the magnetic equation can be rewritten as

∂tB + (∇B)u =
(

∇ · Bt
)

u + (∇u)B −
(

∇ · ut
)

B

from which we deduce the classical relation

DtB = (∇u)B −
(

∇ · ut
)

B, Dt = ∂t + u · ∇, (6)

since B is divergence free. The physical interpretation is that the material
derivative of the magnetic field does not depend on the spatial derivative of the
magnetic field. The notation M−t stands for the inverse of the transpose of M,

that is M−t =
(

M−1
)t

.
The plan of this work is as follows. We will begin by rewriting ideal MHD

like an hyperelastic model (8) with a new potential. The hyperbolicity will be
established starting from (8). Then we will establish a non-conventional eulerian
formulation of ideal MHD. We will conclude by some numerical perspectives.
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2 Lagrangian potential ideal MHD

We will make a parallel between the structure of ideal MHD and the structure
of hyperelastic models. Using the Lagrange variable X which is defined by the
Lagrange-Euler transformation

x′(t) = u, x(0) = X, (7)

an hyperelastic model for compressible isotropic hyperelasticity writes















Dtρ0 = 0,
DtF = ∇Xu,

Dt (ρ0u) = ∇X · (ρ0∇Fϕ) ,
Dt (ρ0e) = ∇X · (ρ0u

t∇Fϕ) .

(8)

The initial density is ρ0. The notation Dt represents the material derivative,
which is also the partial derivative with time is we consider that X is frozen.
That is Dt = ∂t + u · ∇ = ∂t|X. The function F 7→ ϕ(F, S; ρ0) is a potential
and S is the entropy of the system. Another equation of the hyperelastic model
is ϕ(F, S, ρ0) = e − 1

2 |u|
2

which means that ϕ(F, S) is the internal energy.
The theory of hyperelastic models is developed for example in the recent work
[22] and references therein. See also the monograph [7]. Based an invariance
considerations, (8) must compatible with the group of rotations which means
that

ϕ(F, S, ρ0) = ψ(i1, i2, i3, S, ρ0) (9)

where ip is the invariant of degree p of the Finger Cauchy-Green tensor C, that
is

i1 = λ1 + λ2 + λ3, i2 = λ1λ2 + λ2λ3 + λ3λ2, i3 = λ1λ2λ3

where the λj are the eigenvalues of C = FtF. The force that acts on the right
hand side of the impulse equation is the first Piola-Kirkhhoff tensor

σCG = ρ0∇Fϕ. (10)

We now use this formalism and first rewrite (1) using the Lagrange variable X.

Proposition 1. For all vector fields G, one has the formula

J∇x · Gt = ∇X ·
(

Gtcof (F)
)

(11)

where J = det (F) and cof (F) is the comatrix, that is the matrix of the cofactors.

This Piola formula is true in the weak sense [7] in all dimension. �

It is immediate to show that the impulse and energy equations in (1) can be
rewritten as







ρDtu = −∇x ·
(

pI + |B|2

2µ0

I − B⊗B

µ0

)

,

ρDt

(

e+ |B|2

2µ0ρ

)

= −∇x ·
(

ut
(

pI + |B|2

2µ0

I − B⊗B

µ0

))

.
(12)
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Multiplying by J = det (F) = ρ0

ρ
, one gets the equations in the Lagrange frame







Dt(ρ0u) = −∇X ·
((

pI + |B|2

2µ0

I − B⊗B

µ0

)

cof (F)
)

,

Dt

(

ρ0e+ ρ0
|B|2

2µ0ρ

)

= −∇X ·
(

ut
(

pI + |B|2

2µ0

I − B⊗B

µ0

)

cof (F)
)

.
(13)

In principle we could apply the same method for the magnetic field B in (1).
We will not do that. Instead we remark that B is divergence free in the x frame.
The application of formula (11) to ∇x · Bt = 0 yields

∇X ·
(

Bt cof (F)
)

= 0

which shows that this vector satisfies an involutive relation in the X frame.
Actually this equation is the simplest one.

Proposition 2. One has the relation

Dt

(

cof (F)
t
B
)

= 0. (14)

From the identity Ftcof (F) = det (F) I, one obtains

Dtcof (F) = Dt (det (F))F−t − F−tDtF
tcof (F) .

Since ∇Fdet (F) = cof (F) then we obtain the formula

Dtcof (F) = (cof (F) : DtF)F−t − F−tDtF
tcof (F) .

