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A potential lagrangian formulation of ideal MHD

On propose une reformulation du système de la magnétohydrodynamique idéale en variable de Lagrange comme un système étendu de type hyperélastique. L'hyperbolicité est étudiée au travers du tenseur acoustique qui est strictement positif pour toute direction non orthogonale au champ magnétique. L'extension à la formulation eulérienne est présentée ainsi que quelques pistes pour la définition de méthodes numériques.

Introduction

Ideal magnetohydrodynamics models the strong interaction of a charged fluid with an electromagnetic field, see [START_REF] Landau | Physique théorique, Electrodynamique des milieux continus[END_REF][START_REF] Kulikovskii | Mathematical aspects of numerical solution of hyperbolic systems[END_REF]. It has fundamental applications in computational plasma physics and for astrophysical simulations. The model admits a fully conservative formulation

           ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • ρu ⊗ u + pI + |B| 2 2µ0 I -B⊗B µ0 = 0, µ = 4π, ∂ t (ρe + |B| 2 2µ0 ) + ∇ • ρue + pu + (u∧B)∧B µ0 = 0, ∂ t B -∇ ∧ (u ∧ B) = 0. ( 1 
)
This system is supplemented by the divergence free condition for the magnetic field

∇ • B = 0. ( 2 
)
This constraint is actually an involutive equation, that is it is automatically satisfied for all t > 0 provided it holds at t = 0. On a physical ground this relation is a fundamental one and is part of the system. The free divergence 1 constraint is closely connected to the entropy balance. For smooth solutions one can prove that

∂ t (ρS) + ∇ • (ρSu) = - (B, u) ρT ∇ • B. ( 3 
)
Here S is the physical entropy. It is a function of the internal energy ε = e -1 2 |u| 2 and of the specific volume τ = 1 ρ , such that the second principle of the thermodynamics T dS = dε + pdτ holds. Of course the right hand side in (3) vanishes for magnetic fields (2).

A considerable attention has been paid recently to the analysis of (1) since the understanding of the structure of this system is the key for a coherent, stable and consistent discretization. We refer to [START_REF] Powell | A solutionadpatative upwind scheme for idela magnetohydrodynamics[END_REF][START_REF] Roe | Notes on the eigensystem of magnetohydrodynamics[END_REF][START_REF] Powell | An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)[END_REF][START_REF] Cargo | Roe matrices for ideal mhd and systematic construction of roe matrices for systems of conservation laws[END_REF]. See also [START_REF] Gallice | Positive and entropy stable godunov-type schemes for gas dynamics and mhd equations in lagrangian or eulerian coordinates[END_REF]2] for a discretization of lagrangian ideal MHD. A comprehensive reference is the chapter about ideal MHD in the monograph [START_REF] Kulikovskii | Mathematical aspects of numerical solution of hyperbolic systems[END_REF] and references therein. In most of these references one uses the eigenstructure of (1) to construct Riemann solvers. The multi-dimensional case reveals to be much more difficult, essentially because one cannot eliminate (2) by simple means as in dimension one. It has the consequence that the eigenstructure of ( 1) is spoiled, and missing eigenvectors make the design of Riemann solver problematic. The seminal paper of Powell [START_REF] Powell | An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)[END_REF] is a good example. In this reference the author modifies (1) with a formally non zero right hand side

           ∂ t ρ + ∇ • (ρu) = 0, ∂ t (ρu) + ∇ • ρu ⊗ u + pI + |B| 2 2µ0 I -B⊗B µ0 = -B∇ • B, ∂ t (ρe + |B| 2 2µ0 ) + ∇ • ρue + pu + (u∧B)∧B µ0 = (u, B) ∇ • B, ∂ t B -∇ ∧ (u ∧ B) = -u∇ • B. (4) 
The entropy law becomes

