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Abstract - We examined δ13C values of shallow and deep-water scallop shells as well as δ13C 

of dissolved inorganic carbon (DIC) from the Bay of Brest in western Brittany. Time series of 

shell calcite δ13C do not reflect seasonal variation in seawater δ13C, but rather show a 

consistent pattern of decreasing δ13C with age, suggesting a metabolic effect rather than direct 

environmental control. This δ13C trend reflects an increasing contribution of metabolic CO2 to 

skeletal carbonate throughout ontogeny, although this respired CO2 does not seem to be the 

major source of skeletal carbon (contribution of only 10% over the first year of life). We 

propose a model of this effect that depends on the availability of metabolic carbon relative to 

the carbon requirements for calcification. A ratio of "respired to precipitated carbon" is 

calculated, and represents the amount of metabolic carbon available for calcification. 

Interestingly, this ratio increases throughout ontogeny suggesting a real increase of metabolic 

carbon utilization into the skeleton relative to carbon from seawater DIC. This ratio allows us 

to separate two different populations of Pecten maximus of different water depth. It is 

therefore suggested that shell δ13C might be used to track differences in the metabolic activity 

of scallops from different populations. 
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1. INTRODUCTION 
 
 

The stable isotope geochemistry of biogenic CaCO3 has served as a source of 

paleoclimatic and paleoenvironmental information since the pioneering work of Urey and co-

workers (Urey, 1947; Urey et al., 1951; Epstein et al., 1953). These early works demonstrated 

that the oxygen isotopic composition of biogenic carbonate (δ18O) is governed by both the 

oxygen isotopic composition of the water in which precipitation occurs and the water 

temperature. The oxygen isotopic composition of different carbonate organisms has 

subsequently been used to reconstruct past seawater temperature in numerous environments 

(e.g., Krantz et al., 1987; Marshall, 1992; Hickson et al., 1999; Richardson, 2001; and many 

others).  

Carbonate carbon isotopic composition (δ13C) varies in a more complex fashion than 

δ18O, and the origin of its variability within the skeletons of aquatic organisms is still under 

debate (Fatherree et al., 1998). Early work suggested that skeletal carbonate originates 

directly from dissolved inorganic carbon (DIC) in seawater (e.g., Mook and Vogel, 1968; 

Killingley and Berger, 1979; Arthur et al., 1983). δ13C of carbonate skeletons was thought to 

be controlled by the isotopic composition of DIC and the pH of the water from which the 

carbonate precipitated (Romanek et al., 1992). As DIC δ13C is mainly influenced by the 

primary production and oxidation of organic matter (Kroopnick, 1985), the δ13C of carbonates 

was thought to reflect the state of these variables in the environment at the time of 

precipitation. More recently, Tanaka et al. (1986), McConnaughey et al. (1997), Furla et al. 

(2000) and others, have proposed that the process of calcification utilizes carbon from two 

reservoirs, seawater DIC and metabolic DIC, with the latter composed of respiratory CO2. 

Thus, the "external source" of carbon is the dissolved inorganic carbon pool in the 

surrounding water, which in seawater has a mean δ13C value close to 1‰. The internal carbon 
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source, i.e., metabolically derived CO2, has a highly depleted 13C isotopic signature relative to 

the external inorganic pool because organic matter consumed by organisms in the ocean is 

strongly enriched in 12C (-20 to -26‰, Fontugne and Duplessy, 1981; Lorrain et al., 2002). 

The incorporation of such carbon would result in lower δ13C values, obscuring the signal 

derived from water δ13CDIC, and would therefore impact the interpretation of the carbonate 

isotopic record. McConnaughey et al. (1997) have moderated this idea, suggesting that in 

aquatic invertebrates, less than 10% of respired CO2 is incorporated in the shell, resulting in 

only small decreases of shell δ13C (< 2‰) with respect to equilibrium values. If in corals, 

several mechanisms have been proposed to explain the incorporation of carbon derived from 

the metabolic processes of zooxanthellae and coral polyps into skeletal carbonate 

(McConnaughey, 1989; Swart et al., 1996; McConnaughey et al., 1997; Furla et al., 2000), 

few studies have developed a model for this so called "vital effect" in bivalve species (Klein 

et al., 1996). 