At this point we use (6) and obtain the derivative of the product Btcof (F)

Dt

(

Btcof (F)
)

= DtB
tcof (F) + BtDtcof (F)

= ((∇xu)B − (∇x · u)B)
t
cof (F)

+Bt
(

(cof (F) : DtF)F−t − F−tDtF
tcof (F)

)

= Bt
(

∇xu
t − F−t∇Xut

)

cof (F) (= A1)

+BtF−t
(

cof (F) : ∇Xu − Ftcof (F)∇x · u
)

(= A2).

The first term A1 on the right hand side is a matrix applied to Bt. This matrix
is actually zero since by application of the chain rule

∇xu = ∇Xu∇xX = ∇XuF−1 =⇒ ∇xu
t − F−t∇Xut = 0

So A1 = 0.
The second term A2 contains the contribution Ftcof (F)∇x ·u = det (F)∇x ·

u. The other part is

cof (F) : ∇Xu = det (F)F−t : ∇Xu = det (F)∇xX
t : ∇Xu = det (F)∇x · u.

Since they subtract to each other then A2 = 0. It finishes the proof of the claim.
�
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Remark 3. A simple interpretation of the conservation law (14) is possible.
Let us consider the integration of (14) on a generic surface SX, not necessarily
closed. Then

0 = Dt

∫

SX

cof (F)
t
B · nXdσX = Dt

∫

SX

B · cof (F)nXdσX.

Let us integrate this relation between t = 0 and t = T > 0. At t = 0 cof (F) = I.
One has the well known equality cof (F)nXdσX = nxdσx, see [7]. So we find
out the equality

∫

Sx(T )

B · ndσ =

∫

Sx(0)

B · ndσ (15)

where we have used simplified notations. That is: the magnetic flux is constant
through a lagrangian surface. This is the classical frozen law [16]. Notice also
that writing (15) for all lagrangian surface Sx(0) gives back (14). Therefore
(14) and (15) are two different formulations of the frozen law.

It is convenient to introduce a new vector

C = cof (F)
t
B (16)

such that the equation (14) rewrites as DtC = 0. Since C is now constant in
time, then the magnetic field is a simple function of C and of the deformation
gradient F

B = cof (F)
−t

C =
FC

det (F)
. (17)

In view of the hyperelastic formulation (8) it is natural to introduce potential

ϕM (F, S, ρ0,C) = εg

(

det (F)

ρ0
, S

)

+
|FC|2

2ρ0µ0det (F)
, (18)

which is also equal to the total energy minus the kinetic energy. The superscript
M is here to indicate the magnetic nature of the potential. The specific volume

is τ = 1
ρ

= ρ0det (F). With this notation εg

(

det(F)
ρ0

, S
)

= εg (τ, S) which means

that this part of the potential is the classical internal energy for a gas. One can
assume a perfect gas internal energy law

εg (τ, S) =
eS

τγ−1
.

It is also natural to define the magnetic Piola-Kirkhhoff stress tensor with the
same formula as in (10), that is

σM = ρ0∇Fϕ
M . (19)

Proposition 4. One has the expression

σM = −
(

pI +
|B|2
2µ0

I − B ⊗ B

µ0

)

cof (F) . (20)
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Let us compute the differential dϕM with respect to F. To perform this
calculation we rely on two formulas. The first formula is d (det (F)) = cof (F) :

dF. The second one is d |FC|2

2 = (FC, dFC) = (FC ⊗ C) : dF. Therefore

dϕM =

(

1

ρ0
∂τεg − |FC|2

2ρ0µ0det (F)
2

)

cof (F) : dF +
1

ρ0µ0det (F)
(FC ⊗ C) : dF.

The magnetic tensor (19) is also

σM =

(

∂τεg − |FC|2

2µ0det (F)
2

)

cof (F) +
1

µ0det (F)
(FC ⊗ C)

=

((

∂τεg − |FC|2

2µ0det (F)
2

)

I +
1

µ0det (F)
2 (FC ⊗ C)F

)

cof (F)

=

((

∂τεg − |FC|2

2µ0det (F)
2

)

I +
1

µ0det (F)
2 (FC ⊗ FC)

)

cof (F) .

Then we use the second principle of thermodynamics TdS = dεg + pdτ to get
that ∂τεg = −p. And finally we replace FC by det (F)B everywhere to finish
the proof.

Therefore one has the lemma.

Lemma 5. The lagrangian form of ideal MHD can be recast as a potential
system of equation























Dtρ0 = 0,
DtC = 0,
DtF = ∇Xu,

Dt (ρ0u) = ∇X ·
(

ρ0∇Fϕ
M
)

,

Dt (ρ0e) = ∇X ·
(

ρ0u
t∇Fϕ

M
)

.