∂ t (ρS) + ∇ • (ρSu) = 0 (5)
for smooth solutions. This eigenstructure of this system now admits a full set of real eigenvalues and eigenvectors, but at the price of adding a formally non zero right hand side. By comparisons of (1-3) and (4-5) it seems that one has to choose between a conservative formulation (1) with a non conservative entropy condition (3) and a non conservative formulation (4) endowed with a conservative entropy condition [START_REF] Brenier | Hydrodynamic structure of the augmented Born-Infeld equations[END_REF]. At the continuous level it makes no harm since the involutive condition holds true. The real problem is a the discrete level since the discrete preservation of the free divergence constraint is difficult to enforce. This issue is also linked to what it called divergence cleaning, which is a numerical procedure to insure the discrete satisfaction of the free divergence condition. Some references are in [START_REF] Dai | On the divergence-free condition and conservaton laws in numerical simulations for supersonic magnetohydrodynamic flows[END_REF][START_REF] Zachary | A high-order godunov method for multidimensional magnetohydrodynamics[END_REF][START_REF] Brackbill | The effect of no zero ∇ • b on the numerical solution of the magnetohydrodynamics equations[END_REF][START_REF] Kulikovskii | Mathematical aspects of numerical solution of hyperbolic systems[END_REF][START_REF] Bouchut | Ann approximate Riemann solver for ideal MHD based on relaxation[END_REF]. To our knowledge this problem has not been solved in a definitive manner, despite constant efforts. See also [START_REF] Brenier | Hydrodynamic structure of the augmented Born-Infeld equations[END_REF][START_REF] Serre | Hyperbolicity of the non linear models of Maxwell's equations[END_REF][START_REF] Kiessling | Electromagnetic field theory without divergence problems. I. The Born legacy[END_REF] where the the compatibility of linear and non-linear Maxwell's equations is studied in conjunction with the free divergence problem.

In this work we study a reformulation of (1) in Lagrange coordinates by rewriting ideal MHD as an hyperelastic like model [START_REF] Dai | On the divergence-free condition and conservaton laws in numerical simulations for supersonic magnetohydrodynamic flows[END_REF] with a new potential. This new formulation sheds new light on a principle that was proposed by Godunov [START_REF] Godunov | Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media[END_REF][START_REF] Godunov | Lois de conservation et intégrales d'énergie des équations hyperboliques[END_REF] about the advantage of having a common formulation of both ideal MHD and elasticity. In the classical presentation [START_REF] Kulikovskii | Mathematical aspects of numerical solution of hyperbolic systems[END_REF], ideal MHD and hyperelastic models are close but they are fundamentally different. With the formulation proposed in this work, they share the same potential formulation: only the potential changes. The price is to enlarge the size of the system (1) by incorporating the gradient of deformation in the unknowns. The main result of this work will be a proof that the satisfaction of the entropy criterion is true for the conservative lagrangian formulation without any condition on the free divergence of the magnetic field. This is stated in theorem 6. It shows a fundamental difference between lagrangian formulations of ideal MHD and eulerian formulations.

The notations used in this work are standard. However we recall them to have a coherent set of notations for tensors. The gradient of a vectorial

function E =   E 1 E 2 E 3   is ∇E =   ∂ x1 E 1 ∂ x2 E 1 ∂ x3 E 1 ∂ x1 E 2 ∂ x2 E 2 ∂ x3 E 2 ∂ x1 E 3 ∂ x2 E 3 ∂ x3 E 3   . The curl of E is ∇ ∧ E =   ∂ x2 E 3 -∂ x3 E 2 -∂ x3 E 1 + ∂ x1 E 3 ∂ x1 E 2 -∂ x2 E 1   . The divergence of E is noted ∇ • E t = ∂ x1 E 1 + ∂ x2 E 2 + ∂ x3 E 3 = tr (∇E)
. The notation ∇ • E t is for the sake of compatibility with the divergence of a matrix that will be introduced below. So the free divergence condition for B will now be written ∇ • B t = 0. The contraction of two tensors (matrices), M = (m ij ) and

N = (n ij ), is M : N = i,j m ij n ij .
The tensor product of vectors D and

E is D ⊗ E =   D 1 E 1 D 2 E 1 D 3 E 1 D 1 E 2 D 2 E 2 D 3 E 2 D 1 E 3 D 2 E 3 D 3 E 3   .
The product of vectors is

D ∧ E =   D 2 E 3 -D 3 E 2 D 3 E 1 -D 1 E 3 D 1 E 2 -D 2 E 1   . As a consequence ∇ ∧ (D ∧ E) = ∇ • (E ⊗ D -D ⊗ E). Since ∇ • (D ⊗ E) = (∇ • D t ) E + (∇E) D,
the magnetic equation can be rewritten as