The biology of the scallop Pecten maximus in the Bay of Brest is well understood in terms 

of growth rate, reproduction, and energy allocation (Paulet et al., 1988; Paulet et al., 1997; 

Chauvaud et al., 1998; Saout et al., 1999; Lorrain et al., 2000; Chauvaud et al., 2001; Lorrain 

et al., 2002). In particular, daily growth striae have been described for this species from a 

natural population that was sampled intensively (Chauvaud et al., 1998) allowing the 

estimation of daily growth rates by measuring the distance between successive striae during 

the period of growth. Daily striae formation was found to be limited to a growing season and 

a complete cessation of growth was observed during the winter (Chauvaud et al., 1998). For 

example, second year scallops have an annual period of daily growth, (i.e., the growth 

between the first and the second winter growth ring visible on the shell) which continues from 

the end of March through late November with growth rates between 50 and 300µm d-1 

(Chauvaud et al., 1998; Lorrain et al., 2000).  
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In field (Owen et al., 2002a) and laboratory (Gruffydd, 1981) experimental conditions, 

striae are not produced daily as handling or manipulation of live specimens of P. maximus 

stresses the organisms and alters their growth pattern. We also never manage to reproduce this 

daily periodicity in numerous lab experiments (unpublished data). 

Therefore, the daily pattern of striae in natural populations of P. maximus allows us to 

precisely date carbonate deposits along the shell growth axis, enabling a precise calibration of 

geochemical tracers during the growth period (see also Schöne et al., 2002), something that is 

often impossible to do with other species (Jones and Quitmyer, 1996; Price and Pearce, 1997; 

Hart and Blusztajn, 1998). In some studies, for example, the linear extension rate is assumed 

to be constant and approximate calendar dates are estimated by equal time-step interpolation, 

causing a potentially large mismatch between measured skeletal isotopic values and observed 

environmental parameters (Klein et al., 1996; Hickson et al., 1999; Vander Putten et al., 

2000). In the case of Pecten maximus, using the daily growth band chronology, each 

individual geochemical value can be matched to the corresponding environmental parameter 

measured where the scallop lives, allowing accurate calibration.  

The main goal of this study is to determine the factors that control δ13C in scallop calcite. 

Because of the possibility of non-equilibrium or "vital-effect" fractionation, we monitored the 

carbon isotopic composition of DIC in ambient seawater collected while the scallops were 

growing in the Bay of Brest during 2000. We also examine calcite δ13C variability among 

different individuals that grew contemporaneously. Using knowledge of the biology of this 

species, we investigate the effect of scallop metabolism on carbon isotopic variations in shell 

calcite. Finally, we extend our observations from juvenile and adult scallops collected at a 

shallow site (Bay of Brest) to explain isotopic observations derived from scallops collected 

from deeper locations on the continental shelf. 
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2. METHODS 
 
 

Time series’ of the carbon isotopic composition (δ13C) of scallop shells were determined 

on six individuals of Pecten maximus: four from the Bay of Brest (shells A, B, C and N) and 

two from an offshore location situated on the continental shelf (shells I, J) at the western part 

of Brittany in the Iroise sea (France, Fig. 1). Specimens were collected by dredging at 30 m 

depth in the Bay of Brest (4°30’W, 48°20’N, A, B, C) in December 2000 by our group, and at 

150 m depth on the continental shelf (47°55’N, 6°25’W, I, J) during 1998 by IFREMER 

(cruise PERCOL).  

For shells A, B and C, the study was conducted using data from the scallop's second year. 

In the Bay of Brest, scallops in their second year grow from late March-early April to late 

November (Chauvaud et al., 1998) and during this period (between the first and the second 

winters), scallops exhibit the maximum number of annual days of growth, and thus 

accumulate the longest annual record (Chauvaud et al., 1998). Each year, the exact date of 

growth restart is calculated by counting and measuring daily increments from the edge to the 

first winter mark on juveniles sampled during the growth period. Dates are thus assigned to 

each striae by backdating from the collection date. Because we needed isotopic data spanning 

the full growth season, shells A, B and C were sampled after growth cessation (i.e., in 

December). The truncated growth rate series, measured on scallops from the same cohort that 

where sampled during summer 2000 have then been used to assign absolute calendar dates to 

the full year series’ recorded by individuals A, B and C collected during the subsequent 

winter.  

Older individuals were sampled, one in the Bay of Brest (shell N) and two at the deeper 

site on the continental shelf (shell I and J) to examine the effect of age on isotopic values. No 

absolute calendar assignation has been done for those shells because the aim was not to 
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compare day-by-day shell isotopic variations to environmental parameters for these 

individuals. 

Daily growth rate was determined for each scallop by measuring distances between 

successive daily growth striae using the image analysis method described in Chauvaud et al. 

