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Abstract - To test the potential of diet switching experiments in ecophysiological studies of 

marine invertebrate, stable carbon isotope ratios were measured at different seasons in the 

gonad, adductor muscle, digestive gland and gills of scallops (Pecten maximus) and oysters 

(Crassostrea gigas) held for 15 days on a constant diet of phytoplankton depleted in 
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13C. The 

aim of this study was to determine if differences in carbon incorporation could be detected 

among species, seasons and organs, and if so, whether it was consistent with their known 

energy-allocation patterns. After offering the new diet, isotope values of the different organs 

gradually shifted and significant differences among organs, seasons and species were found. 

A carbon incorporation index (CII) was calculated to compare the metabolic activity of each 

organ of the two species between day 0 and day 15. For both species, the digestive gland had 

the highest CII, the adductor muscle the lowest, while gonad and gills had intermediate 

values. The CII was generally much higher in P. maximus than in C. gigas, suggesting higher 

metabolic activity in this species. Seasonal differences in the CII were also observed for the 

two species and were interpreted as differences in metabolic activity in accordance with our 

energy allocation scenario. Therefore stable isotope diet switching experiments appear to be 

of great value for assessing metabolic orientation in bivalves. 

 

 

Keywords: energy allocation, metabolism, carbon isotopes, Pecten maximus, Crassostrea 

gigas  
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Knowledge of metabolic activity and energy allocation strategies for bivalves is of 

great interest, particularly for aquaculture. Indeed, metabolic pathways are directly or 

indirectly linked to processes important for survival or reproduction (Dalhoff 2004). 

Therefore, understanding the origin and fate of nutrients provides a mechanistic basis for 

successful rearing and reproduction of bivalves in controlled conditions for aquaculture 

purposes. For example, the same broodstock conditioning schedule repeated at different 

seasons of the year generally gives rise to many different results in terms of fecundity and 

hatching success for many mollusc species (e.g. Utting and Millican 1997; Robert and Gérard 

1999), thus revealing large seasonal trends in physiology of these organisms and making 

knowledge of their metabolic orientation of primary importance. 

General studies have provided data from single-point measurements of respiration, 

assimilation, excretion and organ weights (Vahl 1981a,b; Bayne et al. 1983; MacDonald and 

Thompson 1985a,b, 1986, 1987). However, those measures give only instantaneous data, and 

the hypothetical energy allocation scenarios produced from these types of measurements offer 

only approximations of net production and never depict the real carbon and energy fluxes 

from the environment to the animal, nor among organs within the animal. Therefore, 

development of new tools in bivalve ecophysiology appears of primary importance. 

Stable isotope techniques (e.g., C, N, H, S), usually applied in ecological and 

population biology studies (reviews by Peterson and Fry 1987; Michener and Schell 1994), 

have already been used with success in experimental studies to investigate energy allocation 

patterns (O’Brien et al., 2000; Gauthier et al., 2003; Voigt et al., 2003). These techniques are 

based on the assumption that the isotopic composition of an organism is linked to that of its 

diet. Generally, experimental protocols involve diet switching from one isotopically distinct 
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diet to another. The main principle is that the speed at which the isotopic value of an organ 

changes after a diet switch is a function of the metabolic activity of the organ, including both 

turnover and growth. For example, such an approach has been successfully applied in 

determining energy allocation to reproduction in moths (O’Brien et al., 2000), and tissue 

turnover in fishes (Herzka and Holt 2000; Bosley et al. 2002, Suzuki et al., 2005).  

Previous work on the scallop Pecten maximus (Linné 1758) in the field showed that 

tissue isotopic composition can be influenced by metabolic activity of the organism (Lorrain 

et al. 2002). We therefore expected that carbon incorporation rates would be affected by 

changes in bivalve energy demand and allocation. These carbon incorporation rates could then 

be followed in several tissues of individuals reared at different periods of the year by 

measuring δ13C after a diet switch. To test the potential of stable isotope experiments to 

effectively track carbon incorporation in bivalve species, an isotope diet switching experiment 

was carried out under controlled conditions. This work was conducted at four different 

periods of the year and on two different species, P. maximus and the oyster Crassostrea gigas 