∂ t B + (∇B) u = ∇ • B t u + (∇u) B -∇ • u t B
from which we deduce the classical relation

D t B = (∇u) B -∇ • u t B, D t = ∂ t + u • ∇, (6) 
since B is divergence free. The physical interpretation is that the material derivative of the magnetic field does not depend on the spatial derivative of the magnetic field. The notation M -t stands for the inverse of the transpose of M, that is

M -t = M -1 t .
The plan of this work is as follows. We will begin by rewriting ideal MHD like an hyperelastic model [START_REF] Dai | On the divergence-free condition and conservaton laws in numerical simulations for supersonic magnetohydrodynamic flows[END_REF] with a new potential. The hyperbolicity will be established starting from [START_REF] Dai | On the divergence-free condition and conservaton laws in numerical simulations for supersonic magnetohydrodynamic flows[END_REF]. Then we will establish a non-conventional eulerian formulation of ideal MHD. We will conclude by some numerical perspectives.

Lagrangian potential ideal MHD

We will make a parallel between the structure of ideal MHD and the structure of hyperelastic models. Using the Lagrange variable X which is defined by the Lagrange-Euler transformation

x ′ (t) = u, x(0) = X, (7) 
an hyperelastic model for compressible isotropic hyperelasticity writes

       D t ρ 0 = 0, D t F = ∇ X u, D t (ρ 0 u) = ∇ X • (ρ 0 ∇ F ϕ) , D t (ρ 0 e) = ∇ X • (ρ 0 u t ∇ F ϕ) . (8) 
The initial density is ρ 0 . The notation D t represents the material derivative, which is also the partial derivative with time is we consider that X is frozen.

That is

D t = ∂ t + u • ∇ = ∂ t|X . The function F → ϕ(F, S; ρ 0 ) is a potential
and S is the entropy of the system. Another equation of the hyperelastic model is ϕ(F, S, ρ 0 ) = e -1 2 |u| 2 which means that ϕ(F, S) is the internal energy. The theory of hyperelastic models is developed for example in the recent work [START_REF] Wagner | Symmetric hyperbolic equations of motion for a hyperelastic material[END_REF] and references therein. See also the monograph [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. Based an invariance considerations, (8) must compatible with the group of rotations which means that ϕ(F, S, ρ

0 ) = ψ(i 1 , i 2 , i 3 , S, ρ 0 ) (9) 
where i p is the invariant of degree p of the Finger Cauchy-Green tensor C, that is

i 1 = λ 1 + λ 2 + λ 3 , i 2 = λ 1 λ 2 + λ 2 λ 3 + λ 3 λ 2 , i 3 = λ 1 λ 2 λ 3
where the λ j are the eigenvalues of C = F t F. The force that acts on the right hand side of the impulse equation is the first Piola-Kirkhhoff tensor

σ CG = ρ 0 ∇ F ϕ. (10) 
We now use this formalism and first rewrite (1) using the Lagrange variable X.

Proposition 1. For all vector fields G, one has the formula

J∇ x • G t = ∇ X • G t cof (F) ( 11 
)
where J = det (F) and cof (F) is the comatrix, that is the matrix of the cofactors.

This Piola formula is true in the weak sense [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] in all dimension.

It is immediate to show that the impulse and energy equations in (1) can be rewritten as

   ρD t u = -∇ x • pI + |B| 2 2µ0 I -B⊗B µ0 , ρD t e + |B| 2 2µ0ρ = -∇ x • u t pI + |B| 2 2µ0 I -B⊗B µ0 . ( 12 
)
Multiplying by J = det (F) = ρ0 ρ , one gets the equations in the Lagrange frame

   D t (ρ 0 u) = -∇ X • pI + |B| 2 2µ0 I -B⊗B µ0 cof (F) , D t ρ 0 e + ρ 0 |B| 2 2µ0ρ = -∇ X • u t pI + |B| 2 2µ0 I -B⊗B µ0 cof (F) . (13) 
In principle we could apply the same method for the magnetic field B in (1). We will not do that. Instead we remark that B is divergence free in the x frame.

The application of formula [START_REF] Godunov | Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media[END_REF] to

∇ x • B t = 0 yields ∇ X • B t cof (F) = 0
which shows that this vector satisfies an involutive relation in the X frame. Actually this equation is the simplest one.