(1998). Shell surfaces were cleaned using Milli-Q water and consecutive shell samples were 

collected from the outer calcitic layer of the flat valve (Roux et al., 1990) along the axis of 

maximum growth using a 300µm drill bit. Samples used for mass spectrometry weighed on 

average 76±15µg (N = 325) and represent 1 to 5 days of shell growth, depending on the 

growth rate. Calcite powder samples were acidified in 100% phosphoric acid at 70°C for 470s 

and analyzed using an automated Finnigan MAT Kiel III carbonate device coupled to a 

Finnigan MAT 252 Isotope Ratio Mass Spectrometer at Stanford University (California, 

USA). A total of 389 shell samples, 86 NBS-19 (National Institute of Standards and 

Technology, NIST SRM 8544) and 40 SLS-134 (Stanford Isotope Lab Standard) standards 

were analyzed. Replicate analyses of standards yielded δ13C standard deviations of 0.033‰ 

and 0.035‰ (± 1σ) for NBS-19 and SLS-134, respectively. Additionally, 30 (7.7%) shell 

samples were replicated, yielding an average standard deviation of 0.04‰ for δ13C. The δ18O 

results from this study will be reported elsewhere. 

For DIC δ13C determination, 48 bottom seawater samples were collected from the Bay 

of Brest between 23 January 2000 and 14 January 2001 using 5-liter NISKIN bottles. After 

collection, water samples were immediately poisoned with HgCl2 to stop biological activity 

and stored in glass-stoppered bottles until analysis. DIC δ13C samples were analyzed using a 

Fisons Optima mass spectrometer in the Laboratoire des Sciences de l’Environnement et du 

Climat (CNRS, Gif sur Yvette, France). CO2 was extracted by adding 2mL of 15N H3PO4 to a 

70mL seawater aliquot in a vacuum-tight system sparged with He gas (flow rate 80mL h-1) 
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according to Leboucher et al. (1999). Reproducibility of δ13C measurement was better than 

0.15‰. All isotope data are expressed in conventional delta (δ) notation where: 

 δ in ‰ = (((Ratio sample - Ratio reference)/(Ratio reference)) * 1000)                    (1) 

and where the isotope ratios of 13C/12C are reported relative to the international VPDB 

(Vienna Pee Dee Belemnite) standard. 

Biological data used in this paper are derived from the Bay of Brest scallop population 

survey conducted by the LEMAR laboratory (Laboratory of Marine Environmental Science in 

Brest). This study includes the sampling and dissection analysis of 20 scallops collected every 

two to four weeks since 1989. Shell heights and weights together with tissue dry weights from 

this long term survey are used in the present study. This data is used to fit shell height with 

shell and tissue weight (using power models), and to determine seasonal and annual variation 

of soft tissue weights. 

Individual oxygen consumption was estimated using an equation relating dry body mass to 

basal oxygen consumption rate in P. maximus from the bay of Brest (Suprapto, 1986):   

                                           R = 0.703 ×W0.704                                             (2) 

 where R is oxygen consumption expressed in ml h-1 g-1 and W the soft tissue dry weight of 

the individual. Although direct respirometer measurements are not available for scallops from 

the deeper offshore site, this same equation has been used for our work with specimens I and 

J. 

 
3. RESULTS 

 
 
3.1 Allometric relationships 

 
Metabolic rates were derived from biometric relationships between shell heights, weights, 

and soft tissue dry weights using more than two thousand individuals from the Bay of Brest 
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(data from 1989 to 2003). Results are presented in Fig. 2. These relationships are used in this 

study to estimate biological parameters from shell heights.  

 
 

3.2 Bay of Brest 

 
3.2.1. Scallop biology 
 

Fig. 3A shows daily growth striae thickness for the three scallops from the 30m Bay of 

Brest site. After winter cessation, growth began again at the end of March, and the rate 

increased until July to an average rate of 250µm d-1 and then decreased through November. 

All three scallops had the same general trend.  

Fig. 4 shows daily growth results for shell N (age class 4). Four annual growth cycles 

corresponding to the years 1997 to 2000, are easily deciphered. During the first growth cycle, 

the daily maximum growth rate was ~ 300 to 330µm d-1 in summer, and then progressively 

decreased to ~ 130µm d-1 the last year of life (i.e., in 2000). Based on counts of daily deposits 

during each year of growth, the annual growth period (i.e., number of days with calcite 

accretion from spring through fall) decreases with age. For example, scallop N grew for more 

than two hundred and thirty days per year at the beginning of its life but only about one 

hundred days per year at the end.  