(21)

Up to the new variable C and the definition of the magnetic potential ϕM ,
the structure of this system is very close to the structure of the hyperelastic
model.

3 Hyperbolicity of lagrangian ideal MHD

The hyperbolic properties of the model (21) is related to symetrization of this
system and to the entropy property.

Theorem 6. Assume ∂Sϕg 6= 0 and ρ0 > 0. One has the entropy property

DtS = 0 (22)

for smooth solutions to (21), without any free divergence constraint.
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It is a well known property of hyperelastic models: for the completeness of
this work we redo the proof. Since ϕ(F, S, ρ0,C) = e− 1

2 |u|
2

then one has

ρ0∇Fϕ
M : DtF + ρ0∂SϕgDtS = Dt(ρ0e) − u ·Dt(ρ0u)

so

ρ0∂SϕgDtS = ∇X ·
(

ρ0u
t∇Fϕ

M
)

− u · ∇X ·
(

ρ0∇Fϕ
M
)

− ρ0∇Fϕ
M : ∇Xu = 0.

With the hypotheses ρ0∂Sϕg 6= 0 the proof is finished. �

What is surprising is that the entropy property (22) can be checked without
using the free divergence property of the magnetic property. It is the combined
use of the deformation gradient and the new variable C which is the reason.
Of course if one desires to have a correct definition of the Euler-Lagrange cor-
respondence then the involutive equations for the deformation gradient must
be used. But as far as one wants to write everything in the Lagrange variable
the involutive constraint on the magnetic field can be forgotten. It makes a
fundamental difference with the eulerian formulations (1) and (4).

The entropy property implies the hyperbolicity provided the entropy func-
tional is strictly convex. For hyperelasticity it is well known that the entropy
is only polyconvex. For (21) the entropy cannot be strictly convex with respect
to F. It is sufficient to have a look to (18) to understand that the convexity of
ϕM with respect to F is restricted to 4 independent quantities which are det (F)
and the 3 components of FC. Instead we study the acoustic magnetic tensor

AM (n) =
(

aM
ij (n)

)

1≤i,j≤3
=
(

AM (n)
)t

in the direction n = (n1, n2, n3) ∈ R
3

which is an immediate generalization of the acoustic tensor for hyperelastic
models

aM
ij (n) =

∑

1≤k,l≤3

nknl

∂2ϕM

∂Fil∂Fjk

= aM
ji (n). (23)

Theorem 7. Assume ∂Sϕg 6= 0 and ρ0 > 0. The system (21) is hyperbolic in
direction n = (n1, n2, n3) ∈ R

3 if and only if the acoustic magnetic tensor is
such that

AM (n) > 0. (24)

A detailed proof in the context of hyperelastic models may be found in [14].
See also [7] but without proof. In our case the proof proceeds as follows. The
hyperbolicity can be studied using any quasilinear reformulation of the system
(24). Since the entropy property (22) holds true unconditionally (that is without
the use of a free divergence property) then























Dtρ0 = 0,
DtC = 0,
DtF = ∇Xu,

ρ0Dtu = ∇X ·
(

ρ0∇Fϕ
M
)

,

DtS = 0,
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is a quasilinear reformulation of (22). So (22) is hyperbolic in direction n if and
only if the system























Dtρ0 = 0,
DtC = 0,
DrS = 0,
DtFij = ∂Xj

ui,

Dtui =
∑

j
∂2ϕM

∂Fij∂Fkl
∂Xj

Fkl + ∇FϕM

ρ0

∇ρ0 + ∇F∂Sϕ
M∇S,

is hyperbolic in direction n. We define two matrices

M1 = (δikδjlnl)1≤i,j≤3, 1≤k≤3 ∈ R
9×3

and

M2 =

(

∑

k

∑

l

∂2ϕM

∂Fij∂Fkl

nj

)

1≤i≤3, 1≤k,l≤3

∈ R
3×9.

Then eigenvalue problem that we need to study writes

Q









ρ0

S

F

u









= λ









ρ0

S

F

u









, Q =









0 0 0 0
0 0 0 0
0 0 0 M1

α β M2 0









∈ R
14, α, β ∈ R

3.