(Thunberg 1793). These two species, intensively studied for aquaculture purposes, are known 

to show distinct seasonal behaviour, scallops having a highly regulated annual oscillation of 

reserve storage and utilisation (Saout 2000), whereas oysters tend to have a more 

opportunistic strategy of energy allocation (Enriquez-Diaz 2004). We therefore expect that the 

seasonal patterns of carbon incorporation would be more pronounced in P. maximus than in 

C. gigas. We chose several target tissues because of their different physiological functions 

and the likelihood of differences in carbon incorporation: adductor muscle, gonad, digestive 

gland and gills for both species; and the remaining tissues (i.e. labial palps, mantle and 

perigonadic tissues) for oysters. 
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2. Materials and methods 97 
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2.1. Collection of bivalves  

 

Both scallops and oysters were collected in western Brittany (France). Two-year-old 

scallops (86 ± 5mm, N = 48) were dredged in the Bay of Brest (Roscanvel, 48°20’N, 

4°30’W), whereas oysters of approximately the same age (102 ± 10mm, N = 48) were hand 

collected at low tide in the Aber Benoît (Landéda, 48°34’N, 4°37’W). Sampling was carried 

out in March, May and September 2002, and January 2003 corresponding to the four different 

experimental periods (Table 1). 

 

 

2.2. Diet switching experiments 

 

Experiments were carried out at the IFREMER Shellfish laboratory at Argenton 

(Finistère, France) in 2002 and 2003, utilizing cultured unicellular algae with low δ13C 

(caused by bubbling CO2 from a commercial cylinder into the culture medium) as a food 

source.  

Four experiments were conducted, each one during a different hypothetical temporal 

window of energy allocation for scallops and oysters (i.e. in March, June, September and 

January; Table 1). Experiments lasted 15 days to minimize the possible effect of laboratory 

acclimation and to be sure that they would reflect natural metabolism and windows of energy 

allocation. After collection, bivalves were placed in 700 litre tanks with 1 µm filtered running 

seawater for two days during which time they were not fed to empty the digestive tract. 

Afterwards, three individuals were randomly chosen and sacrificed (to represent day 0). The 
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remaining animals were then offered a mixed diet of four unicellular algal species depleted in 122 
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13C (25% Chaetoceros calcitrans, 25% Skeletonema costatum, 25% Isochrysis galbana 

named T-iso, 25% Tetraselmis chui). During all four experiments, this diet was supplied ad 

libitum using a continuous dripping device with a daily ration equal to 8 % dry weight 

algae/dry weight flesh of animal. Algal concentrations were verified each day. A mixed diet 

was preferred to a single species diet as tissue production and normal rearing are reduced and 

perturbed with single species diets (Utting and Millican 1997; Robert and Gérard 1999). Each 

experiment was conducted at the ambient water temperature (Table 1).  

At each sampling date (in general days 0, 2, 6 and 15), three individuals were taken for 

testing. Stomachs of scallops were first rinsed with a few millilitres of 0.2 µm filtered 

seawater injected via the mouth, to completely purge digestive tracts (see Lorrain et al. 2002 

for more details). Gonad, adductor muscle and digestive gland were then dissected from each 

individual. As not considered as organs of predominant role in bivalve energy strategies, gills 

of the three individuals were pooled in one sample. For oysters, the remaining tissues (mantle, 

labial palps and perigonadic tissues), generally considered as a storage tissue for this species, 

were also collected. As these remaining tissues were not sampled in scallop, results from the 

remaining oyster tissues will be regarded only as a first attempt to confirm the potential 

storage role of these tissues. All samples were frozen at -20°C until analysis. 

Dietary isotopic composition was monitored by measuring the stable isotope signature 

of algae samples (Table 1). These algae were sampled by filtering 15 ml of the mixed algae 

through a precombusted Whatman GF/F filter (nominal porosity = 0.7 µm) at different 

periods of the experiments. The filters were then stored dried in clean glass vials after 12 

hours at 60°C until analysis. 