 
3.2.2 Water 

 
The carbon isotopic composition of DIC in Bay of Brest bottom water ranged between 

-0.21 and 1.42‰ (Fig. 3B). We observe the classic seasonal cycle with low δ13C values 

during the winter and high δ13C values during the spring-summer. Enrichment in the spring 

and the summer may be attributed to preferential uptake of 12C within the photic zone by 

phytoplankton during bloom events (Hellings et al., 2000; Hellings et al., 2001). Lower δ13C 

values during the winter reflect the combined effects of autochthonous respiration and 
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increasing river input, which contains DIC enriched in 12C (Hellings et al., 2000; Hellings et 

al., 2001). 

 
 
3.2.3 Scallop shells 
 

Shell calcite δ13C values in Bay of Brest juvenile scallops range between -0.2 and 1.1‰ 

(Fig. 3C). δ13C decreases steadily from growth restart in spring through the summer and 

autumn. δ13C values for shell A were higher than those of shells B and C, until the summer 

months. The seasonal shell δ13C signal does not parallel δ13C variations in seawater DIC. 

There is no discernible relationship between shell calcite δ13C and daily growth rate (p > 0.01) 

for any of the three shells. 

For the four year-old shell (shell N), δ13C values range from ~ -1 to 1.5‰ and a pattern of 

decreasing δ13C with age is observed as well as some 0.2 to 0.5‰ oscillations, which could 

reflect seasonal cycles (Fig. 4). In 2000 (last year of growth), δ13C values range from ~ -1 to 

-0.1‰, values much more negative than for the three juvenile scallops A, B, C growing 

during the same year. A significant but weak relationship (p<0.01, r²=0.26) exists between 

shell calcite δ13C and daily growth rate for shell N. 

 
3.3 Offshore scallops 

 
3.3.1 Scallop biology 
 

As for the inshore scallops, growth cycles were observed and interpreted as annual cycles 

(Fig. 5). During the first growth cycle, the daily maximum growth rate was ~ 250 to 

300µm d-1 in summer, and then progressively decreased. The annual growth period also 

decreases with age, but was shorter than that for inshore scallops. For example, scallop J grew 

for more than one hundred days per year at the beginning of its life but only about twenty 
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days per year at the end, which is approximately one hundred days less than shell N (shallow 

site) at the beginning of its life.  

 

3.3.2 Scallop shells 
 

δ13C values ranged from 1.5 to 0.3‰ and the same pattern of decreasing δ13C with age 

was observed in both outer shelf shells (Fig. 5). These shells also contained several δ13C 

oscillations that could reveal some regular seasonal periodicity. In shell J, the δ13C values are 

stable during the first year of life. No correlation was found between growth rate and δ13C 

values for the two scallops (p > 0.1). 

 

4. DISCUSSION 
 
 

Historically, the δ13C of mollusk carbonate has been thought to respond mainly to 

variability in ambient water δ13CDIC values (e.g., Mook and Vogel, 1968; Killingley and 

Berger, 1979; Arthur et al., 1983). But our study, in agreement with many authors (e.g., 

Tanaka et al., 1987; McConnaughey et al., 1997; Hickson et al., 1999; Dettman et al., 1999), 

contradicts this premise. At the seasonal scale and over the entire lifetime of the organisms, 

we observe the same pattern of decreasing δ13C values in all six scallop shells, a pattern that is 

independent of the DIC δ13C signal. Variability in δ13C between the specimens (e.g., shell 

δ13C of scallop A is higher than that of shells B and C values for several months) suggests that 

a variable biological control exists. We suggest that variability in metabolic activity among 

the different scallops is responsible for this pattern. Heterogeneity in near-bottom seawater 

DIC δ13C may be an alternative explanation, but one that is unlikely given that all three 

scallops were recovered from a dredge haul that sampled the bottom over a distance of less 

than 500 m. 
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Theoretical equilibrium values are well established for the partitioning of 13C and 12C 

during inorganic calcite precipitation (Romanek et al., 1992). Expected calcite equilibrium 

δ13C values are about 1‰ greater than the δ13CDIC of seawater. δ13CDIC in the Bay of Brest is 

on average 0.8 (±0.4)‰, so equilibrium calcite δ13C values at in situ temperatures should be 

~1.8‰. Observed δ13C values for juvenile Bay of Brest scallop calcite range from -0.2 to 

1.1‰, significantly lower than predicted at isotopic equilibrium. Furthermore, shell δ13C 

values for the same year 2000 in the Bay of Brest are different for age class 1 and age class 4, 

i.e., lower for older scallops, confirming again that δ13CDIC was not the unique contributor to 

shell δ13C.   