(25)
The exact value of α, β ∈ R have no influence. The system (22) is hyperbolic
if and only if this matrix admits a complete set of real eigenvectors and real
eigenvalues. Non zero eigenvalues λ 6= 0 are such that M2M1u = λ2ρ2

0u that is

∑

j





∑

1≤k,l≤3

nknl

∂2ϕM

∂Fil∂Fjk



uj = λ2ui ⇐⇒ AM (n)u = λ2u. (26)

• Assume that all eigenvalues µi > 0 for 1 ≤ i ≤ 3 of the acoustic tensor AM

are positive. Then λ = ±√
µi corresponds to 6 a non zero eigenvalue of (25).

Since the rank of the matrix (α, β,M2) ∈ R
3×11 is less or equal to 3, the kernel of

M2 is dimension greater or equal to 8, associated to 8 (or more) real eigenvectors
of (25) for the null eigenvalue. So Q admits a set of at least ≥ 6 + 8 = 14 real
eigenvalues and real eigenvectors. In this case (25) is hyperbolic and so is (21).

• On the other hand assume that the acoustic tensor has a null eigenvalue
µ = 0 with eigenvector u 6= 0, that is M2M1u = 0. Let us examine the vector
Z = (0, 0,M1u,u)t ∈ R

14. Then by construction

QZ = (0, 0,M1u, 0)
t 6= 0 and Q2Z = 0.

So the vector Z is in the spectral subspace associated to the eigenvalue 0, but is
not an eigenvector. The matrix Q has an Jordan bloc. In this case the problem
is not hyperbolic, but only weakly hyperbolic.

Therefore we need to compute the acoustic magnetic tensor to determine the
hyperbolicity of the problem (22).
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Proposition 8. One has the formula

AM (n) =
ρ2

ρ2
0

(

c2 +
|B|2
µ0ρ

)

(cof (F)n) ⊗ (cof (F)n) +
ρ

ρ2
0µ0

(cof (F)n,B)
2
I

(27)

−ρ (cof (F,B)n)

ρ2
0µ0

(B ⊗ (cof (F)n) + (cof (F)n) ⊗ B) .

One has to characterize (23) with the potential (18). The calculations are a

little lengthy but evident. First
∑

k,l nknl
∂2det(F)
∂Fil∂Fjk

is equal to the determinant

of the matrix where the line number i and the line number j have been replaced
by the components of the normal. Therefore this term vanishes identically for
all i and j. So one gets the classical formula

∑

k,l

nknl

∂2εg (τ0det (F) ,S)

∂Fil∂Fjk

= τ2
0 ∂ττεg

∑

k,l

nknlcof (F)il cof (F)jk

which shows that the contribution of the internal energy of the gas εg in (27) is
ρ2

ρ2

0

c2 (cof (F)n) ⊗ (cof (F)n). We have used the standard definition of the gas

sound velocity ∂ττεg = ρ2c2 > 0. It remains to study the contribution of the

magnetic part |FC|2

2ρ0µ0det(F) . The second derivative of det (F) is the reason of the

magnetic contribution |B|2

µ0ρ
in (27). The second derivative of |FC|2

2 with respect
to F is also evident to compute. And finally the mixed derivative, that is the

first gradient of |FC|2

2 tensorized by the first gradient of det (F) (and after that
symetrized), is equal to the last line in (27). �

Notice that AM (n) = ρ2

ρ2

0
P 2

AM
E (nx) where AM

E (nx) is the eulerian matrix

AM
E (nx) =

(

c2 +
|B|2
µ0ρ

)

nx ⊗ nx +
(nx,B)

2

ρµ0
I − (nx,B)

ρµ0
(B ⊗ nx + nx ⊗ B)

(28)
and (nx) is the eulerian normal such that nx = P cof (F)n, P ∈ R, which means
that the eulerian normal nx is parallel to the lagrangian one premultipled by
the comatrix.

Let us consider for convenience an orthonormal basis (n, t1, t2) such that

B = αnx + βt1, α = (nx,B) , |B|2 = α2 + β2.

Proposition 9. The eigenvalues 0 ≤ λ2
s ≤ λ2

a ≤ λ2
f of the acoustic tensor AM

E

are

λ2
s =

1

2

(

a2 −
√

a4 − 4
c2α2

ρµ0

)

, λ2
a =

α2

ρµ0
, λ2

f =
1

2

(

a2 −
√

a4 − 4
c2α2

ρµ0

)

,

where a2 = c2 + |B|2

µ0ρ
.
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In the chosen basis AM
E (nx) rewrites as

AM
E (nx) =







c2 + β2

µ0ρ
− αβ

ρµ0

0

− αβ
ρµ0

α2

ρµ0

0

0 0 α2

ρµ0






.