Proposition 2. One has the relation

D t cof (F) t B = 0. ( 14 
)
From the identity F t cof (F) = det (F) I, one obtains

D t cof (F) = D t (det (F)) F -t -F -t D t F t cof (F) .
Since ∇ F det (F) = cof (F) then we obtain the formula

D t cof (F) = (cof (F) : D t F) F -t -F -t D t F t cof (F) .
At this point we use [START_REF] Cargo | Roe matrices for ideal mhd and systematic construction of roe matrices for systems of conservation laws[END_REF] and obtain the derivative of the product B t cof (F)

D t B t cof (F) = D t B t cof (F) + B t D t cof (F) = ((∇ x u) B -(∇ x • u) B) t cof (F) +B t (cof (F) : D t F) F -t -F -t D t F t cof (F) = B t ∇ x u t -F -t ∇ X u t cof (F) (= A 1 ) +B t F -t cof (F) : ∇ X u -F t cof (F) ∇ x • u (= A 2 ).
The first term A 1 on the right hand side is a matrix applied to B t . This matrix is actually zero since by application of the chain rule

∇ x u = ∇ X u∇ x X = ∇ X uF -1 =⇒ ∇ x u t -F -t ∇ X u t = 0 So A 1 = 0. The second term A 2 contains the contribution F t cof (F) ∇ x •u = det (F) ∇ x • u. The other part is cof (F) : ∇ X u = det (F) F -t : ∇ X u = det (F) ∇ x X t : ∇ X u = det (F) ∇ x • u.
Since they subtract to each other then A 2 = 0. It finishes the proof of the claim. Remark 3. A simple interpretation of the conservation law ( 14) is possible. Let us consider the integration of ( 14) on a generic surface S X , not necessarily closed. Then

0 = D t S X cof (F) t B • n X dσ X = D t S X B • cof (F) n X dσ X .
Let us integrate this relation between t = 0 and t = T > 0. At t = 0 cof (F) = I.

One has the well known equality cof (F) n X dσ X = n x dσ x , see [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. So we find out the equality

Sx(T ) B • ndσ = Sx(0) B • ndσ ( 15 
)
where we have used simplified notations. That is: the magnetic flux is constant through a lagrangian surface. This is the classical frozen law [START_REF] Landau | Physique théorique, Electrodynamique des milieux continus[END_REF]. Notice also that writing [START_REF] Kulikovskii | Mathematical aspects of numerical solution of hyperbolic systems[END_REF] for all lagrangian surface S x (0) gives back [START_REF] Kluth | Discretization of hyperelasticity on unstructured mesh with a cell centered lagrangian scheme[END_REF]. Therefore ( 14) and ( 15) are two different formulations of the frozen law.

It is convenient to introduce a new vector

C = cof (F) t B ( 16 
)
such that the equation ( 14) rewrites as D t C = 0. Since C is now constant in time, then the magnetic field is a simple function of C and of the deformation gradient

F B = cof (F) -t C = FC det (F) . (17) 
In view of the hyperelastic formulation [START_REF] Dai | On the divergence-free condition and conservaton laws in numerical simulations for supersonic magnetohydrodynamic flows[END_REF] it is natural to introduce potential

ϕ M (F, S, ρ 0 , C) = ε g det (F) ρ 0 , S + |FC| 2 2ρ 0 µ 0 det (F) , (18) 
which is also equal to the total energy minus the kinetic energy. The superscript M is here to indicate the magnetic nature of the potential. The specific volume

is τ = 1 ρ = ρ 0 det (F). With this notation ε g det(F)
ρ0 , S = ε g (τ, S) which means that this part of the potential is the classical internal energy for a gas. One can assume a perfect gas internal energy law

ε g (τ, S) = e S τ γ-1 .
It is also natural to define the magnetic Piola-Kirkhhoff stress tensor with the same formula as in [START_REF] Gallice | Positive and entropy stable godunov-type schemes for gas dynamics and mhd equations in lagrangian or eulerian coordinates[END_REF], that is