Nonequilibrium incorporation of carbon in biogenic carbonates has been attributed to 

"vital effects" and even to habitat characteristics (Krantz et al., 1987; McConnaughey, 1989; 

Keller et al., 2002). Vital effects are usually separated into kinetic and metabolic isotope 

effects (e.g., McConnaughey et al., 1997; Heikoop et al., 2000) even if they are both mediated 

by biological processes and are often difficult to separate quantitatively . Kinetic effects are 

specifically related to shell growth rate, and to slower hydration and hydroxylation of CO2 by 

molecules bearing the heavy isotopes of carbon. Metabolic effects are related to production 

and incorporation of respiratory CO2 within the body of an organism (McConnaughey et al., 

1997).  

According to McConnaughey (1989) and Klein et al. (1996), kinetic isotope effects result 

in depletion of skeletal 13C, with greater degrees of isotopic disequilibria in the portions of 

carbonate skeletons that are rapidly growing. Interestingly, just the opposite relationship is 

observed in our study, with the lowest δ13C values associated with the lowest growth rates. 

Furthermore, a significant correlation between daily growth increments and scallop δ13C 

variations has been found only for one shell, the five other shells presented no correlation 

between these two parameters. Results of δ18O will be reported in another paper showing that 
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shell δ18O values follow temperature close to equilibrium, and that no ontogenetic trend are 

observed, resulting in no correlation between δ13C and δ18Ovalues. 

Therefore, kinetic isotope effects seem to be small, or if such effects exist, other processes 

overwhelm them. Owen et al. (2002b, c), working on the same species (i.e., P. maximus), also 

found that δ13C values were depleted relative to equilibrium. They explained this by a 

metabolic effect at low growth rates and combined kinetic and metabolic effects at high 

growth rates (Owen et al., 2002c). They also claimed that seasonal variations in shell growth 

rates were a governing factor influencing shell δ13C. However, if they demonstrated that there 

were δ13C differences between low growth rates (< 0.06mm d-1) and high growth rate portions 

of the shell, no relationship appears between growth rate and δ13C between 0.1 and 

0.24mm d-1 which corresponds to the major portion of the year (Fig. 4 in Owen et al., 2002c). 

We therefore believe that they have overestimated the effect of shell growth rate on shell 

δ13C. Furthermore, these authors worked with shells grown under different conditions: i) 

scallops were raised on boxes above the sediment, i.e., not in natural conditions as in our 

study; ii) one-year-old juvenile scallops were studied and their hypothesis was not compared 

with older scallops; iii) growth rates were measured once a month, and daily growth was 

estimated as a monthly average; and finally iv) isotopic measurements were made on shell 

material deposited during each month (e.g., producing a monthly average value). Our study 

used a substantially different approach. We analyzed the carbonate isotopic composition of 

individuals from natural populations of P. maximus, using several age classes and two 

locations (two different populations with juvenile and old scallops on one site). We 

determined precisely daily growth rates (see Chauvaud et al., 1998) and our isotopic sampling 

was conducted at a time interval of from ~1 to 5 days, depending on the growth rate. This 

approach allowed the comparison of seawater isotopic composition, growth rate, and shell 

isotopic composition on a daily to weekly scale rather than at a monthly scale. 
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One other possible source of 13C depletion is incorporation of pore water DIC from the 

underlying sediments. Pore water DIC is enriched in 12C due to the oxidation of sedimentary 

organic matter. Incorporation of pore fluid DIC has been proposed to explain δ13C differences 

between bivalve species or in some instances when decreasing δ13C values with increasing 

age were observed (Krantz et al., 1987; Keller et al., 2002). Keller et al. (2002) hypothesized 

that decreasing δ13C in the shell of Chamelea gallina was due to the progressive deepening of 

the mollusk into the sediment with age. This source cannot explain the decreasing δ13C 

pattern with age that we see in our study as P. maximus lives right at the same depth relative 

to the sediment surface throughout its lifetime (Paulet, private communication). However, we 

cannot rule out that some of the DIC incorporated into the shell might be from 13C-depleted 

pore waters, as scallops typically scoop out a depression in the surface of the sediment. A 

pore water influence might explain the average depletion we observe with respect to the 

equilibrium, but not the general decrease in δ13C with age. 