 

2.3. Isotopic analyses 
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After freeze drying, bivalve tissue samples were ground to a homogeneous powder 

and 1 mg samples were folded into 6×4 mm tin cups for continuous flow - isotope ratio mass 

spectrometer (IRMS) analysis. Analysis was performed using a Europea Scientific ANCA-NT 

20-20 Stable Isotope Analyser with ANCA-NT Solid/Liquid Preparation Module (PDZ 

Europa Ltd., Crewz, UK, Scottish Crop Research Institute, Dundee, Scotland). The analytical 

precision (SD, N = 5) was 0.2 ‰ for C, estimated from standards analysed along with the 

samples. Triplicate analyses performed on some samples confirmed that analytical 

reproducibility was very good (0.2 ‰ maximum variation). All isotopic data are given in the 

conventional delta notation in units of parts per thousand (‰) relative to the Vienna Pee Dee 

Belemnite (VPDB) standard as follows: 

δ13Csample = (Rsample / Rstandard – 1) * 1000 where CCR 1213=  157 
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Filtered algal samples were exposed to HCl vapour for 4 h at room temperature to 

remove carbonates (Lorrain et al. 2003). The filters were then folded, placed into 9×5 tin cups 

and kept in closed vials until analysis. The samples were analysed for C content and isotope 

ratios by N. Naulet at the University of Nantes (LAIEM, UMR CNRS 6006, France) using a 

Carlo Erba NA 2100 elemental analyser coupled to a Finnigan Delta S IRMS. Analytical 

reproducibility performed on ten replicate filters was better than 0.2 ‰ (see Lorrain et al. 

2003).  

 

2.4. Carbon incorporation index  

 

To evaluate the differences in carbon incorporation among seasons, organs and 

species, we calculated a carbon incorporation index (CII). To express the actual net carbon 

change relative to the maximal expected change, such an index should be calculated as: 

 CII = [δ13Cd15 – δ13Cd0] / [δ13Cdiet15 - δ13Cdiet0] * 100 
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where δ13Cd0 = the tissue δ13C value at the beginning of the experiment, δ13Cd15 = the 172 
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tissue δ13C value at day 15; δ13Cdiet0 = the diet δ13C value before the beginning of the 

experiment and δ13Cdiet15 = the δ13C value of the diet during the experiment. 

In fact, the food carbon isotopic ratio before the start of the experiment (δ13Cdiet0) 

remains unknown. We therefore calculated the CII by replacing δ13Cdiet0 by δ13Cd0 i.e. the 

tissue δ13C value at the beginning of the experiment: 

 CII = [(δ13Cd15 - δ13Cd0) / (δ13Cdiet - δ13Cd0)] * 100 

When the tissue δ13C values were not available for day 15, a linear extrapolation based on the 

slope obtained from the two preceding values was used. For example, in September, muscle 

δ13Cd15 = δ13Cd14 + [(δ13Cd14 – δ13Cd6) / 8)]. δ13Cdiet represents the average δ13C value of the 

diet during the 15 days of the experiment (Table 1).  

 This index integrates growth and turn-over processes and therefore gives an idea of the 

quantity of metabolites allocated to a specific organ. This CII does not take into account 

eventual differential fractionation factors between organs, or some isotopic routing processes, 

as is discussed later.  

 

2.5. Data analysis 

 

Differences in carbon isotope composition between d0 and d15 were tested by 

performing a non-parametric Kruskal-Wallis test for each organ (except for the remaining 

tissues in March and the gills for which the analyses were conducted on pooled samples) and 

each experiment. The same method was applied for CII comparison. When significant 

differences were detected, results were classified using the Mann-Whitney non parametric 

procedure. Differences were considered significant at α = 0.05. 
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The decrease of the tissue δ13C over time in both species and for nearly all organs, 

indicates successful incorporation of dietary carbon from phytoplankton (Fig. 1 and 2). 

Significant carbon isotope change between d0 and d15 was observed for digestive glands, 

adductor muscles and gonads of scallops in all seasons (Fig. 1, p<0.05). For oysters, 

significant change was also observed in all experiments (p<0.05) except for adductor muscle 

during the June experiment and gonad during the September experiment (Fig. 2, p>0.05). 