σ M = ρ 0 ∇ F ϕ M . ( 19 
)
Proposition 4. One has the expression

σ M = -pI + |B| 2 2µ 0 I - B ⊗ B µ 0 cof (F) . ( 20 
)
Let us compute the differential dϕ M with respect to F. To perform this calculation we rely on two formulas. The first formula is d (det (F)) = cof (F) : dF. The second one is

d |FC| 2 2 = (FC, dFC) = (FC ⊗ C) : dF. Therefore dϕ M = 1 ρ 0 ∂ τ ε g - |FC| 2 2ρ 0 µ 0 det (F) 2 cof (F) : dF + 1 ρ 0 µ 0 det (F) (FC ⊗ C) : dF.
The magnetic tensor ( 19) is also

σ M = ∂ τ ε g - |FC| 2 2µ 0 det (F) 2 cof (F) + 1 µ 0 det (F) (FC ⊗ C) = ∂ τ ε g - |FC| 2 2µ 0 det (F) 2 I + 1 µ 0 det (F) 2 (FC ⊗ C) F cof (F) = ∂ τ ε g - |FC| 2 2µ 0 det (F) 2 I + 1 µ 0 det (F) 2 (FC ⊗ FC) cof (F) .
Then we use the second principle of thermodynamics T dS = dε g + pdτ to get that ∂ τ ε g = -p. And finally we replace FC by det (F) B everywhere to finish the proof. Therefore one has the lemma.

Lemma 5. The lagrangian form of ideal MHD can be recast as a potential system of equation

           D t ρ 0 = 0, D t C = 0, D t F = ∇ X u, D t (ρ 0 u) = ∇ X • ρ 0 ∇ F ϕ M , D t (ρ 0 e) = ∇ X • ρ 0 u t ∇ F ϕ M . (21) 
Up to the new variable C and the definition of the magnetic potential ϕ M , the structure of this system is very close to the structure of the hyperelastic model.

Hyperbolicity of lagrangian ideal MHD

The hyperbolic properties of the model ( 21) is related to symetrization of this system and to the entropy property. Theorem 6. Assume ∂ S ϕ g = 0 and ρ 0 > 0. One has the entropy property

D t S = 0 ( 22 
)
for smooth solutions to [START_REF] Serre | Hyperbolicity of the non linear models of Maxwell's equations[END_REF], without any free divergence constraint.

It is a well known property of hyperelastic models: for the completeness of this work we redo the proof. Since ϕ(F, S, ρ 0 , C) = e -1 2 |u| 2 then one has

ρ 0 ∇ F ϕ M : D t F + ρ 0 ∂ S ϕ g D t S = D t (ρ 0 e) -u • D t (ρ 0 u) so ρ 0 ∂ S ϕ g D t S = ∇ X • ρ 0 u t ∇ F ϕ M -u • ∇ X • ρ 0 ∇ F ϕ M -ρ 0 ∇ F ϕ M : ∇ X u = 0.
With the hypotheses ρ 0 ∂ S ϕ g = 0 the proof is finished. What is surprising is that the entropy property ( 22) can be checked without using the free divergence property of the magnetic property. It is the combined use of the deformation gradient and the new variable C which is the reason. Of course if one desires to have a correct definition of the Euler-Lagrange correspondence then the involutive equations for the deformation gradient must be used. But as far as one wants to write everything in the Lagrange variable the involutive constraint on the magnetic field can be forgotten. It makes a fundamental difference with the eulerian formulations ( 1) and ( 4).

The entropy property implies the hyperbolicity provided the entropy functional is strictly convex. For hyperelasticity it is well known that the entropy is only polyconvex. For ( 21) the entropy cannot be strictly convex with respect to F. It is sufficient to have a look to [START_REF] Powell | A solutionadpatative upwind scheme for idela magnetohydrodynamics[END_REF] to understand that the convexity of ϕ M with respect to F is restricted to 4 independent quantities which are det (F) and the 3 components of FC. Instead we study the acoustic magnetic tensor

A M (n) = a M ij (n) 1≤i,j≤3 = A M (n) t in the direction n = (n 1 , n 2 , n 3 ) ∈ R 3
which is an immediate generalization of the acoustic tensor for hyperelastic models

a M ij (n) = 1≤k,l≤3 n k n l ∂ 2 ϕ M ∂F il ∂F jk = a M ji (n). ( 23 
)
Theorem 7. Assume ∂ S ϕ g = 0 and ρ 0 > 0. The system [START_REF] Serre | Hyperbolicity of the non linear models of Maxwell's equations[END_REF] is hyperbolic in direction n = (n 1 , n 2 , n 3 ) ∈ R 3 if and only if the acoustic magnetic tensor is such that