We now explore the possibility that a metabolic effect, implying the incorporation of 

13C-depleted respiratory CO2 into the extrapallial fluid (EPF), and subsequently into the 

precipitated carbonate is causing the observed shell calcite δ13C pattern. δ13C variability 

among the scallop shells used in this study supports the notion that differences in metabolic 

rate rather than an environmental signal are controlling shell δ13C. Tanaka et al. (1986) found 

that 35 to 85% of the shell calcite carbon came from respiratory CO2 in the bivalves Mytilus 

edulis and Mya arenaria. They proposed a simple equation to approximate the percentage of 

this metabolically derived carbon, M: 

M = 100 ×
2

1313

1313

COclmetabclDIC

calcitebclDIC

CC
CC

−−

−

−−+

−+

εδεδ
δεδ

 

where δ13CDIC and δ13Cmeta are the values of the δ13C of dissolved inorganic carbon in 

seawater and the δ13C of respired CO2, respectively; εcl-b is the enrichment factor between 
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calcite and bicarbonate (1‰ in Romanek et al., 1992); εcl-CO2 is the enrichment factor between 

calcite and aqueous CO2 (εcl-CO2 = 11.98 – 0.12 × T°C in Romanek et al., 1992). δ13Cmeta was 

estimated in their study to be the same as the δ13C value of the clam tissue. Using this mass 

balance approach, and taking into account the observed variations in δ13CDIC, δ13Ccalcite and εcl-

CO2, we find that 10 to 30% of the carbon within the scallop skeleton originates from 

metabolic CO2, with whole shells averages of 19, 23, and 22% for shells A, B and C, 

respectively. However, McConnaughey et al. (1997) explained that the Tanaka et al. equation 

was in error because of the added isotope fractionation factor, which leads to overestimated 

values. These authors have proposed another equation to account for metabolic CO2 

contribution:  

M (δ13Cmeta) + (1-M) δ13CDIC = δ13Cshell – εcl-b 

Using this equation, we found that a maximum of 10% of metabolic CO2 was incorporated 

into the shells (8, 10 and 10% for shells A, B and C, respectively) which is in agreement with 

the general findings of McConnaughey et al. (1997): the metabolic respiratory CO2 represents 

only a small portion of the carbon incorporated into shell carbonate. They modeled the effect 

of gas exchange physiology on the skeletal incorporation of respired CO2 and suggested that 

aquatic invertebrates appeared to passively absorb (and subsequently lose) about 10 times 

more CO2 from the environment than they generated through respiration. Ambient CO2 

therefore dilutes respired CO2 and prevents it from contributing much to the skeleton 

(McConnaughey, 2003) 

 However, working with Mytilus trossolus, Klein et al. (1996) found that the percentage of 

respiratory carbon was high enough to obscure the seawater δ13CDIC signal. Therefore, even if 

the incorporation of metabolic CO2 in P. maximus represents a small contribution to total 

carbon, it could still explain the trend toward more depleted values observed during ontogeny. 

Several authors have already reported a pattern of decreasing δ13C in bivalve shells (Jones et 
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al., 1983; Krantz et al., 1987; Schein et al., 1991; Roux et al., 1990; Elliot et al., 2003). If we 

consider that two carbon pools (seawater DIC and respired CO2) can be incorporated into the 

skeleton, then decreasing shell calcite δ13C can be explained by the increasing utilization of 

13C-depleted respiratory CO2 through ontogeny. Although increased utilization of respiratory 

CO2 has been previously suggested to explain this pattern (Krantz et al., 1987; Keller et al., 

2002), the underlying biology is not yet known. Krantz et al. (1987) hypothesized that the 

onset of sexual maturity and physiological changes related to gametogenesis combined with 

slower growth rates could explain trends towards lower shell δ13C values; but they did not 

propose a precise mechanism. The key question is what age-varying physiological parameter 

can explain an increasing contribution by respiratory CO2 to the centers of calcification?  

Klein et al. (1996) found significantly different δ13C values in calcite sampled within the 

same daily growth striae in Mytilus trossolus, and more specifically, higher skeletal δ13C 

values near the ventral margin than on lateral margins. Based on the work of Rosenberg et al. 

(1988, 1989), they proposed that different mantle metabolic activities in areas of different 

shell curvature influenced the δ13C composition of extrapallial fluid (EPF), and thus calcite 

δ13C in the vicinity. EPF in mollusks is the fluid located between the mantle and the shell in 

which calcification takes place (Klein et al., 1996). According to this study, calcite secreted 

from this fluid along the ventral margin of the shell, where metabolic activity is relatively 

low, receives more seawater DIC, whereas high mantle metabolic activity along lateral 

margins promote greater incorporation of metabolically derived CO2.  Klein et al. (1996) 

suggested that carbon may be a limiting resource for calcification. Consequently, competition 

for carbon from different sources may occur. When metabolic activity is low, the amount of 

respiratory carbon in the EPF is low and mussels take carbon preferentially from seawater. 