Within this general decreasing trend, some differences between species, seasons, and organs 

were apparent. For example, in March, scallop and oyster digestive gland tissues showed the 

most rapid decrease of δ13C over time, with an average of 11.3 and 5.8 ‰ change in 12 days, 

whereas muscle showed only 1.6 and 0.9 ‰ for scallops and oysters, respectively (Fig. 1 and 

2). These differences can be expressed by the carbon incorporation index (CII, see Methods). 

The CII clearly reveals a strong difference between scallops and oysters (Fig. 3). Scallops 

always had a larger CII than oysters (p < 0.01), irrespective of organs and seasons, except for 

the digestive gland and muscle in January, when oysters had a higher CII than scallops. 

Muscle had always the lowest CII, except for oysters in June and September (Figure 3, 

Table 3) where muscle did not differ significantly from remaining tissues and gonad, 

respectively. Conversely, digestive gland always had the highest CII values, except for 

scallops in March and September when gonad and digestive gland did not differ significantly. 

Gonads, gills and remaining tissues showed intermediate values between muscle and digestive 

gland. 

Seasonal differences do appear in CII, but differ between species. In scallops, a 

general trend toward increasing values from March to January experiments was observed. In 

 9



221 

222 

223 

224 
225 
226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

oysters, seasonal variations are less pronounced although experiments conducted during 

winter months produced significantly higher CII values compared to other months (Table 3).  

 

 
 
4. Discussion 

 

As expected, diet-switching experiments led to changes over time in tissue carbon 

isotopic composition, confirming the potential of stable isotope studies to trace carbon within 

organisms. Indeed, the carbon incorporation index (CII, see Methods) shows significant 

differences among organs, species and seasons. We should stipulate that this CII gives 

combined information of tissue growth and turnover (see Gannes et al., 1997), which we 

could not separate in this study. Furthermore, as already mentioned in materials and methods, 

it would have been better to calculate the CII using the food δ13C value before the diet 

switching, instead of using the tissue δ13C value at the beginning of the experiment. Further 

experiments should try to evaluate this, even if it is difficult when using bivalves in their 

natural environment. However, these global data can still provide valuable information about 

metabolite allocation to an organ, which can be very useful for ecophysiological studies.   

Furthermore, even though the general idea that δ13C variations are directly linked to 

organ activity and growth and can help us to study bivalve metabolism, some other processes 

may account for the observed differences and reduce the power of this study. According to the 

literature, two main processes acting on δ13C variations should be considered: isotopic routing 

and differential isotopic fractionation (Gannes et al., 1997). 

Isotopic routing is a process by which some biochemical components from the diet, 

with specific isotopic signatures, are preferentially allocated to certain organs. Most of the 

time, lipid accumulation is proposed to explain some decreases in δ13C as lipids are strongly 
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depleted in 13C (Tieszen et al., 1983). To determine if such a process can fundamentally affect 

interpretation of our data, we are able to simulate the effect of a complete isotopic routing, 

i.e., only dietary lipids incorporated in one organ. To perform such a simulation, the isotopic 

composition of the lipid and non-lipid fraction of the diet has to be known. Data from the 

literature allows us to estimate that δ
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13C  of the lipid fraction of a tissue is around 6 to 7 ‰ 

lower than of its non-lipid fraction (McConnaughey and McRoy, 1979; Kling et al., 1992; 

Bearshop et al., 2002). By a mass balance calculation, we estimated the δ13C value of the lipid 

fraction of the diet in June (phytoplankton with a maximum 20 % of lipids: Whyte, 1987; 

Brown, 1991) to be about -50.8 ‰, whereas the non-lipid fraction is about -42.4 ‰. We 

hypothesize that the digestive gland, which is known to be an organ rich in lipids (30 %, 

Saout et al., 1999), exclusively incorporates the lipid fraction of the diet (estimated δ13C = 

-50.8 ‰) and conversely that the muscle (a fat-free organ) incorporates only the non lipid 

fraction (δ13C = -42.4 ‰). Then using these new values in place of the measured dietary δ13C, 

we can re-estimate the CII. For the muscles of scallops in June, the CII values would shift 

from 3.9 to 4.1 %, and for the digestive gland from 45.4 to 34.7 %. In January, recalculated 

muscle values would not change significantly whereas digestive gland values would shift 

from 17.5 to 14.3 %. Therefore, this estimation of the maximum isotopic routing would 

explain only up to 30 % of the observed variations and would not change our conclusions. 