A M (n) > 0. ( 24 
)
A detailed proof in the context of hyperelastic models may be found in [START_REF] Kluth | Discretization of hyperelasticity on unstructured mesh with a cell centered lagrangian scheme[END_REF]. See also [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] but without proof. In our case the proof proceeds as follows. The hyperbolicity can be studied using any quasilinear reformulation of the system (24). Since the entropy property [START_REF] Wagner | Symmetric hyperbolic equations of motion for a hyperelastic material[END_REF] holds true unconditionally (that is without the use of a free divergence property) then

           D t ρ 0 = 0, D t C = 0, D t F = ∇ X u, ρ 0 D t u = ∇ X • ρ 0 ∇ F ϕ M , D t S = 0,
is a quasilinear reformulation of [START_REF] Wagner | Symmetric hyperbolic equations of motion for a hyperelastic material[END_REF]. So [START_REF] Wagner | Symmetric hyperbolic equations of motion for a hyperelastic material[END_REF] is hyperbolic in direction n if and only if the system

           D t ρ 0 = 0, D t C = 0, D r S = 0, D t F ij = ∂ Xj u i , D t u i = j ∂ 2 ϕ M ∂Fij ∂F kl ∂ Xj F kl + ∇ F ϕ M ρ0 ∇ρ 0 + ∇ F ∂ S ϕ M ∇S,
is hyperbolic in direction n. We define two matrices

M 1 = (δ ik δ jl n l ) 1≤i,j≤3, 1≤k≤3 ∈ R 9×3
and

M 2 = k l ∂ 2 ϕ M ∂F ij ∂F kl n j 1≤i≤3, 1≤k,l≤3 ∈ R 3×9 .
Then eigenvalue problem that we need to study writes

Q     ρ 0 S F u     = λ     ρ 0 S F u     , Q =     0 0 0 0 0 0 0 0 0 0 0 M 1 α β M 2 0     ∈ R 14 , α, β ∈ R 3 .
(25) The exact value of α, β ∈ R have no influence. The system ( 22) is hyperbolic if and only if this matrix admits a complete set of real eigenvectors and real eigenvalues. Non zero eigenvalues λ = 0 are such that

M 2 M 1 u = λ 2 ρ 2 0 u that is j   1≤k,l≤3 n k n l ∂ 2 ϕ M ∂F il ∂F jk   u j = λ 2 u i ⇐⇒ A M (n)u = λ 2 u. (26) 
• Assume that all eigenvalues µ i > 0 for 1 ≤ i ≤ 3 of the acoustic tensor A M are positive. Then λ = ± √ µ i corresponds to 6 a non zero eigenvalue of (25).

Since the rank of the matrix (α, β, M 2 ) ∈ R 3×11 is less or equal to 3, the kernel of M 2 is dimension greater or equal to 8, associated to 8 (or more) real eigenvectors of (25) for the null eigenvalue. So Q admits a set of at least ≥ 6 + 8 = 14 real eigenvalues and real eigenvectors. In this case (25) is hyperbolic and so is [START_REF] Serre | Hyperbolicity of the non linear models of Maxwell's equations[END_REF].

• On the other hand assume that the acoustic tensor has a null eigenvalue µ = 0 with eigenvector u = 0, that is M 2 M 1 u = 0. Let us examine the vector Z = (0, 0, M 1 u, u) t ∈ R 14 . Then by construction

QZ = (0, 0, M 1 u, 0) t = 0 and Q 2 Z = 0.
So the vector Z is in the spectral subspace associated to the eigenvalue 0, but is not an eigenvector. The matrix Q has an Jordan bloc. In this case the problem is not hyperbolic, but only weakly hyperbolic. Therefore we need to compute the acoustic magnetic tensor to determine the hyperbolicity of the problem [START_REF] Wagner | Symmetric hyperbolic equations of motion for a hyperelastic material[END_REF].