Metabolic carbon availability therefore controls shell δ13C variations to a greater degree than 

the availability of seawater DIC. Using Rosenberg et al’s (1988, 1989) proposition, Klein et 
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al. (1996) also proposed that shell growth rate is inversely proportional to mantle metabolic 

activity, as growth rates are lower at lateral margins. If we extend this idea to the scale of an 

individual mollusk’s lifetime, this theory suggests that the diminution of growth rates through 

ontogenesis leads to increased availability of respiratory CO2 in the EPF, and thus to an 

increase of respiratory carbon uptake by the skeleton. However, by comparing two different 

mussels, sampling each along the maximum growth axis, they also found that skeletal δ13C 

and growth rates were not correlated, and concluded that growth rate has minimal influence 

on shell δ13C. It appears that the concept of EPF composition, itself controlled by mantle 

metabolic activity, as a controller of shell δ13C, is valuable within a single growth band but 

not across many bands along the axis of maximum shell growth. 

 We propose a simpler model, which we illustrate with our scallop data, wherein the 

availability of metabolic carbon relative to the carbon requirements for calcification during 

mollusk growth, accounts for the observed variability in shell δ13C. First, we consider that the 

availability of metabolic CO2 is directly linked to respiratory activity (Respiratory 

quotient = 1 which means that respiration consumes O2 and produces CO2 with a 1:1 

stoichiometry), which in turn depends on the whole soft body mass of the scallop with a 

coefficient that is species specific (see Peters (1983) and Reiss (1989) for reviews). Using the 

regression function that relates shell height to soft tissue dry weight (Fig. 1A) and our shell 

growth data, we estimate the soft tissue dry weight day-by-day for each scallop. Then using 

the relation between soft tissue dry weight and oxygen consumption (Suprapto, 1986; 

Fig.6A), we estimate daily respiration by a scallop throughout ontogeny (Fig. 7A, 8A). 

Secondly, a carbon "demand" associated with calcitic shell growth was calculated from the 

daily growth rate converted to µmol C d-1 (Fig. 6B, 7B). The scallop shell is considered to be 

pure calcium carbonate. From these two relationships, we defined a "metabolic carbon 

availability" index as the ratio of respired to precipitated carbon (Fig. 6C, 7C). We 
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hypothesize that the higher the index, the more metabolic carbon is available to be 

incorporated into the shell. 

On Fig. 6, time series’ of these different parameters are shown for shells A, B and C. 

While daily oxygen consumption (and therefore available respiratory carbon) increases with 

age (Fig. 6A), daily carbon precipitation rate increases through August and then decreases 

(Fig. 6B). The resulting "metabolic carbon availability" index therefore increases 

progressively over the year, mainly as a result of the increase in soft tissue biomass. These 

results suggest that increasing amounts of metabolic carbon are therefore incorporated into the 

shells as they age, explaining the observed decreasing δ13C pattern. Furthermore, shell A has 

the lowest "metabolic carbon availability" index, suggesting that less metabolic carbon is 

incorporated into the skeleton and indeed, this scallop exhibits the highest δ13C values 

through August. After August, shell δ13C values of the three specimens are similar, in 

agreement with their similar "metabolic carbon availability" index. This isotopic and body 

mass difference between individuals, as well as the coherence of these observations with our 

proposed model, is a strong argument for our proposition.  

Fig. 7 shows that scallop N, the oldest scallop from the Bay of Brest (age class 4), exhibits 

the same general pattern with age, associated with an increase in "metabolic carbon 

availability" index that can explain the observed shell δ13C trends through ontogeny. Fig. 8 

shows similar results for scallops I and J collected at 150 m on the continental shelf, 

confirming that our "metabolic carbon availability" index can explain the observed shell δ13C 

trends for scallops of different ages from different locations.  

Although this model explains the general deceasing δ13C trends we have observed, there 

are some features that it doesn’t explain. For example, the observed apparent seasonal 

variations in δ13C in older scallops are less well-explained. Furthermore, in juvenile scallops 

from the Bay of Brest (Fig. 6C), the largest decrease of the shell δ13C values occurs during 
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spring at a time when the "metabolic carbon availability" index did not increase. We note that 

the respiration rates we input to our model are only approximations. The validity of 

employing the same equation derived by Suprapto (1986) to calculate this parameter during 

the entire period of scallop growth has not yet been tested. Further study is needed to assess 

whether different respiration equations are required for each season or for each metabolic 

window established for scallops in the Bay of Brest (Lorrain et al., 2002).  