Differing fractionation factors between organs could also impact the CII results, but 

data for differential fractionation between organs of the same organism are scarce (see 

Dalerum and Angerbjörn, 2005) and even nonexistent for marine bivalves. However, the 

results of Lorrain et al. (2002) suggest that these differing fractionation factors would not 

exceed 4 ‰ in scallops (between muscle and digestive gland). Therefore, including differing 

fractionation factors (from 1 to 4 ‰) to the δ13Cdiet value in the CII calculations would have a 

very small impact on CII value differences observed between organs. 
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 The CII differed among organs in the following order: digestive gland > gonad > 

adductor muscle. Furthermore, seasonal variations are stronger in the digestive gland and in 

the gonad than in the muscle, suggesting that the digestive gland and the gonad integrate 

shorter time variations as compared to the muscle. On an annual average, the gills presented 

intermediate CII values, close to those of the gonad (23 and 9 % for scallops and oysters 

respectively) and were constant throughout the year. The “remaining tissues” CII presented an 

annual mean value close to 7 % but with large seasonal variations, suggesting that these 

tissues might have a storage role, in contrast to the gills. 

The most striking result of our diet switching experiments is that strong differences in 

the CII were observed among seasons. Food, provided ad libitum in all the four experiments, 

cannot account for these differences. Temperature differed between experiments, but was not 

the cause of these variations as both the maximum and the minimum scallop CII were 

observed at the lowest temperature (Fig. 3), in March and January, respectively. To a lesser 

extent, the same inference can be drawn for oysters. From this, it can be concluded that 

carbon allocation is not driven by immediate thermal conditions, as is suggested for many 

bivalves (McDonald and Thomson, 1985b, 1986). Our results constitute the first data set 

illustrating this pattern for bivalves obtained using stable isotope diet switching experiments. 

  Variations between the two species CII probably reflect their different energy 

allocation strategies. From several works on the same scallop population of the Bay of Brest 

(Paulet et al. 1988, 1997; Saout et al. 1999; Saout 2000), a hypothetical schedule of metabolic 

activities can be drawn (Fig. 4). Scallops in the Bay of Brest are characterized by a strategy of 

storage and postponed use of energy. Basically, energy stored as glycogen in the adductor 

muscle and principally as lipids in the digestive gland during spring and summer, is used to 

sustain reproductive effort and maintenance during winter. In spring and summer, somatic and 

reproductive production is directly fuelled from the available food. Schematically, in terms of 
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energetic allocation priority, the year for an adult scallop can be subdivided in three main 

parts (Fig. 4): i) from November to April, metabolic translocation from somatic to 

reproductive tissues occurs, ii) from April to May, a transitory period, is characterized by the 

simultaneous production of somatic and reproductive tissues mainly from food, and iii) from 

June to October, major energetic fluxes originate from the food and are used for reserve 

building. 

In contrast to the scallop, the Japanese oyster, C. gigas, from the coast of Brittany, 

exhibits an annual cycle by which food can directly sustain growth and reproduction for most 

of the year (Chavez-Villalba et al. 2001; Chavez-Villalba et al. 2002a, b; Enriquez-Diaz 

2004). Spring and summer are periods of major gonadal production, whereas somatic growth 

occurs during this period according to a more opportunistic manner depending on food 

availability (Fig. 4). Reproductive activity is sustained either by direct uptake or via 

metabolites stored in the reserve tissues ("remaining tissues": mantle, labial palps and 

perigonadal tissues). In oysters, seasonally based biological changes are acknowledged to be 

less rigid than for scallops, with individuals inhabiting a large range of environmental 

conditions (Enriquez-Diaz, 2004).  