Proposition 8. One has the formula

A M (n) = ρ 2 ρ 2 0 c 2 + |B| 2 µ 0 ρ (cof (F) n) ⊗ (cof (F) n) + ρ ρ 2 0 µ 0 (cof (F) n, B) 2 I (27) - ρ (cof (F, B) n) ρ 2 0 µ 0 (B ⊗ (cof (F) n) + (cof (F) n) ⊗ B) .
One has to characterize [START_REF] Zachary | A high-order godunov method for multidimensional magnetohydrodynamics[END_REF] with the potential [START_REF] Powell | A solutionadpatative upwind scheme for idela magnetohydrodynamics[END_REF]. The calculations are a little lengthy but evident. First k,l n k n l ∂ 2 det(F) ∂F il ∂F jk is equal to the determinant of the matrix where the line number i and the line number j have been replaced by the components of the normal. Therefore this term vanishes identically for all i and j. So one gets the classical formula

k,l n k n l ∂ 2 ε g (τ 0 det (F) , S) ∂F il ∂F jk = τ 2 0 ∂ τ τ ε g k,l n k n l cof (F) il cof (F) jk
which shows that the contribution of the internal energy of the gas ε g in ( 27) is

ρ 2 ρ 2 0 c 2 (cof (F) n) ⊗ (cof (F) n).
We have used the standard definition of the gas with respect to F is also evident to compute. And finally the mixed derivative, that is the first gradient of |FC| 2 2 tensorized by the first gradient of det (F) (and after that symetrized), is equal to the last line in (27).

sound velocity ∂ τ τ ε g = ρ 2 c 2 > 0.
Notice that A M (n) = ρ 2 ρ 2 0 P 2 A M E (n x ) where A M E (n x ) is the eulerian matrix

A M E (n x ) = c 2 + |B| 2 µ 0 ρ n x ⊗ n x + (n x , B) 2 ρµ 0 I - (n x , B) ρµ 0 (B ⊗ n x + n x ⊗ B)
(28) and (n x ) is the eulerian normal such that n x = P cof (F) n, P ∈ R, which means that the eulerian normal n x is parallel to the lagrangian one premultipled by the comatrix.

Let us consider for convenience an orthonormal basis (n, t 1 , t 2 ) such that

B = αn x + βt 1 , α = (n x , B) , |B| 2 = α 2 + β 2 . Proposition 9. The eigenvalues 0 ≤ λ 2 s ≤ λ 2 a ≤ λ 2 f of the acoustic tensor A M E are λ 2 s = 1 2 a 2 -a 4 -4 c 2 α 2 ρµ 0 , λ 2 a = α 2 ρµ 0 , λ 2 f = 1 2 a 2 -a 4 -4 c 2 α 2 ρµ 0 ,
where

a 2 = c 2 + |B| 2 µ0ρ .
In the chosen basis A M E (n x ) rewrites as

A M E (n x ) =    c 2 + β 2 µ0ρ -αβ ρµ0 0 -αβ ρµ0 α 2 ρµ0 0 0 0 α 2 ρµ0    .
The rest of the computations are evident. The eigenvalues λ s , λ a and λ f are the slow, Alfven and fast wave velocities of ideal MHD. At this point of the study, the following theorem is evident.

Theorem 10. The system lagrangian MHD system [START_REF] Serre | Hyperbolicity of the non linear models of Maxwell's equations[END_REF] is hyperbolic in lagrangian all directions n such that (cof (F) n, B) = 0. If (cof (F) n, B) = 0 the system is only weakly hyperbolic, that is the eigenvalues are all real but some eigenvectors miss.

With the eulerian normal the condition for strong hyperbolicity writes

(n x , B) = 0.
The condition for hyperbolicity in a given direction reduces to λ 2 f > 0, that is α = 0. The proof is ended.

An interpretation of this condition is possible based on the following considerations. Strong hyperbolicity implies that the Cauchy problem is well posed for a finite time [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF]. Weak formulation implies that the regularity of the solution of the Cauchy suffers for a loss of derivatives.