We recognize that elucidation of the mechanism underlying carbon isotope vital effects in 

mollusks is a complex and long-standing goal. The transfer of carbon between the extrapallial 

fluid and the centers of calcification are not necessarily as straightforward and linear as we 

have suggested in this study. For example, the ratio of metabolic CO2 availability to carbonate 

precipitation rate trends towards infinity when growth rate approaches zero, suggesting the 

likelihood of a non-linear carbon isotopic response under these conditions. In addition, Zeebe 

(1999) proposed that pH variations might account for some portion of δ13C variance in 

foraminiferal calcite. It therefore seems possible that changes in EPF pH could also account 

for shell δ13C variations. Temperature very likely plays a role as well since respiration is 

known to vary with this parameter seasonally and at different locations. Those caveats could 

explain why our model is not able to assess seasonal details and we therefore believe that at 

present, our model can only be used to predict general trends in mollusk shell δ13C.  

Despite the caveats above, general trends in scallop calcite δ13C are explained by our 

"metabolic carbon availability" index. Additionally, when we use this model and plot shell 

δ13C versus the ratio of respiratory CO2 availability to carbonate precipitation rate, we see the 

separation of two different populations of P. maximus (Fig. 9). Indeed, two different slopes 

can be established for inshore and offshore scallops. Thus, even if the shell δ13C cannot be 

used to reconstruct δ13CDIC variations, it may allow discrimination of different populations 
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with different rates of metabolism and/or calcification. Further studies on populations from 

Norway to Spain will be used to test this idea. 

 

5. CONCLUSIONS 
 
 

The carbon isotopic composition of scallop calcite cannot readily be used as an isotopic 

tracer of paleoproductivity as shell δ13C does not directly respond to seawater DIC δ13C. As 

has been shown previously for other carbonate-producing organisms, scallop shell δ13C 

deviation from equilibrium can be explained by the mixing of two end member carbon pools 

with differing isotopic compositions: an external source (seawater DIC) and an internal source 

(metabolic CO2). This metabolic CO2 contributes an estimated maximum of 10% to total 

skeletal carbon, as calculated with an isotopic mixing equation. However, we show that a 

consistent decrease in shell δ13C with age, observed in both juvenile and older scallops, is 

caused by an increasing contribution of metabolic carbon to the skeleton during ontogeny. 

Increased utilization of metabolic carbon to satisfy the carbon requirements for calcification is 

suggested by the observed increase in the ratio of respiratory CO2 availability to calcite 

precipitation rate during aging.  

If this model is valid, the δ13C of skeletal calcite may be a useful tracer of scallop 

metabolism (via the amount of metabolically derived carbon that ends up in the scallop’s 

shell) in different environments and could provide an alternative method for estimating 

scallop metabolism in parallel with biological analyses. In addition, seawater DIC δ13C could 

be reconstructed from the shell δ13C signal if such a metabolic contribution could be removed 

from the signal. Further work is needed to assess precisely the metabolic carbon contribution 

to the precipitated calcium carbonate in the scallop shell.  
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Figure captions: 

 

Fig.1. Sampling stations in the Bay of Brest (shells A, B, C) and in an offshore location 

situated on the continental shelf (shells I, J) at 150 meters depth in the western part of Brittany 

(France). 

 

Fig. 2.  Biometric relationships between: A. Soft tissue dry weights (g) and shell height (mm) 

and B.  Shell weight (g) and shell height (mm). 

 

Fig. 3. Bay of Brest results in 2000: (A) Daily growth increments (µm d-1) for the three 

scallops A, B and C; (B) δ13CDIC values (‰; (C) shells δ13C values (‰) in the three scallops 

A, B and C. 

 

Fig. 4. Daily growth increments (µm d-1) and shell δ13C values (‰) for the scallop N 

(age class 4) from the Bay of Brest sampled at 30m in September 2000. Black arrows 

represent the winter growth cessations. 

 

Fig. 5. Daily growth increments (µm d-1) and shells δ13C values (‰) for the scallops I (A) and 

J (B) from the continental shelf sampled at 150m in June 1998. Black arrows represent the 

winter growth cessations. 

 

Fig. 6. A) Daily oxygen consumption (µmol d-1), B) Daily carbon precipitation (µmol d-1) and 

C) Respired to precipitated carbon ratio (i.e., "metabolic carbon availability" index) and δ13C 

values for shells A, B and C from the Bay of Brest during the year 2000. 
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Fig. 7. A) Daily oxygen consumption (µmol d-1), B) Daily carbon precipitation (µmol d-1) and 

C) Respired to precipitated carbon ratio and δ13C values for shell N from the Bay of Brest. 

 

Fig. 8. A) Daily oxygen consumption (µmol d-1), B) Daily carbon precipitation (µmol d-1) and 

C) Respired to precipitated carbon ratio and δ13C values for shells I (right) and J (left).  

 

Fig. 9. δ13C values versus respired to precipitated carbon ratio for all the shells (A, B, C, I, J 

and N). 
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