For scallops in the present study, the maximum carbon incorporation in reserve 

tissues, i.e. muscle and digestive gland, is observed in March and June. Intense incorporation 

into the gonad is limited to March and to a lesser extent to June and September. These results 

show that energy allocation to reproduction is observed in March and that reproduction can 

still occur in the second temporal window of energy allocation (June to September) in 

accordance with the annual schedules shown in figure 4. Therefore, contrary to previous 

hypotheses, scallops seem able to assimilate external food as early as March, and not only 

after April; this probably reveals the opening of a “receptive window” to food availability 

somewhere between the end of January and the beginning of March. The very low CII values 
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observed for somatic tissues in September is contradictory to the prediction of the energy 

allocation model (Fig. 4), and probably reveals an overestimation of the storage process in 

autumn even though target organs (muscle and digestive gland) are near their maximum 

filling. Finally, carbon incorporation is at its minimum in January for all tissues, underscoring 

the fact that gonadic activity observed in winter for this species (Paulet et al. 1997) is directly 

dependant on the use of storage tissues. 

 In oysters, CII values are generally lower than in scallops and seasonal differences 

were less pronounced. In this species, carbon incorporation in the gonad revealed by isotope 

results was maximal in March and June, in agreement with the energy allocation model 

(Fig.4) and verifying that gonadal tissue develops during this period, at least partially from 

food uptake. In September, the gonad CII remains close to zero, corresponding precisely to 

the resting stage documented for this species in Brittany (e.g. Lango-Reynoso et al. 1999; Li 

et al. 2000; Fig. 4). Seasonal variations of the CII of the digestive gland appear less 

pronounced than in scallops, in accordance with its relatively minor role as a storage organ in 

oysters compared to scallops. However, the high CII observed for the digestive gland relative 

to the other organs in all seasons suggests that this organ would have a more important 

storage role in oysters than previously described. The “remaining tissues” exhibited a high CII 

value in March, probably due to their predominant role as a reserve compartment. This 

heterogeneous tissue composed of the mantle, the labial palps and the perigonadal envelope 

will be the object of more extensive studies in the future. For both species, the gills represent 

a site of active incorporation during all seasons, which warrants further studies.  

Our results from carbon isotope tracing agree with previous knowledge on energy 

allocation for the studied bivalves. Clearly scallops appear as a species with more rigid and 

contrasted temporal allocation windows than oysters, as evidenced by the greater seasonality 

in the CII. This apparent highly regulated functioning might be compared with the existence 
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of a putative annual rhythmic physiological oscillation, driven or not by photoperiod, as 

proposed by Paulet and Boucher (1991) for this species. One must also consider that scallops 

have very distinct periods of energy allocation, using food or tissue reserves, whereas oysters 

use both food and tissue reserves simultaneously.  

Another striking result of these experiments was the generally lower magnitude of the 

CII for oysters as compared to scallops. The carbon incorporation, discussed in this study, is a 

double source process: i) the renewal of existing tissues (tissue turnover), and ii) the 

production of new tissues (growth). This must be considered when discussing differences in 

the CII between both species. Although growth was not measured during the course of the 

experiment, tissue growth data for oysters in Aber Benoît (Fleury et al., 2001) and for scallops 

in the Bay of Brest (Lorrain et al., 2004) reveals that at the same age, a scallop produces 

annually at least two times more soft tissues than an oyster. Therefore, a part of the observed 

difference in CII values could be due to differences in tissues growth between the two species. 

In future studies, the development of methods adapted to precisely assess tissue production at 

the individual level would be of primary importance. Secondly, the markedly lower CII 

observed for oysters could also reveal a lower metabolism, inducing a lower tissue turnover, 

for this species compared to scallops. Such a difference seems consistent with some other life 

history traits of these species, such as i) the potential mobility in scallops contrasted with the 

sedentary life of the oysters, and ii) the larger pallial cavity, and the greater valve movements, 

in scallops compared to oysters of the same size, probably allowing higher pumping rates in 

scallops (Møhlenberg and Riisgård, 1979; see also discussion in Bricelj and Shumway, 1991).  