If one transposes this to the solution of the Riemann problem for the lagrangian system [START_REF] Serre | Hyperbolicity of the non linear models of Maxwell's equations[END_REF] , it means that the solution of a strongly hyperbolic formulation admits bounded solutions, while the solution of a strongly hyperbolic formulation admits measured valued solutions. This is compatible with the standard classification of discontinuous solutions to ideal MHD [START_REF] Landau | Physique théorique, Electrodynamique des milieux continus[END_REF]. Indeed if (n x , B) = 0 then the tangential components of the velocity are discontinuous [START_REF] Landau | Physique théorique, Electrodynamique des milieux continus[END_REF]. In this case the gradient of deformation is measure valued. But if (n x , B) = 0 then the tangential velocities are continuous, which does not generate a measure valued deformation gradient. In summary the condition (n x , B) = 0. is linked to shear flows. Remark 11. It must be emphasized that it is specific to lagrangian systems. Eulerian ideal MHD is hyperbolic (even if the notion of hyperbolicity must take into account the free divergence condition on B to be relevant).

Remark 12. It is also possible to include in the potential an hyperelastic part, for example the sum of ( 9) and of the magnetic part of ( 18)

ϕ F = ψ(i 1 , i 2 , i 3 , S, ρ 0 ) + |FC| 2 2ρ 0 µ 0 det (F) .
We readily obtain a model for the interaction of a strong magnetic field and material strength that we do not discuss in detail. The final model is hyperbolic once the hyperelastic part is. This is often the case for standard materials modeled by a polyconvex equation of state [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF][START_REF] Kluth | Discretization of hyperelasticity on unstructured mesh with a cell centered lagrangian scheme[END_REF]. Physically this is because standard elastic material cannot have pure shear flows.

Eulerian formulations of ideal magnetohydrodynamics

Finally we write an alternative eulerian formulation of ( 21)

           ∂ t ρ + ∇ x • (ρu) = 0, ∂ t (ρC) + ∇ x • (ρC ⊗ u) = 0 ∂ t F -1 + ∇ x F -1 u = 0, ∂ t (ρu) + ∇ x • (ρu ⊗ u) = ∇ x • σ, ∂ t (ρe) + ∇ x • (ρue) = ∇ x • (u t σ) . (29) 
This is completely standard in the context of hyperelastic models [START_REF] Miller | A conservative thre-dimensional eulerian method for coupled solidfluid shock capturing[END_REF]. Here the stress tensor is

σ = σ M F t = -pI - |B| 2 2µ 0 I + B ⊗ B µ 0 .
The equation for the magnetic field ∂ t B -∇ ∧ (u ∧ B) = 0 has been replaced by a series of transport-like equation

∂ t (ρC) + ∇ x • (ρC ⊗ u) = 0 ∂ t F -1 + ∇ x F -1 u = 0.
It is also possible [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF][START_REF] Kluth | Discretization of hyperelasticity on unstructured mesh with a cell centered lagrangian scheme[END_REF] to use the equation

∂ t F detF + ∇ • F ⊗ u detF = ∇ • u ⊗ F t detF (30) 
instead of ∂ t F -1 + ∇ x F -1 u = 0.

Numerical perspectives

All these non standard formulations of lagrangian and eulerian ideal MHD may be of interest for the design of numerical methods. More specifically we have in mind to solve (1) with a Lagrange+remap approach, where the time step is decomposed in two stages. In the first stage one uses a Lagrange formulation of the equation written in the comobile frame as in [2]. See also [START_REF] Kluth | Discretization of hyperelasticity on unstructured mesh with a cell centered lagrangian scheme[END_REF] for the discretization of non linear hyperelastic models. For this stage one can use [START_REF] Serre | Hyperbolicity of the non linear models of Maxwell's equations[END_REF]. Then in the second stage one remaps the moving mesh onto the old one. This second stage is very easy. For example an upwind first-order discretization with the donor-cell method is stable. So the whole problem is the stability of the algorithm in the Lagrange phase. It is therefore reasonable to think that theorem 6 may have immediate application to the design of entropy compatible lagrangian discrete schemes without any need of a discrete free divergence condition of the magnetic field. The eulerian formulation (29-30) can also be used for numerical simulations of ideal MHD as an alternative to (1) or (4), using for example the recent eulerian numerical methods for hyperelasticity developed in [START_REF] Favrie | Solid fluid diffuse interface model in cases of extreme deformations[END_REF][START_REF] Barton | An Eulerian finite-volume scheme for large elastoplastic deformations in solids[END_REF]. We leave these issues for further studies.

  It remains to study the contribution of the magnetic part |FC| 2 2ρ0µ0det(F) . The second derivative of det (F) is the reason of the magnetic contribution |B| 2 µ0ρ in (27). The second derivative of |FC| 2
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