The rest of the computations are evident. �

The eigenvalues λs, λa and λf are the slow, Alfven and fast wave velocities
of ideal MHD. At this point of the study, the following theorem is evident.

Theorem 10. The system lagrangian MHD system (21) is hyperbolic in la-
grangian all directions n such that (cof (F)n,B) 6= 0. If (cof (F)n,B) = 0 the
system is only weakly hyperbolic, that is the eigenvalues are all real but some
eigenvectors miss.

With the eulerian normal the condition for strong hyperbolicity writes

(nx,B) 6= 0.

The condition for hyperbolicity in a given direction reduces to λ2
f > 0, that

is α 6= 0. The proof is ended.
An interpretation of this condition is possible based on the following consid-

erations. Strong hyperbolicity implies that the Cauchy problem is well posed
for a finite time [7]. Weak formulation implies that the regularity of the solution
of the Cauchy suffers for a loss of derivatives.

If one transposes this to the solution of the Riemann problem for the la-
grangian system (21) , it means that the solution of a strongly hyperbolic for-
mulation admits bounded solutions, while the solution of a strongly hyperbolic
formulation admits measured valued solutions.

This is compatible with the standard classification of discontinuous solutions
to ideal MHD [16]. Indeed if (nx,B) = 0 then the tangential components of
the velocity are discontinuous [16]. In this case the gradient of deformation is
measure valued. But if (nx,B) 6= 0 then the tangential velocities are continuous,
which does not generate a measure valued deformation gradient. In summary
the condition (nx,B) = 0. is linked to shear flows.

Remark 11. It must be emphasized that it is specific to lagrangian systems.
Eulerian ideal MHD is hyperbolic (even if the notion of hyperbolicity must take
into account the free divergence condition on B to be relevant).

Remark 12. It is also possible to include in the potential an hyperelastic part,
for example the sum of (9) and of the magnetic part of (18)

ϕF = ψ(i1, i2, i3, S, ρ0) +
|FC|2

2ρ0µ0det (F)
.

We readily obtain a model for the interaction of a strong magnetic field and
material strength that we do not discuss in detail. The final model is hyperbolic
once the hyperelastic part is. This is often the case for standard materials mod-
eled by a polyconvex equation of state [7, 14]. Physically this is because standard
elastic material cannot have pure shear flows.
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4 Eulerian formulations of ideal magnetohydro-

dynamics

Finally we write an alternative eulerian formulation of (21)






















∂tρ+ ∇x · (ρu) = 0,
∂t (ρC) + ∇x · (ρC ⊗ u) = 0
∂tF

−1 + ∇x

(

F−1u
)

= 0,
∂t (ρu) + ∇x · (ρu ⊗ u) = ∇x · σ,
∂t (ρe) + ∇x · (ρue) = ∇x · (utσ) .

(29)

This is completely standard in the context of hyperelastic models [17]. Here the
stress tensor is

σ = σMFt = −pI − |B|2
2µ0

I +
B ⊗ B

µ0
.

The equation for the magnetic field ∂tB − ∇ ∧ (u ∧ B) = 0 has been replaced
by a series of transport-like equation

{

∂t (ρC) + ∇x · (ρC ⊗ u) = 0
∂tF

−1 + ∇x

(

F−1u
)

= 0.

It is also possible [7, 14] to use the equation

∂t

(

F

detF

)

+ ∇ ·
(

F ⊗ u

detF

)

= ∇ ·
(

u ⊗ Ft

detF

)

(30)

instead of ∂tF
−1 + ∇x

(

F−1u
)

= 0.

5 Numerical perspectives

All these non standard formulations of lagrangian and eulerian ideal MHD may
be of interest for the design of numerical methods.

More specifically we have in mind to solve (1) with a Lagrange+remap ap-
proach, where the time step is decomposed in two stages. In the first stage one
uses a Lagrange formulation of the equation written in the comobile frame as
in [2]. See also [14] for the discretization of non linear hyperelastic models. For
this stage one can use (21). Then in the second stage one remaps the mov-
ing mesh onto the old one. This second stage is very easy. For example an
upwind first-order discretization with the donor-cell method is stable. So the
whole problem is the stability of the algorithm in the Lagrange phase. It is
therefore reasonable to think that theorem 6 may have immediate application
to the design of entropy compatible lagrangian discrete schemes without any
need of a discrete free divergence condition of the magnetic field. The eulerian
formulation (29-30) can also be used for numerical simulations of ideal MHD
as an alternative to (1) or (4), using for example the recent eulerian numerical
methods for hyperelasticity developed in [9, 1]. We leave these issues for further
studies.
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