Finally, for dietary studies, in which stable isotopes are a key tool, this kind of 

experiment could be continued over longer time periods to assess turnover and fractionation 

factors between food and different tissues. Indeed, the bivalves sampled at the end of our 

experiments had not yet reached equilibrium with their new diet. Furthermore, in this study, 
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the elucidation of great differences in carbon incorporation kinetics between organs confirms 

the potential of multi-organ analyses to study spatial or temporal variations in diet δ
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(Tieszen et al., 1983; Hobson and Clark, 1992a, b; Hobson et al. 1996). Indeed, to study 

trophic dynamics at different time scales, the digestive gland and gonads are more appropriate 

than the muscle to detect short-term food source variations, as the muscle only gives an 

average value over a long period. 

 

     5. Conclusion 

 

Diet switching experiments, conducted under the same diet regime but at different 

periods of the year, have revealed differences in carbon incorporation among organs, seasons, 

and species. These results are consistent with previous knowledge on energy allocation 

strategies for P. maximus and C. gigas. This study represents an important first step in 

establishing the potential of stable isotope diet switching experiments for carbon tracing in 

bivalves. In this regard, information from this type of experiment would offer valuable 

insights into bivalve ecophysiology and energy allocation patterns. The next stage will be the 

coupled study of isotope tracking with a whole carbon budget of the two species, including 

consumption, respiration, production (organ by organ) and faecal excretion estimations. 
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Table captions 

 

Table 1. Details of the experimental protocol of the four experiments (March, June, 

September and January): exact dates, water temperature, isotopic composition of the diet 

(means ± 1 S.D, N for number of measurements) and specific composition of the unicellular 

algae species that compose the diet given to scallops and oysters. 

 

Table 2. Results of the multiple range test for differences in CII among organs for the same 

experiment (organ effects) and among experiments for the same organ (seasonal effects) for 

scallops (A) and oysters (B). ns: non significant, ** : significant at the 95% level, nd: not 

determined. G: Gonad; DG; Digestive Gland; M: Muscle; R: Remaining tissues. 
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540  

 March 2002 June 2002 September 2002 January 2003 

Dates 8 to 23 March 30 May to 14 June 9 to 24 September 10 to 25 January 

Temperature 10°C 14°C 17°C 10°C 

Diet δ13C (‰) -42.7 
N = 1 

-43.9 ± 0.5 
N = 2 

-50.3 ± 3.1 
N = 3 

-52.8 ± 2.7 
N = 4 

 

Unicellular 
algal species 

 

Isochrysis galbana, Skeletonema costatum, 
 Tetraselmis chui, Chaetoceros calcitrans 
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B.  Crassostrea gigas 
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Figure captions 

 

Figure 1.  Pecten maximus. Stable carbon isotope values (δ13C, in ‰) of scallops as a function 

of time since the diet switch for the four different experiments (March, June, September and 

January), each sub-figure corresponding to one of the four organs (adductor muscle, gills, 

gonad and digestive gland). Values are means ± 1 standard deviation (N = 3) except for gills 

where the value corresponds to a pool of the three individuals. 

 

Figure 2. Crassostrea gigas. Stable carbon isotope values (δ13C, in ‰) of oysters as a 

function of time since diet switch for the four different experiments (March, June, September 

and January), each sub-figure corresponding to one of the four organs (adductor muscle, gills, 

gonad, digestive gland) and the remaining tissues (mantle, labial palps and perigonadic 

tissues). Values are means ± 1 standard deviation (N = 3) except for gills where the value 

corresponds to a pool of the three individuals.  

 

Figure 3. Carbon Incorporation Index (CII, in %) in the different organs (adductor muscle, 

gonad, digestive gland, gills and remaining tissues) of P. maximus (black bars) and C. gigas 

(grey bars) for the different experiments (March, June, September and January). Temperature 

during experiments is also indicated. See materials and methods for calculations of CII. 

Standard deviations are indicated when available.     

 

Figure 4. Hypothetical annual model of energy allocation for the two bivalves species 

developed from previous studies (see discussion) A) Pecten maximus and B) Crassostrea 

gigas. Arrows illustrate energy origin (food or reserve tissue) during the three different 

periods for each species. R signifies that energy is primarily being allocated to reproduction 
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and S to somatic growth; small caps indicate secondary processes that can still occur if energy 

is in excess. Hachure section represents a resting stage for oysters.  
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